×

The conservative splitting domain decomposition method for multicomponent contamination flows in porous media. (English) Zbl 1453.65305

Summary: In the paper, a new conservative splitting decomposition method (S-DDM) is developed for computing nonlinear multicomponent contamination flows in porous media over multi-block sub-domains. On each block-divided sub-domain, we take three steps to solve the coupled nonlinear system of water-head equation and multicomponent concentration equations in each time interval. The interface Darcy’s velocity and the interface global concentration fluxes are first predicted by the semi-implicit flux schemes, while the solutions of water-head and multicomponent concentrations, Darcy’s velocity and global concentration fluxes in the interiors of sub-domains are computed by one-directional splitting implicit solution-flux coupled schemes on staggered meshes, and finally the interface Darcy velocity and global concentration fluxes are corrected by the interior solutions. The significance of our scheme is that while it keeps the advantages of the non-overlapping domain decomposition and the splitting technique, it preserves mass on the whole domain of domain decompositions. Numerical experiments are presented to illustrate the excellent performance of our proposed conservative S-DDM approach for computing nonlinear multicomponent contamination flows in groundwater. The developed algorithm of the conservative S-DDM works efficiently over multiple block-divided sub-domains, which can be applied in simulation of large scale multicomponent contamination flows in parallel computing.

MSC:

65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
76T06 Liquid-liquid two component flows
86A05 Hydrology, hydrography, oceanography
76T30 Three or more component flows
76V05 Reaction effects in flows

Software:

CHEPROO; TOUGHREACT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bea, S.; Carrera, J.; Ayora, C.; Batlle, F.; Saaltink, M., CHEPROO: a Fortran 90 object-oriented module to solve chemical processes in Earth science models, Comput. Geosci., 36, 1098-1112 (2009)
[2] Bekins, B.; Rittmann, B.; MaDonald, J., Natural attenuation strategy for ground water cleanup focuses on demonstrating cause and effect, Eos Trans. AGU, 82, 53-58 (2001)
[3] Bonbendir, Y.; Antonie, X.; Geuzaine, C., A quasi-optimal non-overlapping domain decomposition algorithm for Helmholtz equations, J. Comput. Phys., 231, 262-280 (2012) · Zbl 1243.65144
[4] Chou, L.; Garrels, M.; Wollast, R., Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals, Chem. Geol., 78, 269-282 (1989)
[5] Dawson, C. N.; Dupont, T. F., Explicit/implicit conservative domain decomposition procedures for parabolic problems based on block centered finite differences, SIAM J. Numer. Anal., 31, 1045-1061 (1994) · Zbl 0806.65093
[6] Dawson, C. N.; Du, Q.; Dupont, T. F., A finite difference domain decomposition algorithm for numerical solution of heat equations, Math. Comput., 57, 63-71 (1991) · Zbl 0732.65091
[7] Dryja, M.; Tu, X., A domain decomposition discretization of parabolic problems, Numer. Math., 107, 625-640 (2007) · Zbl 1130.65097
[8] Du, C.; Liang, D., An efficient S-DDM iterative approach for compressible contamination fluid flows in porous media, J. Comput. Phys., 229, 4501-4521 (2010) · Zbl 1305.76074
[9] Du, Q.; Mu, M.; Wu, Z., Efficient parallel algorithms for parabolic problems, SIAM J. Numer. Anal., 39, 1469-1487 (2001) · Zbl 1013.65090
[10] Freedman, V.; Ibaraki, M., Effects of chemical reactions on density-dependent fluid flow: on the numerical formulation and the development of instabilities, Adv. Water Resour., 25, 439-453 (2002)
[11] Graf, T.; Therrien, R., Variable-density groundwater flow and solute transport in porous media containing nonuniform discrete fractures, Adv. Water Resour., 28, 1351-1367 (2005)
[12] Graf, T.; Therrien, R., Coupled thermohaline groundwater flow and single-species reactive solute transport in porous media, Adv. Water Resour., 30, 742-771 (2007)
[13] Hayek, M.; Kosakowski, G.; Jakob, A.; Churakov, V., A class of analytical solutions for multidimensional multispecies diffusive transport coupled with precipitation-dissolution reactions and porosity changes, Water Resour. Res., 48, Article W03525 pp. (2012)
[14] Henderson, H.; Mayer, K.; Parker, L.; Al, A., Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate, J. Contam. Hydrol., 106, 195-211 (2009)
[15] Inskeep, W.; Bloom, P., An evaluation of rate equation for calcite precipitation kinetics at \(P_{CO_2}\) less than 0.01 atm and pH greater than 8, Geochim. Cosmochim. Acta, 49, 2165-2180 (1985)
[16] Jansen, H.; Zeebe, R.; Wolf-Gladrow, D., Modeling the dissolution of settling \(\text{CaCO}_3\) in the ocean, Glob. Biogeochem. Cycles, 16 (2002)
[17] Kanney, J.; Miller, C.; Barry, D., Comparison of fully coupled approaches for approximating nonlinear transport and reaction problems, Adv. Water Resour., 26, 353-372 (2003)
[18] Kirkner, D.; Reeves, H., Multicomponent mass transport with homogeneous and heterogeneous chemical reactions: effect of the chemistry on the choice of numerical algorithm 1. Theory, Water Resour. Res., 24, 1719-1729 (1988)
[19] Lanser, D.; Verwer, J. G., Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling, J. Comput. Appl. Math., 111, 201-216 (1999) · Zbl 0949.65090
[20] Lasaga, A., Kinetic Theory in the Earth Sciences (1998), Princeton Univ. Press: Princeton Univ. Press Princeton, N.J.
[21] Lazarov, R.; Mishev, I.; Vassilevski, P., Finite volume methods for convection-diffusion problems, SIAM J. Numer. Anal., 33, 31-55 (1996) · Zbl 0847.65075
[22] Li, L.; Steefel, C.; Yang, L., Scale dependence of mineral dissolution rates within single pores and fractures, Geochim. Cosmochim. Acta, 72, 360-377 (2008)
[23] Liang, D.; Du, C., An efficient S-DDM scheme and its analysis for solving parabolic equations, J. Comput. Phys., 272, 46-69 (2014) · Zbl 1349.76499
[24] Lichtner, P., Modeling of Reactive Flow and Transport in Natural Systems (1996), Paper presented at the Rome Seminar on Environmental Geochemistry, Castelnuovo di Porto, Rome
[25] Liang, D.; Zhao, W., An optimal weighted upwind covolume method on non-standard grids for convection-diffusion problems in 2D, Int. J. Numer. Methods Eng., 67, 553-577 (2006) · Zbl 1110.76321
[26] Lions, P., On the Schwarz alternating method I, (Glowinski, R.; Golub, G.; Meurant, G.; Periaux, J., Proceeding of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations. Proceeding of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations, Paris, 1987 (1988), SIAM: SIAM Philadelphia, USA), 1-42 · Zbl 0658.65090
[27] Lions, P., On the Schwarz alternating method II, (Chan, T.; Glowinski, R.; Periaux, J.; Wildlund, O., Proceeding of the Second International Symposium on Domain Decomposition Methods for Partial Differential Equations. Proceeding of the Second International Symposium on Domain Decomposition Methods for Partial Differential Equations, Los Angeles, 1988 (1988), SIAM: SIAM Philadelphia, USA), 47-70 · Zbl 0681.65072
[28] Liu, C.; Narasimhan, T., Redox-controlled multiple-species reactive chemical transport 1. Model development, Water Resour. Res., 25, 869-882 (1989)
[29] Mayer, K.; Emil, O.; David, W., Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation kinetically controlled reactions, Water Resour. Res., 38, 1174 (2002)
[30] Mao, X.; Prommer, H.; Barry, D.; Langevin, C.; Panteleit, B.; Li, L., Three-dimensional model for multi-component reactive transport with variable density groundwater flow, Environ. Model. Softw., 21, 615-628 (2006)
[31] Rivera, W.; Zhu, J.; Huddleston, D., An efficient parallel algorithm with application to computational fluid dynamics, J. Comput. Math. Appl., 45, 165-188 (2003) · Zbl 1035.65096
[32] Saaltink, M.; Ayora, C.; Carrera, J., On the behavior of approaches to simulate reactive transport, J. Contam. Hydrol., 48, 213-235 (2001)
[33] Sanchez-Vila, X.; Donado, L.; Guadagnini, A.; Carrera, J., A solution for multicomponent reactive transport under equilibrium and kinetic reactions, Water Resour. Res., 46, Article W07359 pp. (2010)
[34] Sheng, Z.; Yuan, G.; Hang, X., Unconditional stability of parallel difference schemes with second order accuracy for parabolic equation, Appl. Math. Comput., 184, 1015-1031 (2007) · Zbl 1121.65096
[35] Shi, H.; Liao, H., Unconditional stability of corrected explicit/implicit domain decomposition algorithms for parallel approximation of heat equations, SIAM J. Numer. Anal., 44, 1584-1611 (2006) · Zbl 1125.65087
[36] Simpson, M.; Clement, T., Theoretical analysis of the worthiness of Henry and Elder problems as benchmarks of density dependent groundwater flow models, Adv. Water Resour., 26, 17-31 (1995)
[37] Toselli, A.; Widlund, O., Domain Decomposition Methods-Algorithms and Theory (2005), Springer · Zbl 1069.65138
[38] Tran, M., Overlapping optimized Schwarz methods for parabolic equations in n-dimensions, Proc. Am. Math. Soc., 141, 1627-1640 (2013) · Zbl 1263.35124
[39] Vabishchevich, P., Domain decomposition methods with overlapping subdomains for the time-dependent problems of mathematical physics, Comput. Methods Appl. Math., 8, 393-405 (2008) · Zbl 1156.65084
[40] Walter, A.; Frind, E.; Blowes, D.; Ptacek, C.; Molson, J., Modeling of multicomponent reactive transport in groundwater 1. Model development and evaluation, Water Resour. Res., 30, 3137-3148 (1994)
[41] Walter, A.; Frind, E.; Blowes, D.; Ptacek, C.; Molson, J., Modeling of multicomponent reactive transport in groundwater 2. Metal mobility in aquifers impacted by acidic mine tailings discharge, Water Resour. Res., 30, 3149-3158 (1994)
[42] Xu, T.; Sonnenthal, E.; Spycher, N.; Pruess, K., TOUGHREACT user’s guide: a simulation program for non-isothermal multiphase reactive geochemcial transport in variably saturated geologic media: applications to geothermal injectivity and \(\text{CO}_2\) geological sequestration, Comput. Geosci., 32, 145-165 (2006)
[43] Zhang, H.; Schwartz, F.; Wood, W.; Garabedian, S.; LeBlanc, D., Simulation of variable-density flow and transport of reactive and non-reactive solutes during a tracer test at Cape Cod, Massachusetts, Water Resour. Res., 34, 67-82 (1998)
[44] Zheng, Z.; Simenon, B.; Petzold, L., A stabilized explicit Lagrange multiplier based domain decomposition method for parabolic problems, J. Comput. Phys., 227, 5272-5285 (2008) · Zbl 1142.65076
[45] Zhou, Z.; Liang, D., The mass-preserving S-DDM scheme for two-dimensional parabolic equations, Commun. Comput. Phys., 19, 411-441 (2016) · Zbl 1388.65073
[46] Zhu, S., Conservative domain decomposition procedure with unconditional stability and second-order accuracy, Appl. Math. Comput., 216, 3275-3282 (2010) · Zbl 1197.65134
[47] Zhu, L.; Yuan, G.; Du, Q., An explicit-implicit predictor-corrector domain decomposition method for time dependent multi-dimensional convection diffusion equations, Numer. Math. Theor. Meth. Appl., 2, 1-25 (2009)
[48] Zhuang, Y.; Sun, X., Stabilitized explicit-implicit domain decomposition methods for the numerical solution of parabolic equations, SIAM J. Sci. Comput., 24, 335-358 (2002) · Zbl 1013.65106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.