×

Applying numerical continuation to the parameter dependence of solutions of the Schrödinger equation. (English) Zbl 1190.65190

Summary: In molecular reactions at the microscopic level, the appearance of resonances has an important influence on the reactivity. It is important to predict when a bound state transitions into a resonance and how these transitions depend on various system parameters such as internuclear distances. The dynamics of such systems are described by the time-independent Schrödinger equation and the resonances are modeled by poles of the \(S\)-matrix.
Using numerical continuation methods and bifurcation theory, techniques which find their roots in the study of dynamical systems, we are able to develop efficient and robust methods to study the transitions of bound states into resonances. By applying H. B. Keller’s pseudo-arclength continuation [Application of bifurcation theory, Proc. adv. Semin., Madison/Wis. 1976, 359–384 (1977; Zbl 0581.65043)], we can minimize the numerical complexity of our algorithm. As continuation methods generally assume smooth and well-behaving functions and the \(S\)-matrix is neither, special care has been taken to ensure accurate results.
We have successfully applied our approach in a number of model problems involving the radial Schrödinger equation.

MSC:

65P30 Numerical bifurcation problems
65H20 Global methods, including homotopy approaches to the numerical solution of nonlinear equations
65Y20 Complexity and performance of numerical algorithms
37M20 Computational methods for bifurcation problems in dynamical systems
81U20 \(S\)-matrix theory, etc. in quantum theory

Citations:

Zbl 0581.65043
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Keller, H. B., Numerical solution of bifurcation and nonlinear eigenvalue problems, (Rabinowitz, P. H., Applications of Bifurcation Theory (1977)), 159-384 · Zbl 0581.65043
[2] Allgower, E. L.; Georg, K., Continuation and path following, Acta Numerica, 1, 1-64 (1992) · Zbl 0792.65034
[3] Doedel, E. J., Lecture notes on numerical analysis of nonlinear equations, (Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems (2007), Springer-Verlag: Springer-Verlag Dordrecht), 51-75
[4] (Krauskopf, B.; Osinga, H. M.; Galàn-Vioque, J., Numerical Continuation Methods for Dynamical Systems (2007), Springer) · Zbl 1117.65005
[5] Pruess, S.; Fulton, C., Mathematical software for Sturm-Liouville problems, ACM Transactions on Mathematical Software, 19, 3, 360-376 (1993) · Zbl 0890.65087
[6] Ledoux, V.; VanDaele, M.; Berghe, G., Matslise: A matlab package for the numerical solution of Sturm-Liouville and Schrödinger equations, ACM Transactions on Mathematical Software, 31, 532 (2005) · Zbl 1136.65327
[7] Taylor, J. R., Scattering Theory: The Quantum Theory of Nonrelativistic Collisions (2006), Dover Publications, Inc.: Dover Publications, Inc. Mineola, New York
[8] Newton, R. G., (Scattering Theory of Waves and Particles. Scattering Theory of Waves and Particles, Texts and Monographs in Physics (1982), Springer-Verlag)
[9] Burke, P. G.; Joachain, C. J., Theory of Electron-atom Collisions, Part 1: Potential Scattering (1995), Plenum Press: Plenum Press New York
[10] Keller, H. B.; Doedel, E. J., (Sourcebook of Parallel Computing (2003), Morgan Kaufmann/Elsevier Publishers), 671-700, Ch. Path following in scientific computing and its implementation in AUTO
[11] Deuflhard, P., Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms (2004), Springer · Zbl 1056.65051
[12] Kelley, C., Iterative Methods for Linear and Nonlinear Equations (1995), Society for Industrial and Applied Mathematics · Zbl 0832.65046
[13] (Keller, J. B.; Antman, S., Bifurcation Theory and Nonlinear Eigenvalue Problems (1969), Benjamin: Benjamin New York) · Zbl 0181.00105
[14] Allgower, E. L.; Georg, K., Numerical continuation methods—An introduction, (Springer Series in Computational Mathematics, vol. 13 (1990), Springer-Verlag) · Zbl 0948.65131
[15] Mei, Z., Numerical Bifurcation Analysis for Reaction-Diffusion Equations (2000), Springer · Zbl 0952.65105
[17] Heroux, M. A.; Bartlett, R. A.; Howle, V. E.; Hoekstra, R. J.; Hu, J. J.; Kolda, T. G.; Lehoucq, R. B.; Long, K. R.; Pawlowski, R. P.; Phipps, E. T.; Salinger, A. G.; Thornquist, H. K.; Tuminaro, R. S.; Willenbring, J. M.; Williams, A.; Stanley, K. S., An overview of the trilinos project, ACM Transactions on Mathematical Software, 31, 3, 397-423 (2005) · Zbl 1136.65354
[18] Courant, R.; Hilbert, D., Methods of Mathematical Physics (1966), Interscience Publishers, Inc., a division of John Wiley & Sons · Zbl 0729.35001
[19] Arfken, G.; Weber, H., Mathematical Methods for Physicists (2005), Elsevier · Zbl 1066.00001
[20] Messiah, A. M.L., Quantum Mechanics (1961), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York
[21] Burke, P.; Berrington, K., Atomic and Molecular Processes: An \(R\)-matrix Approach (1993), Institute of Physics Publishing: Institute of Physics Publishing Bristol
[22] Alhaidari, A.; Heller, E.; Yamani, H.; Abdelmonem, M., The \(J\)-matrix Method (2008), Springer
[23] Rescigno, T.; McCurdy, C., Numerical grid methods for quantum-mechanical scattering problems, Physical Review A, 62, 3, 32706 (2000)
[24] Johnson, B., New numerical methods applied to solving the one-dimensional eigenvalue problem, The Journal of Chemical Physics, 67, 4086-4093 (1977)
[25] Sitenko, A. G., Scattering Theory (1991), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1080.78502
[26] Amrein, W. O.; Jauch, J. M.; Sinha, K. B., Scattering Theory in Quantum Mechanics (1977), W.A. Benjamin, Inc.: W.A. Benjamin, Inc. Reading, Massachusetts · Zbl 0376.47001
[27] Newton, R., Connection between the \(s\)-matrix and the tensor force, Physical Review, 100, 1, 412-428 (1955) · Zbl 0066.22503
[28] Blatt, J. M., Practical points concerning the solution of the Schrödinger equation, Journal of Computational Physics, 1, 382-396 (1967) · Zbl 0182.49702
[29] Nussenzveig, H. M., The poles of the \(s\)-matrix of a rectangular potential well or barrier, Nuclear Physics, 11, 499-521 (1959) · Zbl 0094.23001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.