Mirzaee, Farshid; Solhi, Erfan; Samadyar, Nasrin Moving least squares and spectral collocation method to approximate the solution of stochastic Volterra-Fredholm integral equations. (English) Zbl 07310818 Appl. Numer. Math. 161, 275-285 (2021). MSC: 45R 65C 60H PDF BibTeX XML Cite \textit{F. Mirzaee} et al., Appl. Numer. Math. 161, 275--285 (2021; Zbl 07310818) Full Text: DOI
Hanke, Michael; März, Roswitha Convergence analysis of least-squares collocation methods for nonlinear higher-index differential-algebraic equations. (English) Zbl 07305185 J. Comput. Appl. Math. 387, Article ID 112514, 20 p. (2021). MSC: 65L80 34A09 PDF BibTeX XML Cite \textit{M. Hanke} and \textit{R. März}, J. Comput. Appl. Math. 387, Article ID 112514, 20 p. (2021; Zbl 07305185) Full Text: DOI
Wei, Baolei; Xie, Naiming Parameter estimation for grey system models: a nonlinear least squares perspective. (English) Zbl 07299047 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105653, 11 p. (2021). MSC: 62M10 62R07 62J05 93A10 PDF BibTeX XML Cite \textit{B. Wei} and \textit{N. Xie}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105653, 11 p. (2021; Zbl 07299047) Full Text: DOI
Miao, Yu; Tang, Yanyan Large deviation inequalities of LS estimator in nonlinear regression models. (English) Zbl 07290489 Stat. Probab. Lett. 168, Article ID 108930, 11 p. (2021). MSC: 62F15 62F12 62J02 60F10 60E15 60G44 PDF BibTeX XML Cite \textit{Y. Miao} and \textit{Y. Tang}, Stat. Probab. Lett. 168, Article ID 108930, 11 p. (2021; Zbl 07290489) Full Text: DOI
Lee, Cheng Few Introduction to financial econometrics, mathematics, statistics, and machine learning. (English) Zbl 07283213 Lee, Cheng Few (ed.) et al., Handbook of financial econometrics, mathematics, statistics, and machine learning. Volume 1. Hackensack, NJ: World Scientific (ISBN 978-981-12-0241-4/hbk; 978-981-12-0238-4/set; 978-981-12-0240-7/ebook). 1-99 (2021). MSC: 91G70 91G80 62P05 68T05 PDF BibTeX XML Cite \textit{C. F. Lee}, in: Handbook of financial econometrics, mathematics, statistics, and machine learning. Volume 1. Hackensack, NJ: World Scientific. 1--99 (2021; Zbl 07283213) Full Text: DOI
Ma, Yijia; Xue, Liugen; Lu, Fei Statistical inference in partially nonlinear varying-coefficient errors-in-variables models with missing responses. (Chinese. English summary) Zbl 07294874 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 460-474 (2020). MSC: 62G05 62G20 62D10 PDF BibTeX XML Cite \textit{Y. Ma} et al., Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 460--474 (2020; Zbl 07294874)
Li, Chengjin Parameter-related projection-based iterative algorithm for a kind of generalized positive semidefinite least squares problem. (English) Zbl 07293656 Numer. Algebra Control Optim. 10, No. 4, 511-520 (2020). MSC: 65K05 90C30 15A60 PDF BibTeX XML Cite \textit{C. Li}, Numer. Algebra Control Optim. 10, No. 4, 511--520 (2020; Zbl 07293656) Full Text: DOI
Shen, Yunqiu; Ypma, Tjalling J. Numerical solution of separable nonlinear equations with a singular matrix at the solution. (English) Zbl 07290714 Numer. Algorithms 85, No. 4, 1195-1211 (2020). MSC: 65H10 15A60 PDF BibTeX XML Cite \textit{Y. Shen} and \textit{T. J. Ypma}, Numer. Algorithms 85, No. 4, 1195--1211 (2020; Zbl 07290714) Full Text: DOI
Sober, Barak; Levin, David Manifold approximation by moving least-squares projection (MMLS). (English) Zbl 07286603 Constr. Approx. 52, No. 3, 433-478 (2020). MSC: 65D99 41A46 PDF BibTeX XML Cite \textit{B. Sober} and \textit{D. Levin}, Constr. Approx. 52, No. 3, 433--478 (2020; Zbl 07286603) Full Text: DOI
Pukdee, Wannapa; Polsen, Orathai; Baksh, Mohamed Fazil A modified two-stage method for parameter estimation in sinusoidal models of correlated gene expression profiles. (English) Zbl 07280208 Thail. Stat. 18, No. 1, 77-89 (2020). MSC: 62J02 62F10 62J10 62H20 62P10 PDF BibTeX XML Cite \textit{W. Pukdee} et al., Thail. Stat. 18, No. 1, 77--89 (2020; Zbl 07280208) Full Text: Link
Xia, Qiang; Zhang, Zhiqiang; Li, Wai Keung A portmanteau test for smooth transition autoregressive models. (English) Zbl 1453.62524 J. Time Ser. Anal. 41, No. 5, 722-730 (2020). Reviewer: Denis Sidorov (Irkutsk) MSC: 62H15 62F03 62F05 62M02 62M10 PDF BibTeX XML Cite \textit{Q. Xia} et al., J. Time Ser. Anal. 41, No. 5, 722--730 (2020; Zbl 1453.62524) Full Text: DOI
Kukush, Alexander; Senko, Ivan Prediction in polynomial errors-in-variables models. (English) Zbl 1452.62501 Mod. Stoch., Theory Appl. 7, No. 2, 203-219 (2020). MSC: 62J05 62J02 62H12 62M20 PDF BibTeX XML Cite \textit{A. Kukush} and \textit{I. Senko}, Mod. Stoch., Theory Appl. 7, No. 2, 203--219 (2020; Zbl 1452.62501) Full Text: DOI
Kaur, Amandeep; Martha, S. C.; Chakrabarti, A. An algebraic method of solution of a water wave scattering problem involving an asymmetrical trench. (English) Zbl 07261296 Comput. Appl. Math. 39, No. 3, Paper No. 229, 19 p. (2020). MSC: 76B15 65F20 PDF BibTeX XML Cite \textit{A. Kaur} et al., Comput. Appl. Math. 39, No. 3, Paper No. 229, 19 p. (2020; Zbl 07261296) Full Text: DOI
Bauschke, Heinz H.; Moursi, Walaa M. On the behavior of the Douglas-Rachford algorithm for minimizing a convex function subject to a linear constraint. (English) Zbl 1451.90117 SIAM J. Optim. 30, No. 3, 2559-2576 (2020). MSC: 90C25 65K10 47H14 PDF BibTeX XML Cite \textit{H. H. Bauschke} and \textit{W. M. Moursi}, SIAM J. Optim. 30, No. 3, 2559--2576 (2020; Zbl 1451.90117) Full Text: DOI
Symes, William W. Wavefield reconstruction inversion: an example. (English) Zbl 1450.62137 Inverse Probl. 36, No. 10, Article ID 105010, 22 p. (2020). MSC: 62P35 62-08 86A15 PDF BibTeX XML Cite \textit{W. W. Symes}, Inverse Probl. 36, No. 10, Article ID 105010, 22 p. (2020; Zbl 1450.62137) Full Text: DOI
Zhang, Tao; Li, Xiaolin Variational multiscale interpolating element-free Galerkin method for the nonlinear Darcy-Forchheimer model. (English) Zbl 1443.65382 Comput. Math. Appl. 79, No. 2, 363-377 (2020). MSC: 65N30 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{X. Li}, Comput. Math. Appl. 79, No. 2, 363--377 (2020; Zbl 1443.65382) Full Text: DOI
Schrangl, P.; Giarré, L. On optimal design of experiments for static polynomial approximation of nonlinear systems. (English) Zbl 1453.93069 Syst. Control Lett. 143, Article ID 104758, 10 p. (2020). Reviewer: Denis Sidorov (Irkutsk) MSC: 93B30 93B50 93C10 PDF BibTeX XML Cite \textit{P. Schrangl} and \textit{L. Giarré}, Syst. Control Lett. 143, Article ID 104758, 10 p. (2020; Zbl 1453.93069) Full Text: DOI
Pes, Federica; Rodriguez, Giuseppe The minimal-norm Gauss-Newton method and some of its regularized variants. (English) Zbl 1448.65030 ETNA, Electron. Trans. Numer. Anal. 53, 459-480 (2020). MSC: 65F22 65H10 65F20 PDF BibTeX XML Cite \textit{F. Pes} and \textit{G. Rodriguez}, ETNA, Electron. Trans. Numer. Anal. 53, 459--480 (2020; Zbl 1448.65030) Full Text: DOI Link
Song, Xiongfeng; Xu, Wei; Hayami, Ken; Zheng, Ning Secant variable projection method for solving nonnegative separable least squares problems. (English) Zbl 07250899 Numer. Algorithms 85, No. 2, 737-761 (2020). MSC: 65 PDF BibTeX XML Cite \textit{X. Song} et al., Numer. Algorithms 85, No. 2, 737--761 (2020; Zbl 07250899) Full Text: DOI
Mitchell, Drew; Ye, Nan; De Sterck, Hans Nesterov acceleration of alternating least squares for canonical tensor decomposition: momentum step size selection and restart mechanisms. (English) Zbl 07250716 Numer. Linear Algebra Appl. 27, No. 4, e2297, 24 p. (2020). MSC: 15A69 65F10 PDF BibTeX XML Cite \textit{D. Mitchell} et al., Numer. Linear Algebra Appl. 27, No. 4, e2297, 24 p. (2020; Zbl 07250716) Full Text: DOI
Abu-Awwad, A.; Maume-Deschamps, V.; Ribereau, P. Fitting spatial max-mixture processes with unknown extremal dependence class: an exploratory analysis tool. (English) Zbl 1447.62032 Test 29, No. 2, 479-522 (2020). MSC: 62G05 62M30 60G70 62P12 PDF BibTeX XML Cite \textit{A. Abu-Awwad} et al., Test 29, No. 2, 479--522 (2020; Zbl 1447.62032) Full Text: DOI
Ivanov, O. V.; Lymar, O. V. The asymptotic normality for the least squares estimator of parameters in a two dimensional sinusoidal model of observations. (English. Ukrainian original) Zbl 1446.62354 Theory Probab. Math. Stat. 100, 107-131 (2020); translation from Teor. Jmovirn. Mat. Stat. 100, 102-122 (2019). MSC: 62R10 62M40 62M15 62J02 PDF BibTeX XML Cite \textit{O. V. Ivanov} and \textit{O. V. Lymar}, Theory Probab. Math. Stat. 100, 107--131 (2020; Zbl 1446.62354); translation from Teor. Jmovirn. Mat. Stat. 100, 102--122 (2019) Full Text: DOI
Nelles, Oliver Nonlinear system identification. From classical approaches to neural networks, fuzzy models, and Gaussian processes. 2nd edition. (English) Zbl 1453.93001 Cham: Springer (ISBN 978-3-030-47438-6/hbk; 978-3-030-47439-3/ebook). xxviii, 1225 p. (2020). MSC: 93-01 93-02 93B30 93C10 93C42 92B20 93C15 PDF BibTeX XML Cite \textit{O. Nelles}, Nonlinear system identification. From classical approaches to neural networks, fuzzy models, and Gaussian processes. 2nd edition. Cham: Springer (2020; Zbl 1453.93001) Full Text: DOI
Jadamba, Baasansuren; Khan, Akhtar A.; Richards, Michael; Sama, Miguel A convex inversion framework for identifying parameters in saddle point problems with applications to inverse incompressible elasticity. (English) Zbl 07236583 Inverse Probl. 36, No. 7, Article ID 074003, 25 p. (2020). MSC: 65N21 65N20 65N30 65K10 65N12 49K20 90C25 74B20 92C55 35Q92 PDF BibTeX XML Cite \textit{B. Jadamba} et al., Inverse Probl. 36, No. 7, Article ID 074003, 25 p. (2020; Zbl 07236583) Full Text: DOI
Abbaszadeh, Mostafa; Dehghan, Mehdi; Khodadadian, Amirreza; Heitzinger, Clemens Error analysis of interpolating element free Galerkin method to solve non-linear extended Fisher-Kolmogorov equation. (English) Zbl 1446.65103 Comput. Math. Appl. 80, No. 1, 247-262 (2020). MSC: 65M60 65N30 65M06 65M12 65M15 65K10 35Q92 PDF BibTeX XML Cite \textit{M. Abbaszadeh} et al., Comput. Math. Appl. 80, No. 1, 247--262 (2020; Zbl 1446.65103) Full Text: DOI
Papamichail, Chrysanthi; Bouzebda, Salim; Limnios, Nikolaos Regression analysis of stochastic fatigue crack growth model in a martingale difference framework. (English) Zbl 1443.62125 J. Stat. Theory Pract. 14, No. 3, Paper No. 44, 43 p. (2020). MSC: 62G30 62G20 60E05 60F05 60G42 60J05 62H12 62J02 62M02 PDF BibTeX XML Cite \textit{C. Papamichail} et al., J. Stat. Theory Pract. 14, No. 3, Paper No. 44, 43 p. (2020; Zbl 1443.62125) Full Text: DOI
Orban, Dominique; Siqueira, Abel Soares A regularization method for constrained nonlinear least squares. (English) Zbl 1446.90151 Comput. Optim. Appl. 76, No. 3, 961-989 (2020). MSC: 90C30 PDF BibTeX XML Cite \textit{D. Orban} and \textit{A. S. Siqueira}, Comput. Optim. Appl. 76, No. 3, 961--989 (2020; Zbl 1446.90151) Full Text: DOI
Lu, Yanfei; Yin, Qingfei; Li, Hongyi; Sun, Hongli; Yang, Yunlei; Hou, Muzhou Solving higher order nonlinear ordinary differential equations with least squares support vector machines. (English) Zbl 07213094 J. Ind. Manag. Optim. 16, No. 3, 1481-1502 (2020). MSC: 65L 68W25 68T99 34A12 34B15 PDF BibTeX XML Cite \textit{Y. Lu} et al., J. Ind. Manag. Optim. 16, No. 3, 1481--1502 (2020; Zbl 07213094) Full Text: DOI
Sauk, Benjamin; Ploskas, Nikolaos; Sahinidis, Nikolaos GPU parameter tuning for tall and skinny dense linear least squares problems. (English) Zbl 1445.90107 Optim. Methods Softw. 35, No. 3, 638-660 (2020). MSC: 90C30 90C56 PDF BibTeX XML Cite \textit{B. Sauk} et al., Optim. Methods Softw. 35, No. 3, 638--660 (2020; Zbl 1445.90107) Full Text: DOI
Bode, T.; Weißenfels, C.; Wriggers, P. Mixed peridynamic formulations for compressible and incompressible finite deformations. (English) Zbl 07195849 Comput. Mech. 65, No. 5, 1365-1376 (2020). MSC: 74 PDF BibTeX XML Cite \textit{T. Bode} et al., Comput. Mech. 65, No. 5, 1365--1376 (2020; Zbl 07195849) Full Text: DOI
Ding, Feng; Liu, Ximei; Hayat, Tasawar Hierarchical least squares identification for feedback nonlinear equation-error systems. (English) Zbl 1451.93404 J. Franklin Inst. 357, No. 5, 2958-2977 (2020). MSC: 93E12 93E24 93B52 93C10 PDF BibTeX XML Cite \textit{F. Ding} et al., J. Franklin Inst. 357, No. 5, 2958--2977 (2020; Zbl 1451.93404) Full Text: DOI
Frumin, Leonid L. Linear least squares method in nonlinear parametric inverse problems. (English) Zbl 07189032 J. Inverse Ill-Posed Probl. 28, No. 2, 307-312 (2020). MSC: 65C60 65D10 90-08 PDF BibTeX XML Cite \textit{L. L. Frumin}, J. Inverse Ill-Posed Probl. 28, No. 2, 307--312 (2020; Zbl 07189032) Full Text: DOI
Matsuura, Shun; Kurata, Hiroshi Covariance matrix estimation in a seemingly unrelated regression model under Stein’s loss. (English) Zbl 1436.62203 Stat. Methods Appl. 29, No. 1, 79-99 (2020). MSC: 62H12 62H20 62J02 PDF BibTeX XML Cite \textit{S. Matsuura} and \textit{H. Kurata}, Stat. Methods Appl. 29, No. 1, 79--99 (2020; Zbl 1436.62203) Full Text: DOI
Ivanov, A. V.; Leonenko, N. N.; Orlovskyi, I. V. On the Whittle estimator for linear random noise spectral density parameter in continuous-time nonlinear regression models. (English) Zbl 1436.62429 Stat. Inference Stoch. Process. 23, No. 1, 129-169 (2020). Reviewer: Oscar Bustos (Córdoba) MSC: 62M10 62M15 62J02 60G65 PDF BibTeX XML Cite \textit{A. V. Ivanov} et al., Stat. Inference Stoch. Process. 23, No. 1, 129--169 (2020; Zbl 1436.62429) Full Text: DOI
Gonçalves, Max L. N.; Menezes, Tiago C. Gauss-Newton methods with approximate projections for solving constrained nonlinear least squares problems. (English) Zbl 1440.65063 J. Complexity 58, Article ID 101459, 21 p. (2020). Reviewer: Ioannis Argyros (Lawton) MSC: 65K05 90C30 65J15 PDF BibTeX XML Cite \textit{M. L. N. Gonçalves} and \textit{T. C. Menezes}, J. Complexity 58, Article ID 101459, 21 p. (2020; Zbl 1440.65063) Full Text: DOI
Kosmidis, Ioannis; Pagui, Euloge Clovis Kenne; Sartori, Nicola Mean and median bias reduction in generalized linear models. (English) Zbl 1436.62351 Stat. Comput. 30, No. 1, 43-59 (2020). MSC: 62J12 62F10 62J02 PDF BibTeX XML Cite \textit{I. Kosmidis} et al., Stat. Comput. 30, No. 1, 43--59 (2020; Zbl 1436.62351) Full Text: DOI
Diniz, Paulo S. R. Adaptive filtering. Algorithms and practical implementation. 5th updated and expanded edition. (English) Zbl 1428.93002 Cham: Springer (ISBN 978-3-030-29056-6/hbk; 978-3-030-29057-3/ebook). xviii, 495 p. (2020). MSC: 93-02 93E11 60G35 62M20 62P30 93E10 93E12 93C40 93C55 PDF BibTeX XML Cite \textit{P. S. R. Diniz}, Adaptive filtering. Algorithms and practical implementation. 5th updated and expanded edition. Cham: Springer (2020; Zbl 1428.93002) Full Text: DOI
Zeng, Fanhai; Turner, Ian; Burrage, Kevin; Wright, Stephen J. A discrete least squares collocation method for two-dimensional nonlinear time-dependent partial differential equations. (English) Zbl 1452.65284 J. Comput. Phys. 394, 177-199 (2019). MSC: 65M70 65M08 65M15 35R11 PDF BibTeX XML Cite \textit{F. Zeng} et al., J. Comput. Phys. 394, 177--199 (2019; Zbl 1452.65284) Full Text: DOI
Hosseininia, M.; Heydari, M. H. Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag-Leffler non-singular kernel. (English) Zbl 1448.65103 Chaos Solitons Fractals 127, 389-399 (2019). MSC: 65M06 35R11 26A33 PDF BibTeX XML Cite \textit{M. Hosseininia} and \textit{M. H. Heydari}, Chaos Solitons Fractals 127, 389--399 (2019; Zbl 1448.65103) Full Text: DOI
Drabyk, T. O.; Ivanov, O. V. Asymptotic normality of the least squares estimate in trigonometric regression with strongly dependent noise. (Ukrainian. English summary) Zbl 07277708 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 4, 24-41 (2019). MSC: 62J02 62M15 62M10 62F12 62R40 60G15 PDF BibTeX XML Cite \textit{T. O. Drabyk} and \textit{O. V. Ivanov}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 4, 24--41 (2019; Zbl 07277708) Full Text: DOI
Sun, Pingping; Niu, Jing; Wu, Qi; Li, Ping High efficient numerical algorithm for nonlinear singular boundary value problems. (Chinese. English summary) Zbl 07267456 Numer. Math., Nanjing 41, No. 4, 302-315 (2019). MSC: 65L10 PDF BibTeX XML Cite \textit{P. Sun} et al., Numer. Math., Nanjing 41, No. 4, 302--315 (2019; Zbl 07267456)
Shi, Rundong; Hu, Gang; Wang, Shihong Reconstructing nonlinear networks subject to fast-varying noises by using linearization with expanded variables. (English) Zbl 07264752 Commun. Nonlinear Sci. Numer. Simul. 72, 407-416 (2019). MSC: 94 93 PDF BibTeX XML Cite \textit{R. Shi} et al., Commun. Nonlinear Sci. Numer. Simul. 72, 407--416 (2019; Zbl 07264752) Full Text: DOI
Nengsih, Titin Agustin; Bertrand, Frédéric; Maumy-Bertrand, Myriam; Meyer, Nicolas Determining the number of components in PLS regression on incomplete data set. (English) Zbl 1447.62016 Stat. Appl. Genet. Mol. Biol. 18, No. 6, Article ID 20180059, 28 p. (2019). MSC: 62D10 62J02 PDF BibTeX XML Cite \textit{T. A. Nengsih} et al., Stat. Appl. Genet. Mol. Biol. 18, No. 6, Article ID 20180059, 28 p. (2019; Zbl 1447.62016) Full Text: DOI
Lukšan, Ladislav; Vlček, Jan A hybrid method for nonlinear least squares that uses quasi-Newton updates applied to an approximation of the Jacobian matrix. (English) Zbl 07236959 Chleboun, J. (ed.) et al., Programs and algorithms of numerical mathematics 19. Proceedings of the 19th seminar (PANM), Hejnice, Czech Republic, June 24–29, 2018. Prague: Academy of Sciences of the Czech Republic, Institute of Mathematics (ISBN 978-80-85823-69-1). 99-106 (2019). Reviewer: Petr Tichý (Prague) MSC: 65K10 65F30 PDF BibTeX XML Cite \textit{L. Lukšan} and \textit{J. Vlček}, in: Programs and algorithms of numerical mathematics 19. Proceedings of the 19th seminar (PANM), Hejnice, Czech Republic, June 24--29, 2018. Prague: Academy of Sciences of the Czech Republic, Institute of Mathematics. 99--106 (2019; Zbl 07236959) Full Text: DOI
Xu, Zhengwei; Wang, Hao; Hu, Bing; Zhang, Shiquan Parameter estimation of Arrhenius equation based on nonlinear least squares method. (Chinese. English summary) Zbl 1449.65155 J. Numer. Methods Comput. Appl. 40, No. 4, 279-290 (2019). MSC: 65L05 65L06 65L09 PDF BibTeX XML Cite \textit{Z. Xu} et al., J. Numer. Methods Comput. Appl. 40, No. 4, 279--290 (2019; Zbl 1449.65155)
Liu, Zhaobo; Li, Chanying Stabilizability theorem of discrete-time nonlinear systems with scalar parameters. (English) Zbl 1449.93220 Control Theory Appl. 36, No. 11, 1929-1935 (2019). MSC: 93D15 93C10 93C40 93C55 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{C. Li}, Control Theory Appl. 36, No. 11, 1929--1935 (2019; Zbl 1449.93220) Full Text: DOI
Liang, Dingkun; Sun, Ning; Wu, Yiming; Chen, Yiheng; Qin, Yanding; Fang, Yongchun Nonlinear control for pneumatic artificial muscle systems with disturbance estimation. (Chinese. English summary) Zbl 1449.93111 Control Theory Appl. 36, No. 11, 1912-1919 (2019). MSC: 93C10 PDF BibTeX XML Cite \textit{D. Liang} et al., Control Theory Appl. 36, No. 11, 1912--1919 (2019; Zbl 1449.93111) Full Text: DOI
Bergmann, R.; Laus, F.; Persch, J.; Steidl, G. Recent advances in denoising of manifold-valued images. (English) Zbl 1446.94004 Kimmel, Ron (ed.) et al., Processing, analyzing and learning of images, shapes, and forms. Part 2. Amsterdam: Elsevier/North Holland. Handb. Numer. Anal. 20, 553-578 (2019). MSC: 94A08 65K10 49M37 49Q05 53C21 65D18 65K05 94A12 62H35 PDF BibTeX XML Cite \textit{R. Bergmann} et al., Handb. Numer. Anal. 20, 553--578 (2019; Zbl 1446.94004) Full Text: DOI
Kerkri, Abdelmounaim; Allal, Jelloul; Zarrouk, Zoubir The L-curve criterion as a model selection tool in PLS regression. (English) Zbl 1437.62248 J. Probab. Stat. 2019, Article ID 3129769, 7 p. (2019). MSC: 62J02 62J15 62-08 PDF BibTeX XML Cite \textit{A. Kerkri} et al., J. Probab. Stat. 2019, Article ID 3129769, 7 p. (2019; Zbl 1437.62248) Full Text: DOI
Shekari, Younes; Tayebi, Ali; Heydari, Mohammad Hossein A meshfree approach for solving 2D variable-order fractional nonlinear diffusion-wave equation. (English) Zbl 1441.65079 Comput. Methods Appl. Mech. Eng. 350, 154-168 (2019). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{Y. Shekari} et al., Comput. Methods Appl. Mech. Eng. 350, 154--168 (2019; Zbl 1441.65079) Full Text: DOI
Caboussat, Alexandre A least-squares/relaxation method for the numerical solution of a 2D Pucci’s equation. (English) Zbl 1436.65172 Methods Appl. Anal. 26, No. 2, 113-132 (2019). MSC: 65N30 35F30 49M15 49M20 65K10 35J60 PDF BibTeX XML Cite \textit{A. Caboussat}, Methods Appl. Anal. 26, No. 2, 113--132 (2019; Zbl 1436.65172) Full Text: DOI
Xu, Qing; Xuan, Xiaohua (Michael) Nonlinear regression without i.i.d. assumption. (English) Zbl 07168384 Probab. Uncertain. Quant. Risk 4, Paper No. 8, 15 p. (2019). MSC: 65F 15 15A PDF BibTeX XML Cite \textit{Q. Xu} and \textit{X. Xuan}, Probab. Uncertain. Quant. Risk 4, Paper No. 8, 15 p. (2019; Zbl 07168384) Full Text: DOI
Cartis, Coralia; Roberts, Lindon A derivative-free Gauss-Newton method. (English) Zbl 07168037 Math. Program. Comput. 11, No. 4, 631-674 (2019). MSC: 65K05 90C30 90C56 PDF BibTeX XML Cite \textit{C. Cartis} and \textit{L. Roberts}, Math. Program. Comput. 11, No. 4, 631--674 (2019; Zbl 07168037) Full Text: DOI
Kalina, J.; Tichavský, J. Statistical learning for recommending (robust) nonlinear regression methods. (English) Zbl 07152683 J. Appl. Math. Stat. Inform. 15, No. 2, 47-59 (2019). MSC: 68T05 62G35 62J02 68-04 PDF BibTeX XML Cite \textit{J. Kalina} and \textit{J. Tichavský}, J. Appl. Math. Stat. Inform. 15, No. 2, 47--59 (2019; Zbl 07152683) Full Text: DOI
Mustafa, Ghulam; Hameed, Rabia Families of non-linear subdivision schemes for scattered data fitting and their non-tensor product extensions. (English) Zbl 1429.65040 Appl. Math. Comput. 359, 214-240 (2019). MSC: 65D17 62J02 62J05 65D10 PDF BibTeX XML Cite \textit{G. Mustafa} and \textit{R. Hameed}, Appl. Math. Comput. 359, 214--240 (2019; Zbl 1429.65040) Full Text: DOI
Behling, Roger; Gonçalves, Douglas S.; Santos, Sandra A. Local convergence analysis of the Levenberg-Marquardt framework for nonzero-residue nonlinear least-squares problems under an error bound condition. (English) Zbl 1430.49031 J. Optim. Theory Appl. 183, No. 3, 1099-1122 (2019). MSC: 49M37 65K05 90C30 PDF BibTeX XML Cite \textit{R. Behling} et al., J. Optim. Theory Appl. 183, No. 3, 1099--1122 (2019; Zbl 1430.49031) Full Text: DOI
Kovács, Péter; Fekete, Andrea M. Nonlinear least-squares spline fitting with variable knots. (English) Zbl 1429.65130 Appl. Math. Comput. 354, 490-501 (2019). MSC: 65K10 65D07 65D10 90C59 92C55 PDF BibTeX XML Cite \textit{P. Kovács} and \textit{A. M. Fekete}, Appl. Math. Comput. 354, 490--501 (2019; Zbl 1429.65130) Full Text: DOI
Wong, Weng Kee; Yin, Yue; Zhou, Julie Using SeDuMi to find various optimal designs for regression models. (English) Zbl 1432.62252 Stat. Pap. 60, No. 5, 1583-1603 (2019). MSC: 62K05 62K20 PDF BibTeX XML Cite \textit{W. K. Wong} et al., Stat. Pap. 60, No. 5, 1583--1603 (2019; Zbl 1432.62252) Full Text: DOI
Bao, Jifeng; Yu, Carisa Kwok Wai; Wang, Jinhua; Hu, Yaohua; Yao, Jen-Chih Modified inexact Levenberg-Marquardt methods for solving nonlinear least squares problems. (English) Zbl 1425.90112 Comput. Optim. Appl. 74, No. 2, 547-582 (2019). MSC: 90C30 65K05 90C25 PDF BibTeX XML Cite \textit{J. Bao} et al., Comput. Optim. Appl. 74, No. 2, 547--582 (2019; Zbl 1425.90112) Full Text: DOI
Wang, Longjin; Ji, Yan; Wan, Lijuan; Bu, Ni Hierarchical recursive generalized extended least squares estimation algorithms for a class of nonlinear stochastic systems with colored noise. (English) Zbl 1423.93371 J. Franklin Inst. 356, No. 16, 10102-10122 (2019). MSC: 93E03 93E24 93C10 PDF BibTeX XML Cite \textit{L. Wang} et al., J. Franklin Inst. 356, No. 16, 10102--10122 (2019; Zbl 1423.93371) Full Text: DOI
Xu, Huan; Ding, Feng; Sheng, Jie On some parameter estimation algorithms for the nonlinear exponential autoregressive model. (English) Zbl 1425.93275 Int. J. Adapt. Control Signal Process. 33, No. 6, 999-1015 (2019). MSC: 93E10 93E12 93C10 PDF BibTeX XML Cite \textit{H. Xu} et al., Int. J. Adapt. Control Signal Process. 33, No. 6, 999--1015 (2019; Zbl 1425.93275) Full Text: DOI
Wu, Xianyi; Zhou, Xian On Hodges’ superefficiency and merits of oracle property in model selection. (English) Zbl 1433.62182 Ann. Inst. Stat. Math. 71, No. 5, 1093-1119 (2019). Reviewer: Rózsa Horváth-Bokor (Budakalász) MSC: 62J02 62G08 PDF BibTeX XML Cite \textit{X. Wu} and \textit{X. Zhou}, Ann. Inst. Stat. Math. 71, No. 5, 1093--1119 (2019; Zbl 1433.62182) Full Text: DOI
Areias, P.; Pires, M.; Bac, N. Vu; Rabczuk, Timon An objective and path-independent 3D finite-strain beam with least-squares assumed-strain formulation. (English) Zbl 07119154 Comput. Mech. 64, No. 4, 1115-1131 (2019). MSC: 74 PDF BibTeX XML Cite \textit{P. Areias} et al., Comput. Mech. 64, No. 4, 1115--1131 (2019; Zbl 07119154) Full Text: DOI
Abuaisha, Tareq; Kertzscher, Jana Fractional-order modelling and parameter identification of electrical coils. (English) Zbl 1427.78013 Fract. Calc. Appl. Anal. 22, No. 1, 193-216 (2019). MSC: 78A55 93B30 90C30 93E24 26A33 34A08 34K37 78A25 PDF BibTeX XML Cite \textit{T. Abuaisha} and \textit{J. Kertzscher}, Fract. Calc. Appl. Anal. 22, No. 1, 193--216 (2019; Zbl 1427.78013) Full Text: DOI
Wang, Fuchang; Qian, Xiaoshi; Zhang, Yanfang; Ren, Qingqing The method of nonlinear EV model fitting based on total least squares. (Chinese. English summary) Zbl 1438.62036 Math. Pract. Theory 49, No. 6, 143-147 (2019). MSC: 62F10 62J02 PDF BibTeX XML Cite \textit{F. Wang} et al., Math. Pract. Theory 49, No. 6, 143--147 (2019; Zbl 1438.62036)
Balabdaoui, Fadoua; Durot, Cécile; Jankowski, Hanna Least squares estimation in the monotone single index model. (English) Zbl 1433.62108 Bernoulli 25, No. 4B, 3276-3310 (2019). Reviewer: Martin Wendler (Greifswald) MSC: 62G08 62G20 62J02 PDF BibTeX XML Cite \textit{F. Balabdaoui} et al., Bernoulli 25, No. 4B, 3276--3310 (2019; Zbl 1433.62108) Full Text: DOI Euclid
Dai, Peng; Zhou, Ping; Liang, Yanzhuo; Chai, Tianyou Multi-output least squares support vector regression modeling based adaptive nonlinear predictive control and its application. (Chinese. English summary) Zbl 1438.93063 Control Theory Appl. 36, No. 1, 43-52 (2019). MSC: 93B45 93C40 93C10 90C20 PDF BibTeX XML Cite \textit{P. Dai} et al., Control Theory Appl. 36, No. 1, 43--52 (2019; Zbl 1438.93063) Full Text: DOI
Landi, G.; Loli Piccolomini, Elena; Nagy, J. Nonlinear conjugate gradient method for spectral tomosynthesis. (English) Zbl 1422.92090 Inverse Probl. 35, No. 9, Article ID 094003, 16 p. (2019). MSC: 92C55 PDF BibTeX XML Cite \textit{G. Landi} et al., Inverse Probl. 35, No. 9, Article ID 094003, 16 p. (2019; Zbl 1422.92090) Full Text: DOI
Mohammad, Hassan; Waziri, Mohammed Yusuf; Santos, Sandra Augusta A brief survey of methods for solving nonlinear least-squares problems. (English) Zbl 07106452 Numer. Algebra Control Optim. 9, No. 1, 1-13 (2019). MSC: 65 93E24 49M37 65K05 90C53 49J52 PDF BibTeX XML Cite \textit{H. Mohammad} et al., Numer. Algebra Control Optim. 9, No. 1, 1--13 (2019; Zbl 07106452) Full Text: DOI
Dehghani, R.; Mahdavi-Amiri, N. Scaled nonlinear conjugate gradient methods for nonlinear least squares problems. (English) Zbl 1421.90166 Numer. Algorithms 82, No. 1, 1-20 (2019). MSC: 90C53 49M37 65K05 PDF BibTeX XML Cite \textit{R. Dehghani} and \textit{N. Mahdavi-Amiri}, Numer. Algorithms 82, No. 1, 1--20 (2019; Zbl 1421.90166) Full Text: DOI
Liu, Zhaobo; Li, Chanying Is it possible to stabilize discrete-time parameterized uncertain systems growing exponentially fast? (English) Zbl 1421.93114 SIAM J. Control Optim. 57, No. 3, 1965-1984 (2019). MSC: 93D15 93D20 93E35 93C55 93C41 93C10 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{C. Li}, SIAM J. Control Optim. 57, No. 3, 1965--1984 (2019; Zbl 1421.93114) Full Text: DOI Link
Asadpour, Sasan; Cherati, Allahbakhsh Yazdani; Hosseinzadeh, Hassan Solving the general form of the Emden-Fowler equations with the moving least squares method. (English) Zbl 1438.34074 J. Math. Model. 7, No. 2, 231-250 (2019). MSC: 34A45 65L05 34A34 PDF BibTeX XML Cite \textit{S. Asadpour} et al., J. Math. Model. 7, No. 2, 231--250 (2019; Zbl 1438.34074) Full Text: DOI
Argyros, Ioannis Konstantinos; Silva, Gilson do Nascimento Extending the applicability of inexact Gauss-Newton method for solving underdetermined nonlinear least squares problems. (English) Zbl 07094437 J. Korean Math. Soc. 56, No. 2, 311-327 (2019). MSC: 65K05 65K15 49M15 49M37 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{G. d. N. Silva}, J. Korean Math. Soc. 56, No. 2, 311--327 (2019; Zbl 07094437) Full Text: DOI
Pan, Yongping; Sun, Tairen; Yu, Haoyong On parameter convergence in least squares identification and adaptive control. (English) Zbl 1418.93123 Int. J. Robust Nonlinear Control 29, No. 10, 2898-2911 (2019). MSC: 93C40 93D20 93E12 93E10 93E24 93C10 PDF BibTeX XML Cite \textit{Y. Pan} et al., Int. J. Robust Nonlinear Control 29, No. 10, 2898--2911 (2019; Zbl 1418.93123) Full Text: DOI
Rahpeymaii, Farzad An efficient conjugate gradient trust-region approach for systems of nonlinear equation. (English) Zbl 1438.90332 Afr. Mat. 30, No. 3-4, 597-609 (2019). MSC: 90C30 93E24 34A34 PDF BibTeX XML Cite \textit{F. Rahpeymaii}, Afr. Mat. 30, No. 3--4, 597--609 (2019; Zbl 1438.90332) Full Text: DOI
Wu, Ranran; Fan, Ding; Iu, Herbert Ho-Ching; Fernando, Tyrone Adaptive fuzzy dynamic surface control for uncertain discrete-time non-linear pure-feedback MIMO systems with network-induced time-delay based on state observer. (English) Zbl 1417.93181 Int. J. Control 92, No. 7, 1707-1719 (2019). MSC: 93C40 93C42 93C41 93C55 93C10 93C35 93B52 PDF BibTeX XML Cite \textit{R. Wu} et al., Int. J. Control 92, No. 7, 1707--1719 (2019; Zbl 1417.93181) Full Text: DOI
Zhang, Ran; Plonka, Gerlind Optimal approximation with exponential sums by a maximum likelihood modification of Prony’s method. (English) Zbl 1415.65095 Adv. Comput. Math. 45, No. 3, 1657-1687 (2019). MSC: 65F15 62J02 15A18 41A30 PDF BibTeX XML Cite \textit{R. Zhang} and \textit{G. Plonka}, Adv. Comput. Math. 45, No. 3, 1657--1687 (2019; Zbl 1415.65095) Full Text: DOI
Pázman, Andrej Distribution of the multivariate nonlinear LS estimator under an uncertain input. (English) Zbl 1419.62163 Stat. Pap. 60, No. 2, 179-194 (2019). MSC: 62J02 62F10 62F12 62P35 62H12 PDF BibTeX XML Cite \textit{A. Pázman}, Stat. Pap. 60, No. 2, 529--544 (2019; Zbl 1419.62163) Full Text: DOI
Zhou, Wenyu A network social interaction model with heterogeneous links. (English) Zbl 1415.91244 Econ. Lett. 180, 50-53 (2019). MSC: 91D30 PDF BibTeX XML Cite \textit{W. Zhou}, Econ. Lett. 180, 50--53 (2019; Zbl 1415.91244) Full Text: DOI
Gould, Nicholas I. M.; Rees, Tyrone; Scott, Jennifer A. Convergence and evaluation-complexity analysis of a regularized tensor-Newton method for solving nonlinear least-squares problems. (English) Zbl 1435.90100 Comput. Optim. Appl. 73, No. 1, 1-35 (2019). MSC: 90C20 90C53 PDF BibTeX XML Cite \textit{N. I. M. Gould} et al., Comput. Optim. Appl. 73, No. 1, 1--35 (2019; Zbl 1435.90100) Full Text: DOI
Bidabadi, N. Using a spectral scaling structured BFGS method for constrained nonlinear least squares. (English) Zbl 1415.90117 Optim. Methods Softw. 34, No. 4, 693-706 (2019). MSC: 90C30 90C55 PDF BibTeX XML Cite \textit{N. Bidabadi}, Optim. Methods Softw. 34, No. 4, 693--706 (2019; Zbl 1415.90117) Full Text: DOI
Balabdaoui, Fadoua; Groeneboom, Piet; Hendrickx, Kim Score estimation in the monotone single-index model. (English) Zbl 1418.62103 Scand. J. Stat. 46, No. 2, 517-544 (2019). MSC: 62G05 62F12 62J02 PDF BibTeX XML Cite \textit{F. Balabdaoui} et al., Scand. J. Stat. 46, No. 2, 517--544 (2019; Zbl 1418.62103) Full Text: DOI
Mohammad, Hassan; Waziri, Mohammed Yusuf Structured two-point stepsize gradient methods for nonlinear least squares. (English) Zbl 1416.49036 J. Optim. Theory Appl. 181, No. 1, 298-317 (2019). MSC: 49M37 65K05 90C56 PDF BibTeX XML Cite \textit{H. Mohammad} and \textit{M. Y. Waziri}, J. Optim. Theory Appl. 181, No. 1, 298--317 (2019; Zbl 1416.49036) Full Text: DOI arXiv
Kotsakis, Christopher Nonlinear geospatial frame transformations in the presence of noisy data. (English) Zbl 1414.86006 Math. Geosci. 51, No. 4, 437-461 (2019). MSC: 86A32 PDF BibTeX XML Cite \textit{C. Kotsakis}, Math. Geosci. 51, No. 4, 437--461 (2019; Zbl 1414.86006) Full Text: DOI
Rosadi, D.; Filzmoser, P. Robust second-order least-squares estimation for regression models with autoregressive errors. (English) Zbl 1411.62193 Stat. Pap. 60, No. 1, 105-122 (2019). MSC: 62J05 62F35 62M10 62J02 PDF BibTeX XML Cite \textit{D. Rosadi} and \textit{P. Filzmoser}, Stat. Pap. 60, No. 1, 105--122 (2019; Zbl 1411.62193) Full Text: DOI
Farah, M.; Mercère, G.; Ouvrard, R.; Poinot, T. Combining least-squares and gradient-based algorithms for the identification of a co-current flow heat exchanger. (English) Zbl 1415.93275 Int. J. Control 92, No. 1, 191-203 (2019). MSC: 93E12 93C95 93E10 93E24 93C20 PDF BibTeX XML Cite \textit{M. Farah} et al., Int. J. Control 92, No. 1, 191--203 (2019; Zbl 1415.93275) Full Text: DOI
Rahpeymaii, Farzad; Amini, Keyvan; Allahviranloo, Tofigh; Malkhalifeh, Mohsen Rostamy A new class of conjugate gradient methods for unconstrained smooth optimization and absolute value equations. (English) Zbl 1407.90311 Calcolo 56, No. 1, Paper No. 2, 28 p. (2019). MSC: 90C30 93E24 34A34 PDF BibTeX XML Cite \textit{F. Rahpeymaii} et al., Calcolo 56, No. 1, Paper No. 2, 28 p. (2019; Zbl 1407.90311) Full Text: DOI
Choi, Youngsoo; Carlberg, Kevin Space-time least-squares Petrov-Galerkin projection for nonlinear model reduction. (English) Zbl 1405.65140 SIAM J. Sci. Comput. 41, No. 1, A26-A58 (2019). MSC: 65M99 65L05 65L06 65L60 65M15 65M60 76M25 PDF BibTeX XML Cite \textit{Y. Choi} and \textit{K. Carlberg}, SIAM J. Sci. Comput. 41, No. 1, A26--A58 (2019; Zbl 1405.65140) Full Text: DOI
Chen, Yannan; Sun, Wenyu; Xi, Min; Yuan, Jinyun A seminorm regularized alternating least squares algorithm for canonical tensor decomposition. (English) Zbl 1404.65031 J. Comput. Appl. Math. 347, 296-313 (2019). MSC: 65F30 15A69 65F22 65K05 90C30 PDF BibTeX XML Cite \textit{Y. Chen} et al., J. Comput. Appl. Math. 347, 296--313 (2019; Zbl 1404.65031) Full Text: DOI
Shen, Yunqiu; Ypma, Tjalling J. Solving separable nonlinear least squares problems using the QR factorization. (English) Zbl 1398.65106 J. Comput. Appl. Math. 345, 48-58 (2019). MSC: 65H10 PDF BibTeX XML Cite \textit{Y. Shen} and \textit{T. J. Ypma}, J. Comput. Appl. Math. 345, 48--58 (2019; Zbl 1398.65106) Full Text: DOI
Xu, Hong-Kun Properties of \(\ell_p\)-norm errors in signal recovery. (English) Zbl 07304689 Linear Nonlinear Anal. 4, No. 1, 135-144 (2018). MSC: 94A 47J06 47J25 49N45 PDF BibTeX XML Cite \textit{H.-K. Xu}, Linear Nonlinear Anal. 4, No. 1, 135--144 (2018; Zbl 07304689) Full Text: Link
Bao, Ji-Feng; Guu, Sy-Ming; Wang, Jinhua; Hu, Yaohua; Li, Chong On convergence of a truncated Gauss-Newton method for solving underdetermined nonlinear least squares problems. (English) Zbl 07289982 J. Nonlinear Convex Anal. 19, No. 12, 2235-2246 (2018). MSC: 65K05 93E24 PDF BibTeX XML Cite \textit{J.-F. Bao} et al., J. Nonlinear Convex Anal. 19, No. 12, 2235--2246 (2018; Zbl 07289982) Full Text: Link
Matsushita, Shin-Ya; Xu, Li On the Haugazeau-like projective method for the sum problem. (English) Zbl 07289920 J. Nonlinear Convex Anal. 19, No. 9, 1515-1523 (2018). MSC: 47J25 47H05 PDF BibTeX XML Cite \textit{S.-Y. Matsushita} and \textit{L. Xu}, J. Nonlinear Convex Anal. 19, No. 9, 1515--1523 (2018; Zbl 07289920) Full Text: Link
Ma, Ping; Ding, Feng; Alsaedi, Ahmed; Hayat, Tasawar Recursive least squares identification methods for multivariate pseudo-linear systems using the data filtering. (English) Zbl 1448.94075 Multidimensional Syst. Signal Process. 29, No. 3, 1135-1152 (2018). MSC: 94A12 93E12 93E24 PDF BibTeX XML Cite \textit{P. Ma} et al., Multidimensional Syst. Signal Process. 29, No. 3, 1135--1152 (2018; Zbl 1448.94075) Full Text: DOI
Yuan, Haoliang; Zheng, Junjie; Lai, Loi Lei; Tang, Yuan Yan A constrained least squares regression model. (English) Zbl 1444.62090 Inf. Sci. 429, 247-259 (2018). MSC: 62J02 62H30 PDF BibTeX XML Cite \textit{H. Yuan} et al., Inf. Sci. 429, 247--259 (2018; Zbl 1444.62090) Full Text: DOI
Slabospyts’kyĭ, O. S. Recurrent algorithm for non-stationary parameter estimation by least squares method with least deviations from ‘attraction’ points for bilinear discrete dynamic systems. (Ukrainian. English summary) Zbl 1438.93222 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2018, No. 3, 71-74 (2018). MSC: 93E10 93E24 93C10 PDF BibTeX XML Cite \textit{O. S. Slabospyts'kyĭ}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2018, No. 3, 71--74 (2018; Zbl 1438.93222)
Alhashimi, Anas; Pierobon, Giovanni; Varagnolo, Damiano; Gustafsson, Thomas Modeling and calibrating triangulation Lidars for indoor applications. (English) Zbl 1427.93174 Madani, Kurosh (ed.) et al., Informatics in control, automation and robotics. 13th international conference, ICINCO 2016, Lisbon, Portugal, July 29–31, 2016. Selected, extended and revised papers. Cham: Springer. Lect. Notes Electr. Eng. 430, 342-366 (2018). MSC: 93C95 93C10 62P30 PDF BibTeX XML Cite \textit{A. Alhashimi} et al., Lect. Notes Electr. Eng. 430, 342--366 (2018; Zbl 1427.93174) Full Text: DOI
Danchick, Roy On determining the unknown band-parameter and truncated sinc series coefficients from a time sampled band-limited function. (English) Zbl 1427.94039 Appl. Math. Comput. 334, 60-79 (2018). MSC: 94A12 94A20 65D05 PDF BibTeX XML Cite \textit{R. Danchick}, Appl. Math. Comput. 334, 60--79 (2018; Zbl 1427.94039) Full Text: DOI
Zhuang, E.; Xiong, Xiangtuan; Xue, Xuemin; Ma, Xiaojun Regularization method for solving a backward heat conduction problem based on wavelet shrinkage. (Chinese. English summary) Zbl 1438.65217 Commun. Appl. Math. Comput. 32, No. 4, 831-840 (2018). MSC: 65M30 65M32 35B65 35K05 80A19 35Q79 35R30 65T60 PDF BibTeX XML Cite \textit{E. Zhuang} et al., Commun. Appl. Math. Comput. 32, No. 4, 831--840 (2018; Zbl 1438.65217) Full Text: DOI
Fan, Chengnian; Yan, Litan The least squares estimation on Vasicek interest rate model driven by a symmetric \(\alpha\)-stable motion. (English) Zbl 1438.62043 J. Nat. Sci. Heilongjiang Univ. 35, No. 6, 639-654 (2018). MSC: 62F12 91G30 62P20 60G65 60H10 PDF BibTeX XML Cite \textit{C. Fan} and \textit{L. Yan}, J. Nat. Sci. Heilongjiang Univ. 35, No. 6, 639--654 (2018; Zbl 1438.62043) Full Text: DOI