Zhu, Jianbo; Fu, Xianlong Existence and differentiability of solutions for nondensely defined neutral integro-differential evolution equations. (English) Zbl 07625945 Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 30, 24 p. (2023). MSC: 37L05 45K05 34B10 35B65 47N20 PDF BibTeX XML Cite \textit{J. Zhu} and \textit{X. Fu}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 30, 24 p. (2023; Zbl 07625945) Full Text: DOI OpenURL
Rogava, Jemal; Tsiklauri, Mikheil; Vashakidze, Zurab On stability and convergence of a three-layer semi-discrete scheme for an abstract analogue of the Ball integro-differential equation. (English) Zbl 1500.35212 J. Math. Anal. Appl. 518, No. 1, Article ID 126664, 25 p. (2023). MSC: 35L90 35R09 65M12 74K10 PDF BibTeX XML Cite \textit{J. Rogava} et al., J. Math. Anal. Appl. 518, No. 1, Article ID 126664, 25 p. (2023; Zbl 1500.35212) Full Text: DOI arXiv OpenURL
Abdellouahab, Naimi; Tellab, Brahim; Zennir, Khaled Existence and stability results of a nonlinear fractional integro-differential equation with integral boundary conditions. (English) Zbl 07661713 Kragujevac J. Math. 46, No. 5, 685-699 (2022). MSC: 34A08 26A33 34B15 34K20 PDF BibTeX XML Cite \textit{N. Abdellouahab} et al., Kragujevac J. Math. 46, No. 5, 685--699 (2022; Zbl 07661713) Full Text: DOI Link OpenURL
Lemita, Samir; Touati, Sami; Derbal, Kheireddine The approximate solution of nonlinear Fredholm implicit integro-differential equation in the complex plane. (English) Zbl 07648881 Asian-Eur. J. Math. 15, No. 7, Article ID 2250131, 11 p. (2022). MSC: 45B05 45L05 65R20 47G20 PDF BibTeX XML Cite \textit{S. Lemita} et al., Asian-Eur. J. Math. 15, No. 7, Article ID 2250131, 11 p. (2022; Zbl 07648881) Full Text: DOI OpenURL
Vougalter, Vitali; Volpert, Vitaly On the solvability of some systems of integro-differential equations with concentrated sources. (English) Zbl 07628880 Z. Angew. Math. Phys. 73, No. 6, Paper No. 252, 15 p. (2022). MSC: 35J05 35P30 47G20 PDF BibTeX XML Cite \textit{V. Vougalter} and \textit{V. Volpert}, Z. Angew. Math. Phys. 73, No. 6, Paper No. 252, 15 p. (2022; Zbl 07628880) Full Text: DOI OpenURL
Yuldashev, Tursun Kamaldinovich; Èrgashev, Tukhtasin Gulamzhanovich; Abduvahobov, Tokhirzhon Akbarali ogli Nonlinear system of impulsive integro-differential equations with hilfer fractional operator and mixed maxima. (English) Zbl 07627006 Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 3, 312-325 (2022). MSC: 45J05 26A33 45G15 PDF BibTeX XML Cite \textit{T. K. Yuldashev} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 3, 312--325 (2022; Zbl 07627006) Full Text: DOI MNR OpenURL
Atta, A. G.; Youssri, Y. H. Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel. (English) Zbl 07622774 Comput. Appl. Math. 41, No. 8, Paper No. 381, 19 p. (2022). MSC: 65M70 45K05 33C45 PDF BibTeX XML Cite \textit{A. G. Atta} and \textit{Y. H. Youssri}, Comput. Appl. Math. 41, No. 8, Paper No. 381, 19 p. (2022; Zbl 07622774) Full Text: DOI OpenURL
Diop, Mamadou Abdul; Ezzinbi, Khalil; Ly, Mamadou Pathe Nonlocal problems for integrodifferential equations via resolvent operators and optimal controls. (English) Zbl 07599586 Discuss. Math., Differ. Incl. Control Optim. 42, No. 1, 5-25 (2022). MSC: 49J30 47G20 47J35 93B05 PDF BibTeX XML Cite \textit{M. A. Diop} et al., Discuss. Math., Differ. Incl. Control Optim. 42, No. 1, 5--25 (2022; Zbl 07599586) Full Text: DOI OpenURL
Yuldashev, Tursun K. On a nonlocal boundary value problem for a partial integro-differential equations with degenerate kernel. (English) Zbl 07598655 Vladikavkaz. Mat. Zh. 24, No. 2, 130-141 (2022). MSC: 35A02 35M10 35S05 PDF BibTeX XML Cite \textit{T. K. Yuldashev}, Vladikavkaz. Mat. Zh. 24, No. 2, 130--141 (2022; Zbl 07598655) Full Text: DOI MNR OpenURL
Chernov, Andreĭ V. On Stackelberg equilibrium in the sense of program strategies in Volterra functional operator games. (Russian. English summary) Zbl 1500.91042 Mat. Teor. Igr Prilozh. 14, No. 2, 99-122 (2022); translation in Autom. Remote Control 83, No. 11, 1843-1856 (2022). MSC: 91A65 47G99 PDF BibTeX XML Cite \textit{A. V. Chernov}, Mat. Teor. Igr Prilozh. 14, No. 2, 99--122 (2022; Zbl 1500.91042); translation in Autom. Remote Control 83, No. 11, 1843--1856 (2022) Full Text: MNR OpenURL
Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V. Optimal control of investment in a collective pension insurance model: study of singular nonlinear problems for integro-differential equations. (English. Russian original) Zbl 1500.91110 Comput. Math. Math. Phys. 62, No. 9, 1438-1454 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 9, 1473-1490 (2022). MSC: 91G05 93E20 49L25 45K05 PDF BibTeX XML Cite \textit{T. A. Belkina} et al., Comput. Math. Math. Phys. 62, No. 9, 1438--1454 (2022; Zbl 1500.91110); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 9, 1473--1490 (2022) Full Text: DOI OpenURL
Ramdani, Nedjem Eddine; Pinelas, Sandra Solving nonlinear integro-differential equations using numerical method. (English) Zbl 1500.65108 Turk. J. Math. 46, No. 2, SI-1, 675-687 (2022). MSC: 65R20 45J05 PDF BibTeX XML Cite \textit{N. E. Ramdani} and \textit{S. Pinelas}, Turk. J. Math. 46, No. 2, 675--687 (2022; Zbl 1500.65108) Full Text: DOI OpenURL
Moussai, Miloud Application of the Bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with Caputo fractional derivatives. (English) Zbl 1496.65239 Numer. Algebra Control Optim. 12, No. 3, 551-568 (2022). MSC: 65R20 45J05 45D05 PDF BibTeX XML Cite \textit{M. Moussai}, Numer. Algebra Control Optim. 12, No. 3, 551--568 (2022; Zbl 1496.65239) Full Text: DOI OpenURL
Blatt, Simon Analyticity for solution of fractional integro-differential equations. (English) Zbl 1496.35013 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 224, Article ID 113071, 12 p. (2022). MSC: 35A20 35D40 35R09 35R11 PDF BibTeX XML Cite \textit{S. Blatt}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 224, Article ID 113071, 12 p. (2022; Zbl 1496.35013) Full Text: DOI OpenURL
Yang, Huaijun; Shi, Dongyang Optimal error estimates of Galerkin method for a nonlinear parabolic integro-differential equation. (English) Zbl 1502.65151 Appl. Numer. Math. 181, 403-416 (2022). MSC: 65M60 65M06 65N30 65M15 65M12 35R09 45K05 78A25 78M10 PDF BibTeX XML Cite \textit{H. Yang} and \textit{D. Shi}, Appl. Numer. Math. 181, 403--416 (2022; Zbl 1502.65151) Full Text: DOI OpenURL
Rezazadeh, Tohid; Najafi, Esmaeil Jacobi collocation method and smoothing transformation for numerical solution of neutral nonlinear weakly singular Fredholm integro-differential equations. (English) Zbl 1502.65279 Appl. Numer. Math. 181, 135-150 (2022). MSC: 65R20 45J05 45E10 45B05 65L60 PDF BibTeX XML Cite \textit{T. Rezazadeh} and \textit{E. Najafi}, Appl. Numer. Math. 181, 135--150 (2022; Zbl 1502.65279) Full Text: DOI OpenURL
Hengamian Asl, Elias; Saberi-Nadjafi, Jafar; Gachpazan, Morteza Numerical solution of fractional-order population growth model using fractional-order Muntz-Legendre collocation method and Pade-approximants. (English) Zbl 07565714 Jordan J. Math. Stat. 15, No. 2, 157-175 (2022). MSC: 26A33 34A08 74G10 PDF BibTeX XML Cite \textit{E. Hengamian Asl} et al., Jordan J. Math. Stat. 15, No. 2, 157--175 (2022; Zbl 07565714) Full Text: DOI OpenURL
Palatucci, Giampiero; Piccinini, Mirco Nonlocal Harnack inequalities in the Heisenberg group. (English) Zbl 1495.35055 Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 185, 30 p. (2022). MSC: 35B45 35H20 35R03 35R09 35R11 47G20 PDF BibTeX XML Cite \textit{G. Palatucci} and \textit{M. Piccinini}, Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 185, 30 p. (2022; Zbl 1495.35055) Full Text: DOI arXiv OpenURL
Hu, Shufang; Qiu, Wenlin; Chen, Hongbin A predictor-corrector compact finite difference scheme for a nonlinear partial integro-differential equation. (English) Zbl 07565165 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 3-4, 553-563 (2022). MSC: 45K05 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{S. Hu} et al., Int. J. Nonlinear Sci. Numer. Simul. 23, No. 3--4, 553--563 (2022; Zbl 07565165) Full Text: DOI OpenURL
Adama, Kamate; Mbaiguesse, Djibet; Yiyureboula, Bationo Jeremie; Abbo, Bakari; Pare, Youssouf Analytical solution of some nonlinear fractional integro-differential equations of the Fredholm second kind by a new approximation technique of the numerical sba method. (English) Zbl 07564765 Int. J. Numer. Methods Appl. 21, 37-58 (2022). MSC: 65Rxx 97N40 97I50 44Axx 40C10 PDF BibTeX XML Cite \textit{K. Adama} et al., Int. J. Numer. Methods Appl. 21, 37--58 (2022; Zbl 07564765) Full Text: DOI OpenURL
Cen, Da-kang; Wang, Zhi-bo; Mo, Yan A compact difference scheme on graded meshes for the nonlinear fractional integro-differential equation with non-smooth solutions. (English) Zbl 1492.65232 Acta Math. Appl. Sin., Engl. Ser. 38, No. 3, 601-613 (2022). MSC: 65M06 65N06 65K10 65M12 65M15 35R09 45K05 26A33 35R11 PDF BibTeX XML Cite \textit{D.-k. Cen} et al., Acta Math. Appl. Sin., Engl. Ser. 38, No. 3, 601--613 (2022; Zbl 1492.65232) Full Text: DOI OpenURL
Askhabov, S. N. Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type. (English. Russian original) Zbl 1491.45007 J. Math. Sci., New York 260, No. 3, 275-285 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 3-13 (2019). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45G10 47J05 47N20 PDF BibTeX XML Cite \textit{S. N. Askhabov}, J. Math. Sci., New York 260, No. 3, 275--285 (2022; Zbl 1491.45007); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 3--13 (2019) Full Text: DOI OpenURL
Wang, Furong; Yang, Xuehua; Zhang, Haixiang; Wu, Lijiao A time two-grid algorithm for the two dimensional nonlinear fractional PIDE with a weakly singular kernel. (English) Zbl 07538449 Math. Comput. Simul. 199, 38-59 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{F. Wang} et al., Math. Comput. Simul. 199, 38--59 (2022; Zbl 07538449) Full Text: DOI OpenURL
Bouach, Abderrahim; Haddad, Tahar; Thibault, Lionel On the discretization of truncated integro-differential sweeping process and optimal control. (English) Zbl 1489.49008 J. Optim. Theory Appl. 193, No. 1-3, 785-830 (2022). MSC: 49J40 47J20 47J22 45D05 58E35 74M15 74M10 PDF BibTeX XML Cite \textit{A. Bouach} et al., J. Optim. Theory Appl. 193, No. 1--3, 785--830 (2022; Zbl 1489.49008) Full Text: DOI OpenURL
Dang Quang Long; Dang Quang A Existence results and numerical method for solving a fourth-order nonlinear integro-differential equation. (English) Zbl 1491.65168 Numer. Algorithms 90, No. 2, 563-576 (2022). MSC: 65R20 45J05 65L03 65L10 PDF BibTeX XML Cite \textit{Dang Quang Long} and \textit{Dang Quang A}, Numer. Algorithms 90, No. 2, 563--576 (2022; Zbl 1491.65168) Full Text: DOI arXiv OpenURL
Aissaoui, M. Z.; Bounaya, M. C.; Guebbai, H. Analysis of a nonlinear Volterra-Fredholm integro-differential equation. (English) Zbl 1490.65311 Quaest. Math. 45, No. 2, 307-325 (2022). MSC: 65R20 45J05 45G10 45B05 45D05 47H10 PDF BibTeX XML Cite \textit{M. Z. Aissaoui} et al., Quaest. Math. 45, No. 2, 307--325 (2022; Zbl 1490.65311) Full Text: DOI OpenURL
Belhireche, Hanane; Guebbai, Hamza On the mixed nonlinear integro-differential equations with weakly singular kernel. (English) Zbl 1499.45003 Comput. Appl. Math. 41, No. 1, Paper No. 36, 17 p. (2022). MSC: 45D05 45B05 65R20 PDF BibTeX XML Cite \textit{H. Belhireche} and \textit{H. Guebbai}, Comput. Appl. Math. 41, No. 1, Paper No. 36, 17 p. (2022; Zbl 1499.45003) Full Text: DOI OpenURL
Abed, Ayoob M.; Younis, Muhammed F.; Hamoud, Ahmed A. Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM. (English) Zbl 1484.49057 Nonlinear Funct. Anal. Appl. 27, No. 1, 189-201 (2022). MSC: 49M27 65K10 45J05 65R20 PDF BibTeX XML Cite \textit{A. M. Abed} et al., Nonlinear Funct. Anal. Appl. 27, No. 1, 189--201 (2022; Zbl 1484.49057) Full Text: Link OpenURL
Jolley, Ellen M.; Smith, Frank T. A heavy body translating in a boundary layer: ‘crash’, ‘fly away’ and ‘bouncing’ responses. (English) Zbl 1484.76021 J. Fluid Mech. 936, Paper No. A37, 21 p. (2022). MSC: 76D10 76M45 70E99 PDF BibTeX XML Cite \textit{E. M. Jolley} and \textit{F. T. Smith}, J. Fluid Mech. 936, Paper No. A37, 21 p. (2022; Zbl 1484.76021) Full Text: DOI OpenURL
Abdellaoui, Boumediene; Peral, Ireneo; Primo, Ana; Soria, Fernando On the KPZ equation with fractional diffusion: global regularity and existence results. (English) Zbl 1481.35258 J. Differ. Equations 312, 65-147 (2022). MSC: 35K59 35B51 35B65 35K20 35R11 47G20 47J35 PDF BibTeX XML Cite \textit{B. Abdellaoui} et al., J. Differ. Equations 312, 65--147 (2022; Zbl 1481.35258) Full Text: DOI arXiv OpenURL
Tan, Zhijun; Li, Kang; Chen, Yanping A fully discrete two-grid finite element method for nonlinear hyperbolic integro-differential equation. (English) Zbl 07427432 Appl. Math. Comput. 413, Article ID 126596, 19 p. (2022). MSC: 65M15 65M60 PDF BibTeX XML Cite \textit{Z. Tan} et al., Appl. Math. Comput. 413, Article ID 126596, 19 p. (2022; Zbl 07427432) Full Text: DOI OpenURL
Hajiseyedazizi, Sayyedeh Narges; Samei, Mohammad Esmael; Alzabut, Jehad; Chu, Yu-ming On multi-step methods for singular fractional \(q\)-integro-differential equations. (English) Zbl 07642661 Open Math. 19, 1378-1405 (2021). MSC: 34A08 34B16 39A13 PDF BibTeX XML Cite \textit{S. N. Hajiseyedazizi} et al., Open Math. 19, 1378--1405 (2021; Zbl 07642661) Full Text: DOI OpenURL
Guemar, S.; Guebbai, H.; Lemita, S. On an integro-differential fractional nonlinear Volterra-Caputo equation. (Russian. English summary) Zbl 1502.45010 Sib. Zh. Vychisl. Mat. 24, No. 4, 365-382 (2021). MSC: 45J05 26A33 45D05 65R20 PDF BibTeX XML Cite \textit{S. Guemar} et al., Sib. Zh. Vychisl. Mat. 24, No. 4, 365--382 (2021; Zbl 1502.45010) Full Text: DOI MNR OpenURL
Chkhikvadze, Teimuraz On one nonlinear integro-differential parabolic equation. (English) Zbl 07564060 Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 35, 19-22 (2021). MSC: 45K05 PDF BibTeX XML Cite \textit{T. Chkhikvadze}, Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 35, 19--22 (2021; Zbl 07564060) Full Text: Link OpenURL
Zada, Mian Bahadur; Sarwar, Muhammad; George, Reny; Mitrović, Zoran D. Darbo-type \(\mathcal{Z}_{\mathrm{m}}\) and \(\mathcal{L}_{\mathrm{m}}\) contractions and its applications to Caputo fractional integro-differential equations. (English) Zbl 1484.54057 AIMS Math. 6, No. 6, 6340-6355 (2021). MSC: 54H25 34K37 45G10 45J05 47H09 47H10 PDF BibTeX XML Cite \textit{M. B. Zada} et al., AIMS Math. 6, No. 6, 6340--6355 (2021; Zbl 1484.54057) Full Text: DOI OpenURL
Adewumi, A. O.; Adetona, R. A.; Ogundare, B. S. On closed-form solutions to integro-differential equations. (English) Zbl 1499.45030 J. Numer. Math. Stoch. 12, No. 1, 28-44 (2021). MSC: 45L05 45D05 65R20 65H20 PDF BibTeX XML Cite \textit{A. O. Adewumi} et al., J. Numer. Math. Stoch. 12, No. 1, 28--44 (2021; Zbl 1499.45030) Full Text: Link OpenURL
Negarchi, Neda; Zolfegharifar, Sayyed Yaghoub Solving the optimal control of Volterra-Fredholm integro-differential equation via Müntz polynomials. (English) Zbl 1499.49024 Jordan J. Math. Stat. 14, No. 3, 453-466 (2021). MSC: 49J21 45A05 45J05 90C30 PDF BibTeX XML Cite \textit{N. Negarchi} and \textit{S. Y. Zolfegharifar}, Jordan J. Math. Stat. 14, No. 3, 453--466 (2021; Zbl 1499.49024) Full Text: DOI OpenURL
Liang, Conggang; Wang, Junjun Superconvergence analysis of nonconforming \(EQ_1^{rot}\) element for nonlinear parabolic integro-differential equation. (English) Zbl 1473.65308 Math. Methods Appl. Sci. 44, No. 14, 11684-11701 (2021). MSC: 65N30 65N12 65N15 PDF BibTeX XML Cite \textit{C. Liang} and \textit{J. Wang}, Math. Methods Appl. Sci. 44, No. 14, 11684--11701 (2021; Zbl 1473.65308) Full Text: DOI OpenURL
Cozzi, Matteo; Lombardini, Luca On nonlocal minimal graphs. (English) Zbl 1479.49090 Calc. Var. Partial Differ. Equ. 60, No. 4, Paper No. 136, 72 p. (2021). Reviewer: Laurent Moonens (Paris) MSC: 49Q05 53A10 45G05 47G20 35Q31 35D30 35D40 PDF BibTeX XML Cite \textit{M. Cozzi} and \textit{L. Lombardini}, Calc. Var. Partial Differ. Equ. 60, No. 4, Paper No. 136, 72 p. (2021; Zbl 1479.49090) Full Text: DOI arXiv OpenURL
Askhabov, Sultan N. Nonlinear convolution integro-differential equation with variable coefficient. (English) Zbl 1498.45005 Fract. Calc. Appl. Anal. 24, No. 3, 848-864 (2021). MSC: 45G10 45D05 26A33 47H05 47N20 PDF BibTeX XML Cite \textit{S. N. Askhabov}, Fract. Calc. Appl. Anal. 24, No. 3, 848--864 (2021; Zbl 1498.45005) Full Text: DOI OpenURL
Roy, Bandita; Bora, Swaroop Nandan On existence and uniqueness of integral solutions for a class of nondensely defined mixed Volterra-Fredholm integro-fractional neutral differential equations. (English) Zbl 1486.45014 J. Nonlinear Evol. Equ. Appl. 2021, 41-62 (2021). Reviewer: Anar Assanova (Almaty) MSC: 45J05 45B05 45D05 47N20 26A33 34G20 47H10 47H08 PDF BibTeX XML Cite \textit{B. Roy} and \textit{S. N. Bora}, J. Nonlinear Evol. Equ. Appl. 2021, 41--62 (2021; Zbl 1486.45014) Full Text: Link OpenURL
Dzhumabaev, Dulat S.; Mynbayeva, Sandugash A method of solving a nonlinear boundary value problem for the Fredholm integro-differential equation. (English) Zbl 1475.65220 J. Integral Equations Appl. 33, No. 1, 53-75 (2021). Reviewer: Deshna Loonker (Jodhpur) MSC: 65R20 45B05 45J05 47G20 PDF BibTeX XML Cite \textit{D. S. Dzhumabaev} and \textit{S. Mynbayeva}, J. Integral Equations Appl. 33, No. 1, 53--75 (2021; Zbl 1475.65220) Full Text: DOI OpenURL
Liang, Sihua; Zhang, Binlin Sign-changing solutions for fourth-order elliptic equations of Kirchhoff type with critical exponent. (English) Zbl 1474.35022 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 37, 23 p. (2021). MSC: 35A15 35J60 47G20 PDF BibTeX XML Cite \textit{S. Liang} and \textit{B. Zhang}, Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 37, 23 p. (2021; Zbl 1474.35022) Full Text: DOI OpenURL
Mukhigulashvili, Sulkhan; Novotná, Veronika The periodic problem for the second order integro-differential equations with distributed deviation. (English) Zbl 07361097 Math. Bohem. 146, No. 2, 167-183 (2021). Reviewer: Haiyan Wang (Phoenix) MSC: 34K06 34K13 34B15 PDF BibTeX XML Cite \textit{S. Mukhigulashvili} and \textit{V. Novotná}, Math. Bohem. 146, No. 2, 167--183 (2021; Zbl 07361097) Full Text: DOI OpenURL
Amosov, Andrey Unique solvability of a stationary radiative-conductive heat transfer problem in a semitransparent body with absolutely black inclusions. (English) Zbl 07349715 Z. Angew. Math. Phys. 72, No. 3, Paper No. 104, 30 p. (2021). MSC: 47G20 35A01 35A02 35B51 35D30 35Q79 PDF BibTeX XML Cite \textit{A. Amosov}, Z. Angew. Math. Phys. 72, No. 3, Paper No. 104, 30 p. (2021; Zbl 07349715) Full Text: DOI OpenURL
Klimsiak, Tomasz Quasi-regular Dirichlet forms and the obstacle problem for elliptic equations with measure data. (English) Zbl 1465.35224 Stud. Math. 258, No. 2, 121-156 (2021). MSC: 35J61 35J87 35J57 47G20 PDF BibTeX XML Cite \textit{T. Klimsiak}, Stud. Math. 258, No. 2, 121--156 (2021; Zbl 1465.35224) Full Text: DOI arXiv OpenURL
Buterin, Sergey Uniform stability of the inverse spectral problem for a convolution integro-differential operator. (English) Zbl 07330165 Appl. Math. Comput. 390, Article ID 125592, 11 p. (2021). MSC: 45-XX 65-XX PDF BibTeX XML Cite \textit{S. Buterin}, Appl. Math. Comput. 390, Article ID 125592, 11 p. (2021; Zbl 07330165) Full Text: DOI arXiv OpenURL
Buterin, Sergey Uniform full stability of recovering convolutional perturbation of the Sturm-Liouville operator from the spectrum. (English) Zbl 1466.45006 J. Differ. Equations 282, 67-103 (2021). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 45J05 45Q05 45C05 45M10 47G20 PDF BibTeX XML Cite \textit{S. Buterin}, J. Differ. Equations 282, 67--103 (2021; Zbl 1466.45006) Full Text: DOI arXiv OpenURL
Cakir, Musa; Gunes, Baransel; Duru, Hakki A novel computational method for solving nonlinear Volterra integro-differential equation. (English) Zbl 1474.65492 Kuwait J. Sci. 48, No. 1, 1-9 (2021). MSC: 65R20 45D05 45K05 45G10 PDF BibTeX XML Cite \textit{M. Cakir} et al., Kuwait J. Sci. 48, No. 1, 1--9 (2021; Zbl 1474.65492) Full Text: DOI OpenURL
Li, Linyan; Shu, Ji; Bai, Qianqian; Li, Hui Asymptotic behavior of fractional stochastic heat equations in materials with memory. (English) Zbl 1458.37076 Appl. Anal. 100, No. 1, 145-166 (2021). MSC: 37L55 37L65 37L30 35R60 60H15 PDF BibTeX XML Cite \textit{L. Li} et al., Appl. Anal. 100, No. 1, 145--166 (2021; Zbl 1458.37076) Full Text: DOI OpenURL
Patrone, Paul N.; Li, Amy Q. H.; Cooksey, Gregory A.; Kearsley, Anthony J. Measuring microfluidic flow rates: monotonicity, convexity, and uncertainty. (English) Zbl 1455.35203 Appl. Math. Lett. 112, Article ID 106694, 6 p. (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 35R09 76A99 76W05 78A60 45G10 PDF BibTeX XML Cite \textit{P. N. Patrone} et al., Appl. Math. Lett. 112, Article ID 106694, 6 p. (2021; Zbl 1455.35203) Full Text: DOI OpenURL
Jangveladze, Temur Investigation and approximate solution of nonlinear integro-differential equation of diffusion type. (English) Zbl 07564041 Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 34, 38-41 (2020). MSC: 45K05 65N06 PDF BibTeX XML Cite \textit{T. Jangveladze}, Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 34, 38--41 (2020; Zbl 07564041) Full Text: Link OpenURL
Phuong, Nguyen Duc; Sakar, Fethiye Muge; Etemad, Sina; Rezapour, Shahram A novel fractional structure of a multi-order quantum multi-integro-differential problem. (English) Zbl 1487.34034 Adv. Difference Equ. 2020, Paper No. 633, 22 p. (2020). MSC: 34A08 39A13 34B10 26A33 34B15 PDF BibTeX XML Cite \textit{N. D. Phuong} et al., Adv. Difference Equ. 2020, Paper No. 633, 22 p. (2020; Zbl 1487.34034) Full Text: DOI OpenURL
Mohammadi, Hakimeh; Rezapour, Shahram; Etemad, Sina On a hybrid fractional Caputo-Hadamard boundary value problem with hybrid Hadamard integral boundary value conditions. (English) Zbl 1486.34034 Adv. Difference Equ. 2020, Paper No. 455, 20 p. (2020). MSC: 34A08 34B15 34A60 26A33 34B10 PDF BibTeX XML Cite \textit{H. Mohammadi} et al., Adv. Difference Equ. 2020, Paper No. 455, 20 p. (2020; Zbl 1486.34034) Full Text: DOI OpenURL
Jangveladze, Temur; Kiguradze, Zurab Unique solvability and decomposition method for one nonlinear multi-dimensional integro-differential parabolic equation. (English) Zbl 1484.45009 Int. J. Numer. Anal. Model. 17, No. 6, 806-819 (2020). MSC: 45K05 65R20 35Q61 65M06 PDF BibTeX XML Cite \textit{T. Jangveladze} and \textit{Z. Kiguradze}, Int. J. Numer. Anal. Model. 17, No. 6, 806--819 (2020; Zbl 1484.45009) Full Text: Link OpenURL
Coppo, Francesco; Mezzani, Federica; Pensalfini, Sara; Carcaterra, Antonio Numerical simulations in nonlinear elastic metamaterials with nonlocal interaction. (English) Zbl 1492.74090 Lacarbonara, Walter (ed.) et al., New trends in nonlinear dynamics. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17–20, 2019. Volume III. Cham: Springer. 41-48 (2020). MSC: 74J30 74E30 PDF BibTeX XML Cite \textit{F. Coppo} et al., in: New trends in nonlinear dynamics. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17--20, 2019. Volume III. Cham: Springer. 41--48 (2020; Zbl 1492.74090) Full Text: DOI OpenURL
Mezzani, Federica; Rezaei, Amir Sajjad; Carcaterra, Antonio Wave propagation phenomena in nonlinear elastic metamaterials. (English) Zbl 1492.74092 Lacarbonara, Walter (ed.) et al., New trends in nonlinear dynamics. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17–20, 2019. Volume III. Cham: Springer. 31-40 (2020). MSC: 74J30 74E30 PDF BibTeX XML Cite \textit{F. Mezzani} et al., in: New trends in nonlinear dynamics. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17--20, 2019. Volume III. Cham: Springer. 31--40 (2020; Zbl 1492.74092) Full Text: DOI OpenURL
Kendre, S. D.; Unhale, S. I. On existence, uniqueness and Ulam’s stability results for boundary value problems of fractional iterative integrodifferential equations. (English) Zbl 1483.45009 J. Appl. Math. Comput. 64, No. 1-2, 503-517 (2020). MSC: 45L05 45J05 34K37 45M10 45N05 45G15 PDF BibTeX XML Cite \textit{S. D. Kendre} and \textit{S. I. Unhale}, J. Appl. Math. Comput. 64, No. 1--2, 503--517 (2020; Zbl 1483.45009) Full Text: DOI OpenURL
Ho, Vu; Van Hoa, Ngo Ulam-Hyers stability for a nonlinear Volterra integro-differential equation. (English) Zbl 1499.45006 Hacet. J. Math. Stat. 49, No. 4, 1261-1269 (2020). MSC: 45D05 45J05 45L05 45M10 PDF BibTeX XML Cite \textit{V. Ho} and \textit{N. Van Hoa}, Hacet. J. Math. Stat. 49, No. 4, 1261--1269 (2020; Zbl 1499.45006) Full Text: DOI OpenURL
Toranj-Simin, M.; Hadizadeh, M. Spectral collocation method for a class of integro-differential equations with Erdélyi-Kober fractional operator. (English) Zbl 1499.65356 Adv. Appl. Math. Mech. 12, No. 2, 386-406 (2020). MSC: 65L60 34K37 45J05 47G20 65R20 PDF BibTeX XML Cite \textit{M. Toranj-Simin} and \textit{M. Hadizadeh}, Adv. Appl. Math. Mech. 12, No. 2, 386--406 (2020; Zbl 1499.65356) Full Text: DOI OpenURL
Mynbayeva, Sandugash T. An approximate solution to quasilinear boundary value problems for Fredholm integro-differential equation. (English) Zbl 1488.65751 Mat. Zh. 20, No. 4, 133-143 (2020). MSC: 65R20 45J05 34G20 45B05 47G20 PDF BibTeX XML Cite \textit{S. T. Mynbayeva}, Mat. Zh. 20, No. 4, 133--143 (2020; Zbl 1488.65751) OpenURL
Zheng, Xuan; Chen, Hongbin; Qiu, Wenlin A Crank-Nicolson-type finite-difference scheme and its algorithm implementation for a nonlinear partial integro-differential equation arising from viscoelasticity. (English) Zbl 1476.65352 Comput. Appl. Math. 39, No. 4, Paper No. 295, 23 p. (2020). MSC: 65R20 45K05 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{X. Zheng} et al., Comput. Appl. Math. 39, No. 4, Paper No. 295, 23 p. (2020; Zbl 1476.65352) Full Text: DOI OpenURL
Unhale, S. I.; Kendre, Subhash D. On existence and uniqueness results for iterative mixed integrodifferential equation of fractional order. (English) Zbl 1474.45080 J. Appl. Anal. 26, No. 2, 263-272 (2020). MSC: 45L05 45B05 45D05 45N05 45G15 PDF BibTeX XML Cite \textit{S. I. Unhale} and \textit{S. D. Kendre}, J. Appl. Anal. 26, No. 2, 263--272 (2020; Zbl 1474.45080) Full Text: DOI OpenURL
Jin, Kun-Peng; Liang, Jin; Xiao, Ti-Jun Global existence of solutions to some semilinear integro-differential evolution equations with sign-varying kernels. (English) Zbl 1474.45032 Nonauton. Dyn. Syst. 7, 65-71 (2020). MSC: 45G05 45N05 45K05 34G20 35L90 35B35 35Q74 PDF BibTeX XML Cite \textit{K.-P. Jin} et al., Nonauton. Dyn. Syst. 7, 65--71 (2020; Zbl 1474.45032) Full Text: DOI OpenURL
Guebbai, Hamza; Lemita, Samir; Segni, Sami; Merchela, Wassim Difference derivative for an integro-differential nonlinear Volterra equation. (English) Zbl 1480.65375 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 30, No. 2, 176-188 (2020). MSC: 65R20 45J05 45D05 PDF BibTeX XML Cite \textit{H. Guebbai} et al., Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 30, No. 2, 176--188 (2020; Zbl 1480.65375) Full Text: DOI MNR OpenURL
Lastra, A.; Malek, S. On singularly perturbed linear initial value problems with mixed irregular and Fuchsian time singularities. (English) Zbl 1461.35022 J. Geom. Anal. 30, No. 4, 3872-3922 (2020). MSC: 35B25 35G25 35R09 35C10 35C15 35C20 PDF BibTeX XML Cite \textit{A. Lastra} and \textit{S. Malek}, J. Geom. Anal. 30, No. 4, 3872--3922 (2020; Zbl 1461.35022) Full Text: DOI arXiv OpenURL
Vougalter, Vitali On the solvability of some systems of integro-differential equations with anomalous diffusion in two dimensions. (English) Zbl 1460.35087 Pure Appl. Funct. Anal. 5, No. 2, 489-503 (2020). MSC: 35J05 35R11 35A01 35P30 PDF BibTeX XML Cite \textit{V. Vougalter}, Pure Appl. Funct. Anal. 5, No. 2, 489--503 (2020; Zbl 1460.35087) Full Text: Link OpenURL
Fournier, Nicolas; Perthame, Benoît Transport distances for PDEs: the coupling method. (English) Zbl 1459.35037 EMS Surv. Math. Sci. 7, No. 1, 1-31 (2020). MSC: 35B40 35B45 35Q20 35Q49 35Q84 35K55 35R11 PDF BibTeX XML Cite \textit{N. Fournier} and \textit{B. Perthame}, EMS Surv. Math. Sci. 7, No. 1, 1--31 (2020; Zbl 1459.35037) Full Text: DOI arXiv OpenURL
Safavi, M.; Banar, J.; Khajehnasiri, A. A. Application of Legendre operational matrix to solution of two dimensional non-linear Volterra integro-differential equation. (English) Zbl 1488.65756 Casp. J. Math. Sci. 9, No. 2, 321-339 (2020). MSC: 65R20 45D05 45G10 PDF BibTeX XML Cite \textit{M. Safavi} et al., Casp. J. Math. Sci. 9, No. 2, 321--339 (2020; Zbl 1488.65756) Full Text: DOI OpenURL
Mansouri, A.; Rezapour, Sh. Investigating a solution of a multi-singular pointwise defined fractional integro-differential equation with Caputo derivative boundary condition. (English) Zbl 1454.45004 J. Math. Ext. 14, No. 2, 15-47 (2020). MSC: 45J05 34A08 34B16 PDF BibTeX XML Cite \textit{A. Mansouri} and \textit{Sh. Rezapour}, J. Math. Ext. 14, No. 2, 15--47 (2020; Zbl 1454.45004) Full Text: Link OpenURL
Cruz, José M. T. S.; Ševčovič, Daniel On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models. (English) Zbl 1474.45064 Japan J. Ind. Appl. Math. 37, No. 3, 697-721 (2020). MSC: 45K05 45R05 60G65 91G20 PDF BibTeX XML Cite \textit{J. M. T. S. Cruz} and \textit{D. Ševčovič}, Japan J. Ind. Appl. Math. 37, No. 3, 697--721 (2020; Zbl 1474.45064) Full Text: DOI arXiv OpenURL
Sharma, R. K.; Chandok, Sumit Multivalued problems, orthogonal mappings, and fractional integro-differential equation. (English) Zbl 1489.54228 J. Math. 2020, Article ID 6615478, 8 p. (2020). MSC: 54H25 54C60 54E40 45J05 34A08 PDF BibTeX XML Cite \textit{R. K. Sharma} and \textit{S. Chandok}, J. Math. 2020, Article ID 6615478, 8 p. (2020; Zbl 1489.54228) Full Text: DOI OpenURL
Lan, Haifeng; Xiao, Feiyan; Zhang, Gengen; Zhu, Rui Error analysis of compact implicit-explicit BDF method for nonlinear partial integral differential equations. (Chinese. English summary) Zbl 1463.65228 J. Guangxi Norm. Univ., Nat. Sci. 38, No. 4, 82-91 (2020). MSC: 65M06 65M15 35R09 65N06 PDF BibTeX XML Cite \textit{H. Lan} et al., J. Guangxi Norm. Univ., Nat. Sci. 38, No. 4, 82--91 (2020; Zbl 1463.65228) Full Text: DOI OpenURL
Caffarelli, Luis; Teymurazyan, Rafayel; Urbano, José Miguel Fully nonlinear integro-differential equations with deforming kernels. (English) Zbl 1452.35055 Commun. Partial Differ. Equations 45, No. 8, 847-871 (2020). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B65 35R09 35J60 35J96 47G20 35D40 PDF BibTeX XML Cite \textit{L. Caffarelli} et al., Commun. Partial Differ. Equations 45, No. 8, 847--871 (2020; Zbl 1452.35055) Full Text: DOI arXiv OpenURL
Marzban, Hamid Reza; Rostami Ashani, Mehrdad A class of nonlinear optimal control problems governed by Fredholm integro-differential equations with delay. (English) Zbl 1453.93110 Int. J. Control 93, No. 9, 2199-2211 (2020). MSC: 93C15 93C43 93C10 49J15 45B05 PDF BibTeX XML Cite \textit{H. R. Marzban} and \textit{M. Rostami Ashani}, Int. J. Control 93, No. 9, 2199--2211 (2020; Zbl 1453.93110) Full Text: DOI OpenURL
Lastra, A.; Malek, S. On parametric Gevrey asymptotics for some nonlinear initial value problems in symmetric complex time variables. (English) Zbl 1454.35404 Asymptotic Anal. 118, No. 1-2, 49-79 (2020). Reviewer: Rodica Luca (Iaşi) MSC: 35Q99 35R09 35B40 35C20 35B25 44A10 42A38 PDF BibTeX XML Cite \textit{A. Lastra} and \textit{S. Malek}, Asymptotic Anal. 118, No. 1--2, 49--79 (2020; Zbl 1454.35404) Full Text: DOI arXiv OpenURL
Bondarenko, Natalia; Buterin, Sergey Numerical solution and stability of the inverse spectral problem for a convolution integro-differential operator. (English) Zbl 1452.65416 Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105298, 10 p. (2020). MSC: 65R32 45J05 47G20 PDF BibTeX XML Cite \textit{N. Bondarenko} and \textit{S. Buterin}, Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105298, 10 p. (2020; Zbl 1452.65416) Full Text: DOI OpenURL
Jangveladze, Temur; Kiguradze, Zurab Averaged semi-discrete scheme of sum-approximation for one nonlinear multi-dimensional integro-differential parabolic equation. (English) Zbl 1488.65746 Georgian Math. J. 27, No. 3, 367-373 (2020). MSC: 65R20 45K05 65M06 PDF BibTeX XML Cite \textit{T. Jangveladze} and \textit{Z. Kiguradze}, Georgian Math. J. 27, No. 3, 367--373 (2020; Zbl 1488.65746) Full Text: DOI OpenURL
Guo, Jing; Xu, Da; Qiu, Wenlin A finite difference scheme for the nonlinear time-fractional partial integro-differential equation. (English) Zbl 1452.65404 Math. Methods Appl. Sci. 43, No. 6, 3392-3412 (2020). MSC: 65R20 45K05 65L12 65M12 PDF BibTeX XML Cite \textit{J. Guo} et al., Math. Methods Appl. Sci. 43, No. 6, 3392--3412 (2020; Zbl 1452.65404) Full Text: DOI OpenURL
Ghiat, Mourad; Guebbai, Hamza; Kurulay, Muhammet; Segni, Sami On the weakly singular integro-differential nonlinear Volterra equation depending in acceleration term. (English) Zbl 1463.45008 Comput. Appl. Math. 39, No. 3, Paper No. 206, 13 p. (2020). MSC: 45D05 45G05 45J99 45E99 65R20 PDF BibTeX XML Cite \textit{M. Ghiat} et al., Comput. Appl. Math. 39, No. 3, Paper No. 206, 13 p. (2020; Zbl 1463.45008) Full Text: DOI OpenURL
Quaas, Alexander; Salort, Ariel; Xia, Aliang Principal eigenvalues of fully nonlinear integro-differential elliptic equations with a drift term. (English) Zbl 1448.35199 ESAIM, Control Optim. Calc. Var. 26, Paper No. 36, 19 p. (2020). MSC: 35J60 47G20 35P30 PDF BibTeX XML Cite \textit{A. Quaas} et al., ESAIM, Control Optim. Calc. Var. 26, Paper No. 36, 19 p. (2020; Zbl 1448.35199) Full Text: DOI arXiv OpenURL
Tunç, Osman; Korkmaz, Erdal; Atan, Özkan On the qualitative analysis of Volterra IDDEs with infinite delay. (English) Zbl 1463.45042 Appl. Appl. Math. 15, No. 1, 446-457 (2020). MSC: 45J05 45D05 45M10 PDF BibTeX XML Cite \textit{O. Tunç} et al., Appl. Appl. Math. 15, No. 1, 446--457 (2020; Zbl 1463.45042) Full Text: Link OpenURL
Moosavi Nora, Seyyedeh Roodabeh; Taghizadeh, Nasir Study on solving two-dimensional linear and nonlinear Volterra partial integro-differential equations by reduced differential transform method. (English) Zbl 1439.35115 Appl. Appl. Math. 15, No. 1, 394-407 (2020). MSC: 35C05 35E15 45D05 45G10 PDF BibTeX XML Cite \textit{S. R. Moosavi Nora} and \textit{N. Taghizadeh}, Appl. Appl. Math. 15, No. 1, 394--407 (2020; Zbl 1439.35115) Full Text: Link OpenURL
Zhu, Bo; Han, Baoyan Existence and uniqueness of mild solutions for fractional partial integro-differential equations. (English) Zbl 1452.35248 Mediterr. J. Math. 17, No. 4, Paper No. 113, 12 p. (2020). Reviewer: Mohammed Kaabar (Gelugor) MSC: 35R11 35A01 35A02 35A24 34G20 PDF BibTeX XML Cite \textit{B. Zhu} and \textit{B. Han}, Mediterr. J. Math. 17, No. 4, Paper No. 113, 12 p. (2020; Zbl 1452.35248) Full Text: DOI OpenURL
Jhaveri, Yash; Stinga, Pablo Raúl The obstacle problem for a fractional Monge-Ampère equation. (English) Zbl 1444.35085 Commun. Partial Differ. Equations 45, No. 6, 457-482 (2020). Reviewer: Said El Manouni (Berlin) MSC: 35J96 35R35 35R11 35B65 35J60 47G20 PDF BibTeX XML Cite \textit{Y. Jhaveri} and \textit{P. R. Stinga}, Commun. Partial Differ. Equations 45, No. 6, 457--482 (2020; Zbl 1444.35085) Full Text: DOI arXiv OpenURL
Buterin, Sergey On a transformation operator approach in the inverse spectral theory of integral and integro-differential operators. (English) Zbl 1467.45022 Kravchenko, Vladislav V. (ed.) et al., Transmutation operators and applications. Cham: Birkhäuser. Trends Math., 337-367 (2020). MSC: 45P05 45G15 45J05 35Q05 47G20 PDF BibTeX XML Cite \textit{S. Buterin}, in: Transmutation operators and applications. Cham: Birkhäuser. 337--367 (2020; Zbl 1467.45022) Full Text: DOI OpenURL
Peschansky, A. I. Integro-differential equations over a closed circuit with Gaussian function in the kernel. (English. Russian original) Zbl 1463.45038 Russ. Math. 64, No. 1, 78-87 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 1, 84-93 (2020). MSC: 45J05 45G05 PDF BibTeX XML Cite \textit{A. I. Peschansky}, Russ. Math. 64, No. 1, 78--87 (2020; Zbl 1463.45038); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 1, 84--93 (2020) Full Text: DOI OpenURL
Boumaza, Nouri; Gheraibia, Billel On the existence of a local solution for an integro-differential equation with an integral boundary condition. (English) Zbl 1443.35160 Bol. Soc. Mat. Mex., III. Ser. 26, No. 2, 521-534 (2020). MSC: 35R09 35L70 35A01 PDF BibTeX XML Cite \textit{N. Boumaza} and \textit{B. Gheraibia}, Bol. Soc. Mat. Mex., III. Ser. 26, No. 2, 521--534 (2020; Zbl 1443.35160) Full Text: DOI OpenURL
Bocchi, Edoardo On the return to equilibrium problem for axisymmetric floating structures in shallow water. (English) Zbl 1435.74020 Nonlinearity 33, No. 7, 3594-3619 (2020). MSC: 74F10 45J05 35Q35 76B15 PDF BibTeX XML Cite \textit{E. Bocchi}, Nonlinearity 33, No. 7, 3594--3619 (2020; Zbl 1435.74020) Full Text: DOI arXiv OpenURL
Babaei, A.; Jafari, H.; Banihashemi, S. Numerical solution of variable order fractional nonlinear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation method. (English) Zbl 1451.65231 J. Comput. Appl. Math. 377, Article ID 112908, 12 p. (2020). MSC: 65R20 45J05 45G10 34A08 65L60 65L20 PDF BibTeX XML Cite \textit{A. Babaei} et al., J. Comput. Appl. Math. 377, Article ID 112908, 12 p. (2020; Zbl 1451.65231) Full Text: DOI OpenURL
Molotkov, I. A. Maslov’s model of stationary cooling, overheating, and energy localization in an accident reactor. (English) Zbl 1435.80008 Russ. J. Math. Phys. 27, No. 1, 104-110 (2020). MSC: 80A19 76S05 35B32 35R09 45K05 82D75 82C35 PDF BibTeX XML Cite \textit{I. A. Molotkov}, Russ. J. Math. Phys. 27, No. 1, 104--110 (2020; Zbl 1435.80008) Full Text: DOI OpenURL
Song, Yueqiang; Shi, Shaoyun Existence and multiplicity solutions for the \(p\)-fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity. (English) Zbl 1436.35102 Acta Appl. Math. 165, 45-63 (2020). Reviewer: Giovany Malcher Figueiredo (Brasília) MSC: 35J10 35B99 35J60 47G20 PDF BibTeX XML Cite \textit{Y. Song} and \textit{S. Shi}, Acta Appl. Math. 165, 45--63 (2020; Zbl 1436.35102) Full Text: DOI OpenURL
Huang, Hai; Fu, Xianlong Approximate controllability of semi-linear neutral integro-differential equations with nonlocal conditions. (English) Zbl 1433.93017 J. Dyn. Control Syst. 26, No. 1, 127-147 (2020). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 93B05 93C15 93C10 34K30 45K05 93C25 PDF BibTeX XML Cite \textit{H. Huang} and \textit{X. Fu}, J. Dyn. Control Syst. 26, No. 1, 127--147 (2020; Zbl 1433.93017) Full Text: DOI OpenURL
Bondarenko, Natalia; Buterin, Sergey An inverse spectral problem for integro-differential Dirac operators with general convolution kernels. (English) Zbl 1436.34012 Appl. Anal. 99, No. 4, 700-716 (2020). Reviewer: Vjacheslav Yurko (Saratov) MSC: 34A55 45J05 34B09 34B10 45G15 PDF BibTeX XML Cite \textit{N. Bondarenko} and \textit{S. Buterin}, Appl. Anal. 99, No. 4, 700--716 (2020; Zbl 1436.34012) Full Text: DOI OpenURL
Yang, Libo; An, Tianqing; Zuo, Jiabin Infinitely many high energy solutions for fractional Schrödinger equations with magnetic field. (English) Zbl 07634340 Bound. Value Probl. 2019, No. 1, Paper No. 196, 11 p. (2019). MSC: 35R11 35A15 35J60 47G20 PDF BibTeX XML Cite \textit{L. Yang} et al., Bound. Value Probl. 2019, No. 1, Paper No. 196, 11 p. (2019; Zbl 07634340) Full Text: DOI OpenURL
Yun, Yongzhen; An, Tianqing; Zuo, Jiabin; Zhao, Dafang Infinitely many solutions for fractional Schrödinger equation with potential vanishing at infinity. (English) Zbl 07634206 Bound. Value Probl. 2019, No. 1, Paper No. 62, 15 p. (2019). MSC: 35J87 35J20 49J40 47G20 PDF BibTeX XML Cite \textit{Y. Yun} et al., Bound. Value Probl. 2019, No. 1, Paper No. 62, 15 p. (2019; Zbl 07634206) Full Text: DOI OpenURL
Tate, Shivaji; Kharat, V. V.; Dinde, H. T. On nonlinear mixed fractional integro-differential equations with positive constant coefficient. (English) Zbl 1499.34411 Filomat 33, No. 17, 5623-5638 (2019). MSC: 34K37 26A33 34G20 34A08 PDF BibTeX XML Cite \textit{S. Tate} et al., Filomat 33, No. 17, 5623--5638 (2019; Zbl 1499.34411) Full Text: DOI OpenURL
Burton, Theodore A.; Purnaras, Ioannis K. Progressive contractions, product contractions, quadratic integro-differential equations. (English) Zbl 1484.45002 AIMS Math. 4, No. 3, 482-496 (2019). MSC: 45D05 34K05 45G05 47H10 PDF BibTeX XML Cite \textit{T. A. Burton} and \textit{I. K. Purnaras}, AIMS Math. 4, No. 3, 482--496 (2019; Zbl 1484.45002) Full Text: DOI OpenURL
Amiraliyev, Gabil M.; Yapman, Ömer; Kudu, Mustafa A fitted approximate method for a Volterra delay-integro-differential equation with initial layer. (English) Zbl 1488.65735 Hacet. J. Math. Stat. 48, No. 5, 1417-1429 (2019). MSC: 65R20 45J05 45G10 65L10 65L12 65L20 PDF BibTeX XML Cite \textit{G. M. Amiraliyev} et al., Hacet. J. Math. Stat. 48, No. 5, 1417--1429 (2019; Zbl 1488.65735) Full Text: Link OpenURL
Dzhumabaev, D. S.; Karakenova, S. G. Iterative method for solving special Cauchy problem for the system of integro-differential equations with nonlinear integral part. (English) Zbl 1488.65741 Mat. Zh. 19, No. 2, 49-58 (2019). MSC: 65R20 45B05 45J05 47G20 PDF BibTeX XML Cite \textit{D. S. Dzhumabaev} and \textit{S. G. Karakenova}, Mat. Zh. 19, No. 2, 49--58 (2019; Zbl 1488.65741) OpenURL