Chowdhury, Indranil; Ersland, Olav; Jakobsen, Espen R. On numerical approximations of fractional and nonlocal mean field games. (English) Zbl 07735214 Found. Comput. Math. 23, No. 4, 1381-1431 (2023). MSC: 35Q89 35Q84 91A16 47G20 49L12 49L25 45K05 35K61 35F21 65M12 65M22 93B52 93C20 60J65 60G55 26A33 35R11 35R06 PDF BibTeX XML Cite \textit{I. Chowdhury} et al., Found. Comput. Math. 23, No. 4, 1381--1431 (2023; Zbl 07735214) Full Text: DOI arXiv
Muthaiah, Subramanian; Murugesan, Manigandan; Ramasamy, Sivasamy; Thangaraj, Nandha Gopal On fractional integro-differential equation involving Caputo-Hadamard derivative with Hadamard fractional integral boundary conditions. (English) Zbl 07731421 Southeast Asian Bull. Math. 47, No. 3, 367-380 (2023). MSC: 26A33 34A08 34B15 PDF BibTeX XML Cite \textit{S. Muthaiah} et al., Southeast Asian Bull. Math. 47, No. 3, 367--380 (2023; Zbl 07731421) Full Text: Link
Byun, Sun-Sig; Kim, Hyojin; Kim, Kyeongbae Higher Hölder regularity for nonlocal parabolic equations with irregular kernels. (English) Zbl 07729124 J. Evol. Equ. 23, No. 3, Paper No. 53, 59 p. (2023). MSC: 35B65 35D30 35K10 35R05 35R09 47G20 PDF BibTeX XML Cite \textit{S.-S. Byun} et al., J. Evol. Equ. 23, No. 3, Paper No. 53, 59 p. (2023; Zbl 07729124) Full Text: DOI arXiv
Bekkouche, Mohammed Moumen; Ahmed, Abdelaziz Azeb; Yazid, Fares; Djeradi, Fatima Siham Analytical and numerical study of a nonlinear Volterra integro-differential equation with the Caputo-Fabrizio fractional derivative. (English) Zbl 07727703 Discrete Contin. Dyn. Syst., Ser. S 16, No. 8, 2177-2193 (2023). MSC: 26A33 45D05 65L03 47G20 47Gxx PDF BibTeX XML Cite \textit{M. M. Bekkouche} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 8, 2177--2193 (2023; Zbl 07727703) Full Text: DOI
Shi, Dongyang; Zhang, Sihui Unconditional superconvergence analysis of an energy-stable C-N fully discrete scheme for the nonlinear magnetic diffusion model with memory. (English) Zbl 07727104 Appl. Math. Lett. 145, Article ID 108726, 9 p. (2023). MSC: 65Mxx 65Nxx 35Kxx PDF BibTeX XML Cite \textit{D. Shi} and \textit{S. Zhang}, Appl. Math. Lett. 145, Article ID 108726, 9 p. (2023; Zbl 07727104) Full Text: DOI
Chiba, Hayato; Medvedev, Georgi S.; Mizuhara, Matthew S. Bifurcations and patterns in the Kuramoto model with inertia. (English) Zbl 07724684 J. Nonlinear Sci. 33, No. 5, Paper No. 78, 21 p. (2023). Reviewer: Carlo Laing (Auckland) MSC: 34C15 35B32 47G20 82B20 92B25 34D06 PDF BibTeX XML Cite \textit{H. Chiba} et al., J. Nonlinear Sci. 33, No. 5, Paper No. 78, 21 p. (2023; Zbl 07724684) Full Text: DOI arXiv
Safdari, Mohammad Nonlocal equations with gradient constraints. (English) Zbl 07716566 Calc. Var. Partial Differ. Equ. 62, No. 7, Paper No. 193, 30 p. (2023). MSC: 35B65 35J60 35J87 35R35 47G20 PDF BibTeX XML Cite \textit{M. Safdari}, Calc. Var. Partial Differ. Equ. 62, No. 7, Paper No. 193, 30 p. (2023; Zbl 07716566) Full Text: DOI arXiv
Moroşanu, Gheorghe; Petruşel, Adrian On a delay integro-differential equation in Banach space. (English) Zbl 1517.34101 Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1596-1609 (2023). MSC: 34K30 47D06 47H10 47J26 PDF BibTeX XML Cite \textit{G. Moroşanu} and \textit{A. Petruşel}, Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1596--1609 (2023; Zbl 1517.34101) Full Text: DOI
Verma, Pratibha; Giri, Ankik Kumar; Da Costa, F. P. The continuous Redner-Ben-Avraham-Kahng coagulation system: well-posedness and asymptotic behaviour. (English) Zbl 07716439 Evol. Equ. Control Theory 12, No. 5, 1247-1267 (2023). Reviewer: Leonid Berezansky (Be’er Sheva) MSC: 45J05 45M05 45G10 47G20 34K30 PDF BibTeX XML Cite \textit{P. Verma} et al., Evol. Equ. Control Theory 12, No. 5, 1247--1267 (2023; Zbl 07716439) Full Text: DOI
Li, Chenkuan Uniqueness of a nonlinear integro-differential equation with nonlocal boundary condition and variable coefficients. (English) Zbl 1514.34050 Bound. Value Probl. 2023, Paper No. 26, 10 p. (2023). MSC: 34B15 34A12 26A33 PDF BibTeX XML Cite \textit{C. Li}, Bound. Value Probl. 2023, Paper No. 26, 10 p. (2023; Zbl 1514.34050) Full Text: DOI
Hadi, Fazli; Amin, Rohul; Khan, Ilyas; Alzahrani, J.; Nisar, K. S.; Al-Johani, Amnah S.; Eldin, Elsayed Tag Numerical solutions of nonlinear delay integro-differential equations using Haar wavelet collocation method. (English) Zbl 07700485 Fractals 31, No. 2, Article ID 2340039, 12 p. (2023). MSC: 65Rxx 45Jxx 65Lxx PDF BibTeX XML Cite \textit{F. Hadi} et al., Fractals 31, No. 2, Article ID 2340039, 12 p. (2023; Zbl 07700485) Full Text: DOI
Zhou, Jue-liang; He, Yu-bo; Zhang, Shu-qin; Deng, Hai-yun; Lin, Xiao-yan Existence and stability results for nonlinear fractional integrodifferential coupled systems. (English) Zbl 07699532 Bound. Value Probl. 2023, Paper No. 10, 14 p. (2023). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45M10 45J05 26A33 47N20 PDF BibTeX XML Cite \textit{J.-l. Zhou} et al., Bound. Value Probl. 2023, Paper No. 10, 14 p. (2023; Zbl 07699532) Full Text: DOI
Yi, Lijun; Zhang, Mingzhu; Mao, Xinyu Superconvergent postprocessing of the discontinuous Galerkin time stepping method for nonlinear Volterra integro-differential equations. (English) Zbl 07698181 J. Comput. Appl. Math. 427, Article ID 115140, 20 p. (2023). MSC: 65R20 45D05 45J05 PDF BibTeX XML Cite \textit{L. Yi} et al., J. Comput. Appl. Math. 427, Article ID 115140, 20 p. (2023; Zbl 07698181) Full Text: DOI
Bouteffal, Zohra; Salim, Abdelkrim; Litimein, Sara; Benchohra, Mouffak Uniqueness results for fractional integro-differential equations with state-dependent nonlocal conditions in Fréchet spaces. (English) Zbl 07692939 An. Univ. Vest Timiș., Ser. Mat.-Inform. 59, No. 1, 35-44 (2023). MSC: 34G20 PDF BibTeX XML Cite \textit{Z. Bouteffal} et al., An. Univ. Vest Timiș., Ser. Mat.-Inform. 59, No. 1, 35--44 (2023; Zbl 07692939) Full Text: DOI
Boichuk, O. A.; Chuiko, S. M.; Kuzmina, V. O. Nonlinear integrodifferential boundary-value problems with deviating argument unsolved with respect to the derivative. (English. Ukrainian original) Zbl 1510.45007 Ukr. Math. J. 74, No. 9, 1334-1347 (2023); translation from Ukr. Mat. Zh. 74, No. 9, 1170-1181 (2022). MSC: 45J05 45G10 34K10 65R20 PDF BibTeX XML Cite \textit{O. A. Boichuk} et al., Ukr. Math. J. 74, No. 9, 1334--1347 (2023; Zbl 1510.45007); translation from Ukr. Mat. Zh. 74, No. 9, 1170--1181 (2022) Full Text: DOI
Hu, Mingshang; Jiang, Lianzi; Liang, Gechun; Peng, Shige A universal robust limit theorem for nonlinear Lévy processes under sublinear expectation. (English) Zbl 1512.60015 Probab. Uncertain. Quant. Risk 8, No. 1, 1-32 (2023). Reviewer: Yuliya S. Mishura (Kyjiw) MSC: 60F05 60G51 60G52 60G65 45K05 PDF BibTeX XML Cite \textit{M. Hu} et al., Probab. Uncertain. Quant. Risk 8, No. 1, 1--32 (2023; Zbl 1512.60015) Full Text: DOI arXiv
Marynets, Vasyl; Marynets, Kateryna; Kohutych, Oksana On a novel approach for the investigation and approximation of solutions to the systems of higher order nonlinear PDEs. (English) Zbl 1511.35092 Monatsh. Math. 200, No. 4, 835-848 (2023). MSC: 35G30 35C15 35B05 PDF BibTeX XML Cite \textit{V. Marynets} et al., Monatsh. Math. 200, No. 4, 835--848 (2023; Zbl 1511.35092) Full Text: DOI
Sikorska-Nowak, Aneta Integrodifferential equations of mixed type on time scales with \(\Delta\)-HK and \(\Delta\)-HKP integrals. (English) Zbl 1514.45006 Electron. J. Differ. Equ. 2023, Paper No. 29, 20 p. (2023). MSC: 45J05 47N20 47H08 26E70 PDF BibTeX XML Cite \textit{A. Sikorska-Nowak}, Electron. J. Differ. Equ. 2023, Paper No. 29, 20 p. (2023; Zbl 1514.45006) Full Text: Link
Vougalter, Vitali On the solvability of some systems of integro-differential equations with anomalous diffusion in higher dimensions. (English) Zbl 1511.35362 Pure Appl. Funct. Anal. 8, No. 1, 357-372 (2023). MSC: 35R09 35R11 35A01 35P30 47F05 PDF BibTeX XML Cite \textit{V. Vougalter}, Pure Appl. Funct. Anal. 8, No. 1, 357--372 (2023; Zbl 1511.35362) Full Text: Link
Fazly, Mostafa De Giorgi type results for equations with nonlocal lower-order terms. (English) Zbl 07660732 Ann. Mat. Pura Appl. (4) 202, No. 2, 519-550 (2023). MSC: 47G20 35J60 60J75 35J20 60J60 PDF BibTeX XML Cite \textit{M. Fazly}, Ann. Mat. Pura Appl. (4) 202, No. 2, 519--550 (2023; Zbl 07660732) Full Text: DOI arXiv
Azarnavid, Babak The Bernoulli polynomials reproducing kernel method for nonlinear Volterra integro-differential equations of fractional order with convergence analysis. (English) Zbl 07655417 Comput. Appl. Math. 42, No. 1, Paper No. 8, 17 p. (2023). MSC: 45J05 26A33 11B68 46E22 PDF BibTeX XML Cite \textit{B. Azarnavid}, Comput. Appl. Math. 42, No. 1, Paper No. 8, 17 p. (2023; Zbl 07655417) Full Text: DOI
Tavares, E. H. Gomes; Silva, M. A. Jorge; Ma, T. F. Exponential characterization in linear viscoelasticity under delay perturbations. (English) Zbl 1510.45011 Appl. Math. Optim. 87, No. 2, Paper No. 27, 20 p. (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 45K05 45M10 45H05 37L05 37L15 74D99 93D23 PDF BibTeX XML Cite \textit{E. H. G. Tavares} et al., Appl. Math. Optim. 87, No. 2, Paper No. 27, 20 p. (2023; Zbl 1510.45011) Full Text: DOI
Mandal, Moumita; Kayal, Arnab; Nelakanti, Gnaneshwar Projection methods for approximate solution of a class of nonlinear Fredholm integro-differential equations. (English) Zbl 07630323 Appl. Numer. Math. 184, 49-76 (2023). MSC: 65Rxx 45Jxx 45Gxx PDF BibTeX XML Cite \textit{M. Mandal} et al., Appl. Numer. Math. 184, 49--76 (2023; Zbl 07630323) Full Text: DOI
Zhu, Jianbo; Fu, Xianlong Existence and differentiability of solutions for nondensely defined neutral integro-differential evolution equations. (English) Zbl 1509.37109 Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 30, 24 p. (2023). MSC: 37L05 45K05 34B10 35B65 47N20 PDF BibTeX XML Cite \textit{J. Zhu} and \textit{X. Fu}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 30, 24 p. (2023; Zbl 1509.37109) Full Text: DOI
Yang, Yin; Tohidi, Emran; Deng, Guoting A high accurate and convergent numerical framework for solving high-order nonlinear Volterra integro-differential equations. (English) Zbl 1498.65229 J. Comput. Appl. Math. 421, Article ID 114852, 29 p. (2023). MSC: 65R20 45J05 45D05 45G10 65M70 41A55 PDF BibTeX XML Cite \textit{Y. Yang} et al., J. Comput. Appl. Math. 421, Article ID 114852, 29 p. (2023; Zbl 1498.65229) Full Text: DOI
Cao, Y.; Nikan, O.; Avazzadeh, Z. A localized meshless technique for solving 2D nonlinear integro-differential equation with multi-term kernels. (English) Zbl 1500.65082 Appl. Numer. Math. 183, 140-156 (2023). MSC: 65M70 65M06 65N35 65D30 65D12 65M12 65R20 35R09 26A33 35R11 PDF BibTeX XML Cite \textit{Y. Cao} et al., Appl. Numer. Math. 183, 140--156 (2023; Zbl 1500.65082) Full Text: DOI
Rogava, Jemal; Tsiklauri, Mikheil; Vashakidze, Zurab On stability and convergence of a three-layer semi-discrete scheme for an abstract analogue of the Ball integro-differential equation. (English) Zbl 1500.35212 J. Math. Anal. Appl. 518, No. 1, Article ID 126664, 25 p. (2023). MSC: 35L90 35R09 65M12 74K10 PDF BibTeX XML Cite \textit{J. Rogava} et al., J. Math. Anal. Appl. 518, No. 1, Article ID 126664, 25 p. (2023; Zbl 1500.35212) Full Text: DOI arXiv
Allouch, Chafik; Barrera, Domingo; Saou, Abdelmonaim; Sbibih, Driss; Tahrichi, Mohamed Numerical methods based on spline quasi-interpolation operators for integro-differential equations. (English) Zbl 07695053 J. Math. Model. 10, No. 4, 387-401 (2022). MSC: 41A10 45G10 47H30 65R20 PDF BibTeX XML Cite \textit{C. Allouch} et al., J. Math. Model. 10, No. 4, 387--401 (2022; Zbl 07695053) Full Text: DOI
Mosazadeh, Seyfollah Inverse nodal problem for the integrodifferential Dirac operator with a delay in the kernel. (English) Zbl 1517.45011 J. Integral Equations Appl. 34, No. 4, 465-474 (2022). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 45Q05 45J05 47G20 PDF BibTeX XML Cite \textit{S. Mosazadeh}, J. Integral Equations Appl. 34, No. 4, 465--474 (2022; Zbl 1517.45011) Full Text: DOI Link
Bao, Xuchao; Chan, Yue An application of nonlinear integro-differential equations by differential transform method with Adomian polynomials. (English) Zbl 1509.45005 Int. J. Dyn. Syst. Differ. Equ. 12, No. 6, 467-476 (2022). MSC: 45J05 44A99 70B15 70E60 PDF BibTeX XML Cite \textit{X. Bao} and \textit{Y. Chan}, Int. J. Dyn. Syst. Differ. Equ. 12, No. 6, 467--476 (2022; Zbl 1509.45005) Full Text: DOI
Khoma, M. V.; Buhrii, O. M. Stokes system with variable exponents of nonlinearity. (English) Zbl 07673171 Bukovyn. Mat. Zh. 10, No. 2, 28-42 (2022). MSC: 35K55 35D30 76D07 47G20 PDF BibTeX XML Cite \textit{M. V. Khoma} and \textit{O. M. Buhrii}, Bukovyn. Mat. Zh. 10, No. 2, 28--42 (2022; Zbl 07673171) Full Text: DOI
Abdellouahab, Naimi; Tellab, Brahim; Zennir, Khaled Existence and stability results of a nonlinear fractional integro-differential equation with integral boundary conditions. (English) Zbl 07661713 Kragujevac J. Math. 46, No. 5, 685-699 (2022). MSC: 34A08 26A33 34B15 34K20 PDF BibTeX XML Cite \textit{N. Abdellouahab} et al., Kragujevac J. Math. 46, No. 5, 685--699 (2022; Zbl 07661713) Full Text: DOI Link
Lemita, Samir; Touati, Sami; Derbal, Kheireddine The approximate solution of nonlinear Fredholm implicit integro-differential equation in the complex plane. (English) Zbl 1506.45001 Asian-Eur. J. Math. 15, No. 7, Article ID 2250131, 11 p. (2022). MSC: 45B05 45L05 65R20 47G20 PDF BibTeX XML Cite \textit{S. Lemita} et al., Asian-Eur. J. Math. 15, No. 7, Article ID 2250131, 11 p. (2022; Zbl 1506.45001) Full Text: DOI
Molica Bisci, Giovanni; Servadei, Raffaella; Zhang, Binlin Monotonicity properties of the eigenvalues of nonlocal fractional operators and their applications. (English) Zbl 1505.35280 Electron. J. Differ. Equ. 2022, Paper No. 85, 21 p. (2022). MSC: 35P05 35A15 35R09 35R11 35S15 45G05 47G20 PDF BibTeX XML Cite \textit{G. Molica Bisci} et al., Electron. J. Differ. Equ. 2022, Paper No. 85, 21 p. (2022; Zbl 1505.35280) Full Text: Link
Echarghaoui, Rachid; Masmodi, Mohamed Two disjoint and infinite sets of solutions for a concave-convex critical fractional Laplacian equation. (English) Zbl 1503.35258 Fract. Calc. Appl. Anal. 25, No. 4, 1604-1629 (2022). MSC: 35R11 35J60 49J45 47G20 26A33 PDF BibTeX XML Cite \textit{R. Echarghaoui} and \textit{M. Masmodi}, Fract. Calc. Appl. Anal. 25, No. 4, 1604--1629 (2022; Zbl 1503.35258) Full Text: DOI
Arapostathis, Ari; Biswas, Anup Risk-sensitive control for a class of diffusions with jumps. (English) Zbl 1504.35206 Ann. Appl. Probab. 32, No. 6, 4106-4142 (2022). MSC: 35P30 35R09 35Q93 37J25 60J60 PDF BibTeX XML Cite \textit{A. Arapostathis} and \textit{A. Biswas}, Ann. Appl. Probab. 32, No. 6, 4106--4142 (2022; Zbl 1504.35206) Full Text: DOI arXiv
Yuldashev, Tursun Kamaldinovich; Èrgashev, Tukhtasin Gulamzhanovich; Abduvahobov, Tokhirzhon Akbarali ogli Nonlinear system of impulsive integro-differential equations with hilfer fractional operator and mixed maxima. (English) Zbl 1503.45007 Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 3, 312-325 (2022). MSC: 45J05 26A33 45G15 PDF BibTeX XML Cite \textit{T. K. Yuldashev} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 3, 312--325 (2022; Zbl 1503.45007) Full Text: DOI MNR
Atta, A. G.; Youssri, Y. H. Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel. (English) Zbl 1513.65398 Comput. Appl. Math. 41, No. 8, Paper No. 381, 19 p. (2022). MSC: 65M70 65M15 45K05 33C45 35R09 41A50 26A33 35R11 PDF BibTeX XML Cite \textit{A. G. Atta} and \textit{Y. H. Youssri}, Comput. Appl. Math. 41, No. 8, Paper No. 381, 19 p. (2022; Zbl 1513.65398) Full Text: DOI
Tunç, Cemil; Tunç, Osman New results on the qualitative analysis of integro-differential equations with constant time-delay. (English) Zbl 1517.45004 J. Nonlinear Convex Anal. 23, No. 3, 435-448 (2022). MSC: 45J05 45G15 45M10 PDF BibTeX XML Cite \textit{C. Tunç} and \textit{O. Tunç}, J. Nonlinear Convex Anal. 23, No. 3, 435--448 (2022; Zbl 1517.45004) Full Text: Link
Benkhettou, Nadia; Salim, Abdelkrim; Aissani, Khalida; Benchohra, Mouffak; Karapinar, Erdal Non-instantaneous impulsive fractional integro-differential equations with state-dependent delay. (English) Zbl 07602417 Sahand Commun. Math. Anal. 19, No. 3, 93-109 (2022). MSC: 34A08 26A33 34A12 34A37 34G20 PDF BibTeX XML Cite \textit{N. Benkhettou} et al., Sahand Commun. Math. Anal. 19, No. 3, 93--109 (2022; Zbl 07602417) Full Text: DOI
Tian, Qingqing; Zhang, Haixiang; Yang, Xuehua; Jiang, Xiaoxuan An implicit difference scheme for the fourth-order nonlinear non-local PIDEs with a weakly singular kernel. (English) Zbl 1513.65536 Comput. Appl. Math. 41, No. 7, Paper No. 328, 32 p. (2022). MSC: 65R20 65M06 35R11 45K05 PDF BibTeX XML Cite \textit{Q. Tian} et al., Comput. Appl. Math. 41, No. 7, Paper No. 328, 32 p. (2022; Zbl 1513.65536) Full Text: DOI
Yuldashev, Tursun K. Periodic solutions for an impulsive system of integro-differential equations with maxima. (English) Zbl 07600151 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 26, No. 2, 368-379 (2022). MSC: 45J05 45L05 45M15 PDF BibTeX XML Cite \textit{T. K. Yuldashev}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 26, No. 2, 368--379 (2022; Zbl 07600151) Full Text: DOI MNR
Diop, Mamadou Abdul; Ezzinbi, Khalil; Ly, Mamadou Pathe Nonlocal problems for integrodifferential equations via resolvent operators and optimal controls. (English) Zbl 1513.49023 Discuss. Math., Differ. Incl. Control Optim. 42, No. 1, 5-25 (2022). MSC: 49J30 47G20 47J35 93B05 PDF BibTeX XML Cite \textit{M. A. Diop} et al., Discuss. Math., Differ. Incl. Control Optim. 42, No. 1, 5--25 (2022; Zbl 1513.49023) Full Text: DOI
Yuldashev, Tursun K. On a nonlocal boundary value problem for a partial integro-differential equations with degenerate kernel. (English) Zbl 1513.35399 Vladikavkaz. Mat. Zh. 24, No. 2, 130-141 (2022). MSC: 35M10 45K05 PDF BibTeX XML Cite \textit{T. K. Yuldashev}, Vladikavkaz. Mat. Zh. 24, No. 2, 130--141 (2022; Zbl 1513.35399) Full Text: DOI MNR
Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V. Optimal control of investment in a collective pension insurance model: study of singular nonlinear problems for integro-differential equations. (English. Russian original) Zbl 1500.91110 Comput. Math. Math. Phys. 62, No. 9, 1438-1454 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 9, 1473-1490 (2022). MSC: 91G05 93E20 49L25 45K05 PDF BibTeX XML Cite \textit{T. A. Belkina} et al., Comput. Math. Math. Phys. 62, No. 9, 1438--1454 (2022; Zbl 1500.91110); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 9, 1473--1490 (2022) Full Text: DOI
Dieye, Moustapha; Diop, Amadou; Mckibben, Mark A. Existence of solutions for mean-field integrodifferential equations with delay. (English) Zbl 1504.45007 Stoch. Dyn. 22, No. 5, Article ID 2250017, 19 p. (2022). Reviewer: Nikolaos Halidias (Athína) MSC: 45J05 45R05 45N05 60H20 34G20 47J35 PDF BibTeX XML Cite \textit{M. Dieye} et al., Stoch. Dyn. 22, No. 5, Article ID 2250017, 19 p. (2022; Zbl 1504.45007) Full Text: DOI
Lachouri, Adel; Gouri, Nesrine Existence and uniqueness of positive solutions for a class of fractional integro-differential equations. (English) Zbl 1495.34007 Palest. J. Math. 11, No. 3, 167-174 (2022). MSC: 34A08 34A12 34B15 34B18 PDF BibTeX XML Cite \textit{A. Lachouri} and \textit{N. Gouri}, Palest. J. Math. 11, No. 3, 167--174 (2022; Zbl 1495.34007) Full Text: Link
Cakir, Firat; Cakir, Musa; Cakir, Hayriye Guckir A robust numerical technique for solving non-linear Volterra integro-differential equations with boundary layer. (English) Zbl 1502.65271 Commun. Korean Math. Soc. 37, No. 3, 939-955 (2022). MSC: 65R20 45J05 45G10 45D05 65L03 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{F. Cakir} et al., Commun. Korean Math. Soc. 37, No. 3, 939--955 (2022; Zbl 1502.65271) Full Text: DOI
Ramdani, Nedjem Eddine; Pinelas, Sandra Solving nonlinear integro-differential equations using numerical method. (English) Zbl 1500.65108 Turk. J. Math. 46, No. 2, SI-1, 675-687 (2022). MSC: 65R20 45J05 PDF BibTeX XML Cite \textit{N. E. Ramdani} and \textit{S. Pinelas}, Turk. J. Math. 46, No. 2, 675--687 (2022; Zbl 1500.65108) Full Text: DOI
Kaliraj, K.; Viswanath, K. S.; Logeswari, K.; Ravichandran, C. Analysis of fractional integro-differential equation with Robin boundary conditions using topological degree method. (English) Zbl 07582594 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 176, 17 p. (2022). MSC: 45-XX 34A08 47J05 47J35 34K10 34K45 PDF BibTeX XML Cite \textit{K. Kaliraj} et al., Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 176, 17 p. (2022; Zbl 07582594) Full Text: DOI
Moussai, Miloud Application of the Bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with Caputo fractional derivatives. (English) Zbl 1496.65239 Numer. Algebra Control Optim. 12, No. 3, 551-568 (2022). MSC: 65R20 45J05 45D05 PDF BibTeX XML Cite \textit{M. Moussai}, Numer. Algebra Control Optim. 12, No. 3, 551--568 (2022; Zbl 1496.65239) Full Text: DOI
Blatt, Simon Analyticity for solution of fractional integro-differential equations. (English) Zbl 1496.35013 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 224, Article ID 113071, 12 p. (2022). MSC: 35A20 35D40 35R09 35R11 PDF BibTeX XML Cite \textit{S. Blatt}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 224, Article ID 113071, 12 p. (2022; Zbl 1496.35013) Full Text: DOI
Yang, Huaijun; Shi, Dongyang Optimal error estimates of Galerkin method for a nonlinear parabolic integro-differential equation. (English) Zbl 1502.65151 Appl. Numer. Math. 181, 403-416 (2022). MSC: 65M60 65M06 65N30 65M15 65M12 35R09 45K05 78A25 78M10 PDF BibTeX XML Cite \textit{H. Yang} and \textit{D. Shi}, Appl. Numer. Math. 181, 403--416 (2022; Zbl 1502.65151) Full Text: DOI
Rezazadeh, Tohid; Najafi, Esmaeil Jacobi collocation method and smoothing transformation for numerical solution of neutral nonlinear weakly singular Fredholm integro-differential equations. (English) Zbl 1502.65279 Appl. Numer. Math. 181, 135-150 (2022). MSC: 65R20 45J05 45E10 45B05 65L60 PDF BibTeX XML Cite \textit{T. Rezazadeh} and \textit{E. Najafi}, Appl. Numer. Math. 181, 135--150 (2022; Zbl 1502.65279) Full Text: DOI
Shen, Yansheng Multiplicity of positive solutions to a critical fractional equation with Hardy potential and concave-convex nonlinearities. (English) Zbl 1495.35203 Complex Var. Elliptic Equ. 67, No. 9, 2152-2180 (2022). MSC: 35R11 35A15 35J25 35J61 45G05 47G20 49J35 PDF BibTeX XML Cite \textit{Y. Shen}, Complex Var. Elliptic Equ. 67, No. 9, 2152--2180 (2022; Zbl 1495.35203) Full Text: DOI
Hengamian Asl, Elias; Saberi-Nadjafi, Jafar; Gachpazan, Morteza Numerical solution of fractional-order population growth model using fractional-order Muntz-Legendre collocation method and Pade-approximants. (English) Zbl 1515.65328 Jordan J. Math. Stat. 15, No. 2, 157-175 (2022). MSC: 65R20 45J05 34A08 65L60 74G10 92D25 PDF BibTeX XML Cite \textit{E. Hengamian Asl} et al., Jordan J. Math. Stat. 15, No. 2, 157--175 (2022; Zbl 1515.65328) Full Text: DOI
Palatucci, Giampiero; Piccinini, Mirco Nonlocal Harnack inequalities in the Heisenberg group. (English) Zbl 1495.35055 Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 185, 30 p. (2022). MSC: 35B45 35H20 35R03 35R09 35R11 47G20 PDF BibTeX XML Cite \textit{G. Palatucci} and \textit{M. Piccinini}, Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 185, 30 p. (2022; Zbl 1495.35055) Full Text: DOI arXiv
Hu, Shufang; Qiu, Wenlin; Chen, Hongbin A predictor-corrector compact finite difference scheme for a nonlinear partial integro-differential equation. (English) Zbl 07565165 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 3-4, 553-563 (2022). MSC: 45K05 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{S. Hu} et al., Int. J. Nonlinear Sci. Numer. Simul. 23, No. 3--4, 553--563 (2022; Zbl 07565165) Full Text: DOI
Adama, Kamate; Mbaiguesse, Djibet; Yiyureboula, Bationo Jeremie; Abbo, Bakari; Pare, Youssouf Analytical solution of some nonlinear fractional integro-differential equations of the Fredholm second kind by a new approximation technique of the numerical SBA method. (English) Zbl 1513.65507 Int. J. Numer. Methods Appl. 21, 37-58 (2022). MSC: 65R20 45G10 26A33 45B05 PDF BibTeX XML Cite \textit{K. Adama} et al., Int. J. Numer. Methods Appl. 21, 37--58 (2022; Zbl 1513.65507) Full Text: DOI
Cen, Da-kang; Wang, Zhi-bo; Mo, Yan A compact difference scheme on graded meshes for the nonlinear fractional integro-differential equation with non-smooth solutions. (English) Zbl 1492.65232 Acta Math. Appl. Sin., Engl. Ser. 38, No. 3, 601-613 (2022). MSC: 65M06 65N06 65K10 65M12 65M15 35R09 45K05 26A33 35R11 PDF BibTeX XML Cite \textit{D.-k. Cen} et al., Acta Math. Appl. Sin., Engl. Ser. 38, No. 3, 601--613 (2022; Zbl 1492.65232) Full Text: DOI
Kalinin, A. V.; Tyukhtina, A. A. On a nonlinear problem for a system of integro-differential equations of radiative transfer theory. (English. Russian original) Zbl 1493.45010 Comput. Math. Math. Phys. 62, No. 6, 933-944 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 6, 965-976 (2022). MSC: 45K05 80A21 PDF BibTeX XML Cite \textit{A. V. Kalinin} and \textit{A. A. Tyukhtina}, Comput. Math. Math. Phys. 62, No. 6, 933--944 (2022; Zbl 1493.45010); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 6, 965--976 (2022) Full Text: DOI
Chuiko, S. M.; Chuiko, O. V.; Kuz’mina, V. O. Solutions of the boundary-value problem for a matrix integrodifferential equation with degenerate kernel. (English. Ukrainian original) Zbl 1495.45004 J. Math. Sci., New York 263, No. 2, 341-349 (2022); translation from Neliniĭni Kolyvannya 23, No. 4, 565-573 (2020). MSC: 45J05 45B05 45G10 34B15 PDF BibTeX XML Cite \textit{S. M. Chuiko} et al., J. Math. Sci., New York 263, No. 2, 341--349 (2022; Zbl 1495.45004); translation from Neliniĭni Kolyvannya 23, No. 4, 565--573 (2020) Full Text: DOI
Kostić, Marko \( \rho \)-almost periodic type functions in \({\mathbb R}^n\). (English) Zbl 1494.42006 Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 80-96 (2022). MSC: 42A75 34G20 45J05 PDF BibTeX XML Cite \textit{M. Kostić}, Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 80--96 (2022; Zbl 1494.42006) Full Text: DOI MNR
Baskakov, A. G.; Krishtal, I. A.; Uskova, N. B. Method of similar operators in the study of spectral properties of perturbed first-order differential operators. (English. Russian original) Zbl 07552485 J. Math. Sci., New York 263, No. 5, 599-615 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 171, 3-18 (2019). MSC: 47-XX 35L75 35Q53 37K10 37K35 PDF BibTeX XML Cite \textit{A. G. Baskakov} et al., J. Math. Sci., New York 263, No. 5, 599--615 (2022; Zbl 07552485); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 171, 3--18 (2019) Full Text: DOI
Piccinini, Mirco The obstacle problem and the Perron method for nonlinear fractional equations in the Heisenberg group. (English) Zbl 1491.35435 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112966, 31 p. (2022). MSC: 35R11 35J87 35R03 35R09 35B45 47G20 47J20 PDF BibTeX XML Cite \textit{M. Piccinini}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112966, 31 p. (2022; Zbl 1491.35435) Full Text: DOI arXiv
Askhabov, S. N. Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type. (English. Russian original) Zbl 1491.45007 J. Math. Sci., New York 260, No. 3, 275-285 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 3-13 (2019). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45G10 47J05 47N20 PDF BibTeX XML Cite \textit{S. N. Askhabov}, J. Math. Sci., New York 260, No. 3, 275--285 (2022; Zbl 1491.45007); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 3--13 (2019) Full Text: DOI
Bonaldo, Lauren M. M.; Hurtado, Elard J.; Miyagaki, Olímpio H. Multiplicity results for elliptic problems involving nonlocal integrodifferential operators without Ambrosetti-Rabinowitz condition. (English) Zbl 1491.35189 Discrete Contin. Dyn. Syst. 42, No. 7, 3329-3353 (2022). MSC: 35J60 35R11 45K05 35A01 35A15 PDF BibTeX XML Cite \textit{L. M. M. Bonaldo} et al., Discrete Contin. Dyn. Syst. 42, No. 7, 3329--3353 (2022; Zbl 1491.35189) Full Text: DOI arXiv
Bouach, Abderrahim; Haddad, Tahar; Thibault, Lionel On the discretization of truncated integro-differential sweeping process and optimal control. (English) Zbl 1489.49008 J. Optim. Theory Appl. 193, No. 1-3, 785-830 (2022). MSC: 49J40 47J20 47J22 45D05 58E35 74M15 74M10 PDF BibTeX XML Cite \textit{A. Bouach} et al., J. Optim. Theory Appl. 193, No. 1--3, 785--830 (2022; Zbl 1489.49008) Full Text: DOI
Dang Quang Long; Dang Quang A Existence results and numerical method for solving a fourth-order nonlinear integro-differential equation. (English) Zbl 1491.65168 Numer. Algorithms 90, No. 2, 563-576 (2022). MSC: 65R20 45J05 65L03 65L10 PDF BibTeX XML Cite \textit{Dang Quang Long} and \textit{Dang Quang A}, Numer. Algorithms 90, No. 2, 563--576 (2022; Zbl 1491.65168) Full Text: DOI arXiv
Biswas, Reshmi; Bahrouni, Sabri; Carvalho, Marcos L. Fractional double phase Robin problem involving variable order-exponents without Ambrosetti-Rabinowitz condition. (English) Zbl 1487.35396 Z. Angew. Math. Phys. 73, No. 3, Paper No. 99, 24 p. (2022). MSC: 35R11 35A15 35J25 35J92 35S15 47G20 47J30 PDF BibTeX XML Cite \textit{R. Biswas} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 99, 24 p. (2022; Zbl 1487.35396) Full Text: DOI arXiv
Laib, Hafida; Bellour, Azzeddine; Boulmerka, Aissa Taylor collocation method for a system of nonlinear Volterra delay integro-differential equations with application to COVID-19 epidemic. (English) Zbl 1499.65753 Int. J. Comput. Math. 99, No. 4, 852-876 (2022). MSC: 65R20 65L60 45J05 45D05 45G15 45L05 92D30 92D25 PDF BibTeX XML Cite \textit{H. Laib} et al., Int. J. Comput. Math. 99, No. 4, 852--876 (2022; Zbl 1499.65753) Full Text: DOI
Duarte, Ronaldo C. Ground state solution for nonlocal scalar field equations involving an integro-differential operator. (English) Zbl 07512033 SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 19, 14 p. (2022). MSC: 47G20 35J20 35A15 35J60 PDF BibTeX XML Cite \textit{R. C. Duarte}, SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 19, 14 p. (2022; Zbl 07512033) Full Text: DOI
Aissaoui, M. Z.; Bounaya, M. C.; Guebbai, H. Analysis of a nonlinear Volterra-Fredholm integro-differential equation. (English) Zbl 1490.65311 Quaest. Math. 45, No. 2, 307-325 (2022). MSC: 65R20 45J05 45G10 45B05 45D05 47H10 PDF BibTeX XML Cite \textit{M. Z. Aissaoui} et al., Quaest. Math. 45, No. 2, 307--325 (2022; Zbl 1490.65311) Full Text: DOI
Vougalter, Vitali Solvability of some integro-differential equations with concentrated sources. (English) Zbl 1487.45012 Complex Var. Elliptic Equ. 67, No. 4, 975-987 (2022). Reviewer: Vincenzo Vespri (Firenze) MSC: 45K05 45P05 35P30 47N20 47F05 92D25 92C37 92C17 PDF BibTeX XML Cite \textit{V. Vougalter}, Complex Var. Elliptic Equ. 67, No. 4, 975--987 (2022; Zbl 1487.45012) Full Text: DOI
Boudjerida, A.; Seba, D.; N’Guérékata, G. M. Controllability of coupled systems for impulsive \(\phi\)-Hilfer fractional integro-differential inclusions. (English) Zbl 1497.45009 Appl. Anal. 101, No. 2, 383-400 (2022). MSC: 45J05 26A33 34A60 34B15 93B05 47N20 PDF BibTeX XML Cite \textit{A. Boudjerida} et al., Appl. Anal. 101, No. 2, 383--400 (2022; Zbl 1497.45009) Full Text: DOI
Khajehnasiri, A. A.; Ezzati, R. Boubaker polynomials and their applications for solving fractional two-dimensional nonlinear partial integro-differential Volterra integral equations. (English) Zbl 1499.65750 Comput. Appl. Math. 41, No. 2, Paper No. 82, 18 p. (2022). MSC: 65R20 45K05 45D05 45G10 65N35 35R11 65N12 65N15 PDF BibTeX XML Cite \textit{A. A. Khajehnasiri} and \textit{R. Ezzati}, Comput. Appl. Math. 41, No. 2, Paper No. 82, 18 p. (2022; Zbl 1499.65750) Full Text: DOI
Belhireche, Hanane; Guebbai, Hamza On the mixed nonlinear integro-differential equations with weakly singular kernel. (English) Zbl 1499.45003 Comput. Appl. Math. 41, No. 1, Paper No. 36, 17 p. (2022). MSC: 45D05 45B05 65R20 PDF BibTeX XML Cite \textit{H. Belhireche} and \textit{H. Guebbai}, Comput. Appl. Math. 41, No. 1, Paper No. 36, 17 p. (2022; Zbl 1499.45003) Full Text: DOI
Abed, Ayoob M.; Younis, Muhammed F.; Hamoud, Ahmed A. Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM. (English) Zbl 1484.49057 Nonlinear Funct. Anal. Appl. 27, No. 1, 189-201 (2022). MSC: 49M27 65K10 45J05 65R20 PDF BibTeX XML Cite \textit{A. M. Abed} et al., Nonlinear Funct. Anal. Appl. 27, No. 1, 189--201 (2022; Zbl 1484.49057) Full Text: Link
Ducasse, Romain Threshold phenomenon and traveling waves for heterogeneous integral equations and epidemic models. (English) Zbl 1491.45017 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 218, Article ID 112788, 34 p. (2022). Reviewer: Ilia V. Boikov (Penza) MSC: 45M05 45M15 45D05 45B05 35R09 35B40 92D30 PDF BibTeX XML Cite \textit{R. Ducasse}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 218, Article ID 112788, 34 p. (2022; Zbl 1491.45017) Full Text: DOI arXiv
Ciomaga, Adina; Ghilli, Daria; Topp, Erwin Periodic homogenization for weakly elliptic Hamilton-Jacobi-Bellman equations with critical fractional diffusion. (English) Zbl 1484.35030 Commun. Partial Differ. Equations 47, No. 1, 1-38 (2022). MSC: 35B27 35F21 35F25 35D40 35J60 35R09 PDF BibTeX XML Cite \textit{A. Ciomaga} et al., Commun. Partial Differ. Equations 47, No. 1, 1--38 (2022; Zbl 1484.35030) Full Text: DOI arXiv
Harrison, Alan K. A realistic theory of quantum measurement. (English) Zbl 1485.81010 Found. Phys. 52, No. 1, Paper No. 22, 32 p. (2022). MSC: 81P15 81Q70 47G20 58J47 34B10 70H05 35G20 81P16 60K35 00A79 PDF BibTeX XML Cite \textit{A. K. Harrison}, Found. Phys. 52, No. 1, Paper No. 22, 32 p. (2022; Zbl 1485.81010) Full Text: DOI
Benaoudia, Djamila Existence results for some integro-differential problems. (English) Zbl 1482.35237 Bull. Sci. Math. 174, Article ID 103083, 19 p. (2022). MSC: 35R09 35B25 35L15 35L70 35L81 45K05 PDF BibTeX XML Cite \textit{D. Benaoudia}, Bull. Sci. Math. 174, Article ID 103083, 19 p. (2022; Zbl 1482.35237) Full Text: DOI
Abdellaoui, Boumediene; Peral, Ireneo; Primo, Ana; Soria, Fernando On the KPZ equation with fractional diffusion: global regularity and existence results. (English) Zbl 1481.35258 J. Differ. Equations 312, 65-147 (2022). MSC: 35K59 35B51 35B65 35K20 35R11 47G20 47J35 PDF BibTeX XML Cite \textit{B. Abdellaoui} et al., J. Differ. Equations 312, 65--147 (2022; Zbl 1481.35258) Full Text: DOI arXiv
Choudhuri, D.; Zuo, Jiabin Critical Kirchhoff \(p(\cdot) \& q(\cdot)\)-fractional variable-order systems with variable exponent growth. (English) Zbl 1481.35377 Anal. Math. Phys. 12, No. 1, Paper No. 30, 29 p. (2022). MSC: 35R11 35B40 47G20 35S15 35J60 PDF BibTeX XML Cite \textit{D. Choudhuri} and \textit{J. Zuo}, Anal. Math. Phys. 12, No. 1, Paper No. 30, 29 p. (2022; Zbl 1481.35377) Full Text: DOI
Kim, Jongmyeong; Kim, Minhyun; Lee, Ki-Ahm Harnack inequality for nonlocal operators on manifolds with nonnegative curvature. (English) Zbl 1482.35054 Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 22, 29 p. (2022). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B45 35B65 35J60 35R01 47G20 58J05 PDF BibTeX XML Cite \textit{J. Kim} et al., Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 22, 29 p. (2022; Zbl 1482.35054) Full Text: DOI arXiv
Tan, Zhijun; Li, Kang; Chen, Yanping A fully discrete two-grid finite element method for nonlinear hyperbolic integro-differential equation. (English) Zbl 1510.65331 Appl. Math. Comput. 413, Article ID 126596, 19 p. (2022). MSC: 65R20 45K05 65M60 65M15 PDF BibTeX XML Cite \textit{Z. Tan} et al., Appl. Math. Comput. 413, Article ID 126596, 19 p. (2022; Zbl 1510.65331) Full Text: DOI
Hajiseyedazizi, Sayyedeh Narges; Samei, Mohammad Esmael; Alzabut, Jehad; Chu, Yu-ming On multi-step methods for singular fractional \(q\)-integro-differential equations. (English) Zbl 1503.34020 Open Math. 19, 1378-1405 (2021). MSC: 34A08 34B16 39A13 PDF BibTeX XML Cite \textit{S. N. Hajiseyedazizi} et al., Open Math. 19, 1378--1405 (2021; Zbl 1503.34020) Full Text: DOI
Bidari, Azizeh; Dastmalchi Saei, Farhad; Baghmisheh, Mahdi; Allahviranloo, Tofigh A new Jacobi tau method for fuzzy fractional Fredholm nonlinear integro-differential equations. (English) Zbl 1498.65225 Soft Comput. 25, No. 8, 5855-5865 (2021). MSC: 65R20 45B05 45J05 PDF BibTeX XML Cite \textit{A. Bidari} et al., Soft Comput. 25, No. 8, 5855--5865 (2021; Zbl 1498.65225) Full Text: DOI
Guemar, S.; Guebbai, H.; Lemita, S. On an integro-differential fractional nonlinear Volterra-Caputo equation. (Russian. English summary) Zbl 1502.45010 Sib. Zh. Vychisl. Mat. 24, No. 4, 365-382 (2021). MSC: 45J05 26A33 45D05 65R20 PDF BibTeX XML Cite \textit{S. Guemar} et al., Sib. Zh. Vychisl. Mat. 24, No. 4, 365--382 (2021; Zbl 1502.45010) Full Text: DOI MNR
Jafari, H.; Nemati, S.; Ganji, R. M. Operational matrices based on the shifted fifth-kind Chebyshev polynomials for solving nonlinear variable order integro-differential equations. (English) Zbl 1494.34034 Adv. Difference Equ. 2021, Paper No. 435, 14 p. (2021). MSC: 34A08 45J05 26A33 44A45 PDF BibTeX XML Cite \textit{H. Jafari} et al., Adv. Difference Equ. 2021, Paper No. 435, 14 p. (2021; Zbl 1494.34034) Full Text: DOI
Chkhikvadze, Teimuraz On one nonlinear integro-differential parabolic equation. (English) Zbl 1513.45030 Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 35, 19-22 (2021). MSC: 45K05 PDF BibTeX XML Cite \textit{T. Chkhikvadze}, Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 35, 19--22 (2021; Zbl 1513.45030) Full Text: Link
Diop, Amadou; Diop, Mamadou Abdoul; Ezzinbi, Khalil; Mané, Aziz Existence and controllability results for nonlocal stochastic integro-differential equations. (English) Zbl 1490.60183 Stochastics 93, No. 6, 833-856 (2021). MSC: 60H15 34F05 47J35 93B05 PDF BibTeX XML Cite \textit{A. Diop} et al., Stochastics 93, No. 6, 833--856 (2021; Zbl 1490.60183) Full Text: DOI
Zada, Mian Bahadur; Sarwar, Muhammad; George, Reny; Mitrović, Zoran D. Darbo-type \(\mathcal{Z}_{\mathrm{m}}\) and \(\mathcal{L}_{\mathrm{m}}\) contractions and its applications to Caputo fractional integro-differential equations. (English) Zbl 1484.54057 AIMS Math. 6, No. 6, 6340-6355 (2021). MSC: 54H25 34K37 45G10 45J05 47H09 47H10 PDF BibTeX XML Cite \textit{M. B. Zada} et al., AIMS Math. 6, No. 6, 6340--6355 (2021; Zbl 1484.54057) Full Text: DOI
Ofem, Austine Efut; Udofia, Unwana Effiong; Igbokwe, Donatus Ikechi A robust iterative approach for solving nonlinear Volterra delay integro-differential equations. (English) Zbl 07504263 Ural Math. J. 7, No. 2, 59-85 (2021). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 47H09 34K05 45J05 47H04 47J25 PDF BibTeX XML Cite \textit{A. E. Ofem} et al., Ural Math. J. 7, No. 2, 59--85 (2021; Zbl 07504263) Full Text: DOI MNR
Hou, Jinjiao; Niu, Jing; Xu, Minqiang; Ngolo, Welreach A new numerical method to solve nonlinear Volterra-Fredholm integro-differential equations. (English) Zbl 1492.65361 Math. Model. Anal. 26, No. 3, 469-478 (2021). MSC: 65R20 45G10 45D05 45B05 PDF BibTeX XML Cite \textit{J. Hou} et al., Math. Model. Anal. 26, No. 3, 469--478 (2021; Zbl 1492.65361) Full Text: DOI
Rautian, N. A. On the properties of the generators of semigroups associated with Volterra integro-differential equations. (English) Zbl 1484.45014 Differ. Equ. 57, No. 12, 1652-1664 (2021). MSC: 45N05 45D05 47J05 PDF BibTeX XML Cite \textit{N. A. Rautian}, Differ. Equ. 57, No. 12, 1652--1664 (2021; Zbl 1484.45014) Full Text: DOI
Alsaedi, Ahmed; Ahmad, Bashir; Alghamdi, Badrah; Ntouyas, Sotiris K. On a nonlinear system of Riemann-Liouville fractional differential equations with semi-coupled integro-multipoint boundary conditions. (English) Zbl 1481.34008 Open Math. 19, 760-772 (2021). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{A. Alsaedi} et al., Open Math. 19, 760--772 (2021; Zbl 1481.34008) Full Text: DOI
Adewumi, A. O.; Adetona, R. A.; Ogundare, B. S. On closed-form solutions to integro-differential equations. (English) Zbl 1499.45030 J. Numer. Math. Stoch. 12, No. 1, 28-44 (2021). MSC: 45L05 45D05 65R20 65H20 PDF BibTeX XML Cite \textit{A. O. Adewumi} et al., J. Numer. Math. Stoch. 12, No. 1, 28--44 (2021; Zbl 1499.45030) Full Text: Link
Kavehsarchogha, Razieh; Ezzati, Reza; Karamikabir, Nasrin; Yaghobbi, Farajollah Mohammadi A new method to solve dual systems of fractional integro-differential equations by Legendre wavelets. (English) Zbl 1513.65522 Kragujevac J. Math. 45, No. 6, 951-968 (2021). MSC: 65R20 26A33 45G15 65T60 PDF BibTeX XML Cite \textit{R. Kavehsarchogha} et al., Kragujevac J. Math. 45, No. 6, 951--968 (2021; Zbl 1513.65522) Full Text: DOI Link
Negarchi, Neda; Zolfegharifar, Sayyed Yaghoub Solving the optimal control of Volterra-Fredholm integro-differential equation via Müntz polynomials. (English) Zbl 1499.49024 Jordan J. Math. Stat. 14, No. 3, 453-466 (2021). MSC: 49J21 45A05 45J05 90C30 PDF BibTeX XML Cite \textit{N. Negarchi} and \textit{S. Y. Zolfegharifar}, Jordan J. Math. Stat. 14, No. 3, 453--466 (2021; Zbl 1499.49024)