Al-Sultani, Mohamed; Boglaev, Igor Numerical solution of nonlinear parabolic systems by block monotone methods. (English) Zbl 07531722 J. Comput. Appl. Math. 412, Article ID 114282, 21 p. (2022). MSC: 65Mxx 35Kxx 65Nxx PDF BibTeX XML Cite \textit{M. Al-Sultani} and \textit{I. Boglaev}, J. Comput. Appl. Math. 412, Article ID 114282, 21 p. (2022; Zbl 07531722) Full Text: DOI OpenURL
Taheri, Ali; Vahidifar, Vahideh On multiple solutions to a family of nonlinear elliptic systems in divergence form coupled with an incompressibility constraint. (English) Zbl 07531080 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 221, Article ID 112889, 21 p. (2022). MSC: 35Jxx 58J60 58J35 60J60 PDF BibTeX XML Cite \textit{A. Taheri} and \textit{V. Vahidifar}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 221, Article ID 112889, 21 p. (2022; Zbl 07531080) Full Text: DOI OpenURL
Zeng, Shengda; Motreanu, Dumitru; Khan, Akhtar A. Evolutionary quasi-variational-hemivariational inequalities. I: Existence and optimal control. (English) Zbl 07528375 J. Optim. Theory Appl. 193, No. 1-3, 950-970 (2022). MSC: 47J20 58Exx 35Kxx 34H05 49J52 74B20 PDF BibTeX XML Cite \textit{S. Zeng} et al., J. Optim. Theory Appl. 193, No. 1--3, 950--970 (2022; Zbl 07528375) Full Text: DOI OpenURL
Chen, Wenbin; Liu, Qianqian; Shen, Jie Error estimates and blow-up analysis of a finite-element approximation for the parabolic-elliptic Keller-Segel system. (English) Zbl 07524471 Int. J. Numer. Anal. Model. 19, No. 2-3, 275-298 (2022). MSC: 65M60 65M12 65M15 35K61 35K55 92C17 PDF BibTeX XML Cite \textit{W. Chen} et al., Int. J. Numer. Anal. Model. 19, No. 2--3, 275--298 (2022; Zbl 07524471) Full Text: Link OpenURL
Deruelle, Alix; Schulze, Felix; Simon, Miles On the regularity of Ricci flows coming out of metric spaces. (English) Zbl 07523080 J. Eur. Math. Soc. (JEMS) 24, No. 7, 2233-2277 (2022). MSC: 53E20 53C23 58J35 35B45 35K40 35K55 PDF BibTeX XML Cite \textit{A. Deruelle} et al., J. Eur. Math. Soc. (JEMS) 24, No. 7, 2233--2277 (2022; Zbl 07523080) Full Text: DOI OpenURL
Asheghi, Rasoul Hopf bifurcation in a diffusive predator-prey model with a square-root singularity. (English) Zbl 07522890 Topol. Methods Nonlinear Anal. 59, No. 1, 193-220 (2022). MSC: 35B32 35K51 35K57 92D25 70K50 PDF BibTeX XML Cite \textit{R. Asheghi}, Topol. Methods Nonlinear Anal. 59, No. 1, 193--220 (2022; Zbl 07522890) Full Text: DOI OpenURL
Manna, Kalyan; Banerjee, Malay Spatiotemporal pattern formation in a prey-predator model with generalist predator. (English) Zbl 07512755 Math. Model. Nat. Phenom. 17, Paper No. 6, 25 p. (2022). MSC: 35B36 35C07 35K51 35K57 37G15 92C15 PDF BibTeX XML Cite \textit{K. Manna} and \textit{M. Banerjee}, Math. Model. Nat. Phenom. 17, Paper No. 6, 25 p. (2022; Zbl 07512755) Full Text: DOI OpenURL
Benabdallah, Abdallah; Dlala, Mohsen Rapid exponential stabilization by boundary state feedback for a class of coupled nonlinear ODE and \(1-d\) heat diffusion equation. (English) Zbl 07512218 Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1085-1102 (2022). MSC: 35B40 35K20 35K57 93C10 93D15 93B30 PDF BibTeX XML Cite \textit{A. Benabdallah} and \textit{M. Dlala}, Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1085--1102 (2022; Zbl 07512218) Full Text: DOI OpenURL
Aissa, Akram Ben Well-posedness and direct internal stability of coupled non-degenrate Kirchhoff system via heat conduction. (English) Zbl 07512213 Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 983-993 (2022). MSC: 35B40 35B45 35G61 35K58 35L71 35R09 PDF BibTeX XML Cite \textit{A. B. Aissa}, Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 983--993 (2022; Zbl 07512213) Full Text: DOI OpenURL
Hausenblas, Erika; Panda, Akash Ashirbad The stochastic Gierer-Meinhardt system. (English) Zbl 07511782 Appl. Math. Optim. 85, No. 2, Paper No. 11, 49 p. (2022). MSC: 60H15 35A08 35D30 35G25 35K55 92C15 60G57 35Q92 35K45 92C40 35K57 47H10 92B05 PDF BibTeX XML Cite \textit{E. Hausenblas} and \textit{A. A. Panda}, Appl. Math. Optim. 85, No. 2, Paper No. 11, 49 p. (2022; Zbl 07511782) Full Text: DOI OpenURL
Baird, Paul; Fardoun, Ali; Regbaoui, Rachid Heat flow for harmonic maps from graphs into Riemannian manifolds. (English) Zbl 07510788 J. Geom. Phys. 176, Article ID 104496, 11 p. (2022). MSC: 37E25 35K55 58J35 PDF BibTeX XML Cite \textit{P. Baird} et al., J. Geom. Phys. 176, Article ID 104496, 11 p. (2022; Zbl 07510788) Full Text: DOI OpenURL
Peletier, Mark A.; Schlottke, Mikola C. Gamma-convergence of a gradient-flow structure to a non-gradient-flow structure. (English) Zbl 07510383 Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 103, 44 p. (2022). MSC: 35B25 35B27 35K15 35K57 35K67 35R06 37L05 60H10 60F10 70G75 PDF BibTeX XML Cite \textit{M. A. Peletier} and \textit{M. C. Schlottke}, Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 103, 44 p. (2022; Zbl 07510383) Full Text: DOI OpenURL
Zhang, Yuejin; Yin, Guanxiang; Ye, Mengqiu; Liu, Qi; Tu, Botao; Li, Guanghui; Zhan, Aiyun Stereo vision information system using median theorem and attitude compensation with nonlinear differential equations. (English) Zbl 07507557 Fractals 30, No. 2, Article ID 2240073, 12 p. (2022). MSC: 65Mxx 34Kxx 35Kxx PDF BibTeX XML Cite \textit{Y. Zhang} et al., Fractals 30, No. 2, Article ID 2240073, 12 p. (2022; Zbl 07507557) Full Text: DOI OpenURL
Wang, Fuzhang; Khan, Muhammad Nawaz; Ahmad, Imtiaz; Ahmad, Hijaz; Abu-Zinadah, Hanaa; Chu, Yu-Ming Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. (English) Zbl 07507535 Fractals 30, No. 2, Article ID 2240051, 11 p. (2022). MSC: 65Mxx 35Kxx 35Cxx PDF BibTeX XML Cite \textit{F. Wang} et al., Fractals 30, No. 2, Article ID 2240051, 11 p. (2022; Zbl 07507535) Full Text: DOI OpenURL
Jüngel, Ansgar; Zamponi, Nicola Analysis of a fractional cross-diffusion system for multi-species populations. (English) Zbl 07503649 J. Differ. Equations 322, 237-267 (2022). MSC: 35R11 35D30 35K45 35K55 35K57 35Q92 35R11 PDF BibTeX XML Cite \textit{A. Jüngel} and \textit{N. Zamponi}, J. Differ. Equations 322, 237--267 (2022; Zbl 07503649) Full Text: DOI OpenURL
Galiano, Gonzalo; Velasco, Julián Convergence of solutions of a rescaled evolution nonlocal cross-diffusion problem to its local diffusion counterpart. (English) Zbl 07502859 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 3, Paper No. 93, 17 p. (2022). MSC: 45K05 35K55 45G15 PDF BibTeX XML Cite \textit{G. Galiano} and \textit{J. Velasco}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 3, Paper No. 93, 17 p. (2022; Zbl 07502859) Full Text: DOI OpenURL
Liu, Aichao; Dai, Binxiang Boundedness of solutions in a fully parabolic quasilinear chemotaxis model with two species and two chemicals. (English) Zbl 07500301 Taiwanese J. Math. 26, No. 2, 285-315 (2022). Reviewer: Neng Zhu (Nanchang) MSC: 35A01 35K51 35K55 92C17 PDF BibTeX XML Cite \textit{A. Liu} and \textit{B. Dai}, Taiwanese J. Math. 26, No. 2, 285--315 (2022; Zbl 07500301) Full Text: DOI OpenURL
Cavalcanti, Marcelo M. Existence and mathematical analysis of a coupled nonlinear system. (English) Zbl 07499496 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 219, Article ID 112830, 17 p. (2022). MSC: 35G55 35K59 35K90 35L90 35R09 PDF BibTeX XML Cite \textit{M. M. Cavalcanti}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 219, Article ID 112830, 17 p. (2022; Zbl 07499496) Full Text: DOI OpenURL
Liu, Chao; Liu, Bin Boundedness in a quasilinear two-species chemotaxis system with nonlinear sensitivity and nonlinear signal secretion. (English) Zbl 07496397 J. Differ. Equations 320, 206-246 (2022). Reviewer: Yuanyuan Ke (Beijing) MSC: 35B45 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{C. Liu} and \textit{B. Liu}, J. Differ. Equations 320, 206--246 (2022; Zbl 07496397) Full Text: DOI OpenURL
Zheng, Jiashan Global existence and boundedness in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. (English) Zbl 07495335 Ann. Mat. Pura Appl. (4) 201, No. 1, 243-288 (2022). MSC: 35D30 35K51 35K59 35Q35 92C17 PDF BibTeX XML Cite \textit{J. Zheng}, Ann. Mat. Pura Appl. (4) 201, No. 1, 243--288 (2022; Zbl 07495335) Full Text: DOI OpenURL
Kita, Kosuke; Ôtani, Mitsuharu On a comparison theorem for parabolic equations with nonlinear boundary conditions. (English) Zbl 07493804 Adv. Nonlinear Anal. 11, 1165-1181 (2022). MSC: 35B51 35B44 35K51 35K57 35K61 PDF BibTeX XML Cite \textit{K. Kita} and \textit{M. Ôtani}, Adv. Nonlinear Anal. 11, 1165--1181 (2022; Zbl 07493804) Full Text: DOI arXiv OpenURL
Bin, Chen; Timoshin, Sergey A. Periodic solutions of a phase-field model with hysteresis. (English) Zbl 07490289 Appl. Math. Optim. 85, No. 1, 1-17 (2022). MSC: 35B10 35K51 35K58 35R70 PDF BibTeX XML Cite \textit{C. Bin} and \textit{S. A. Timoshin}, Appl. Math. Optim. 85, No. 1, 1--17 (2022; Zbl 07490289) Full Text: DOI arXiv OpenURL
Luo, Yongming On the local in time well-posedness of an elliptic-parabolic ferroelectric phase-field model. (English) Zbl 07488945 Nonlinear Anal., Real World Appl. 65, Article ID 103462, 30 p. (2022). MSC: 35Qxx 35K61 35B65 35J47 PDF BibTeX XML Cite \textit{Y. Luo}, Nonlinear Anal., Real World Appl. 65, Article ID 103462, 30 p. (2022; Zbl 07488945) Full Text: DOI arXiv OpenURL
Zheng, Jiashan Eventual smoothness and stabilization in a three-dimensional Keller-Segel-Navier-Stokes system with rotational flux. (English) Zbl 07488389 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 52, 34 p. (2022). MSC: 35B40 35B65 35K51 35K59 35Q30 92C17 PDF BibTeX XML Cite \textit{J. Zheng}, Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 52, 34 p. (2022; Zbl 07488389) Full Text: DOI arXiv OpenURL
Ćwiszewski, Aleksander; Gabor, Grzegorz; Kryszewski, Wojciech Invariance and strict invariance for nonlinear evolution problems with applications. (English) Zbl 07482277 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 218, Article ID 112756, 32 p. (2022). MSC: 37L05 47H06 47J35 35K91 PDF BibTeX XML Cite \textit{A. Ćwiszewski} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 218, Article ID 112756, 32 p. (2022; Zbl 07482277) Full Text: DOI arXiv OpenURL
Kawashima, Shuichi; Shibata, Yoshihiro; Xu, Jiang Dissipative structure for symmetric hyperbolic-parabolic systems with Korteweg-type dispersion. (English) Zbl 07481876 Commun. Partial Differ. Equations 47, No. 2, 378-400 (2022). MSC: 35G50 35B40 35Q35 35Q53 PDF BibTeX XML Cite \textit{S. Kawashima} et al., Commun. Partial Differ. Equations 47, No. 2, 378--400 (2022; Zbl 07481876) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Caraballo, Tomás; Van, Phan Thi Khanh; Au, Vo Van On a terminal value problem for parabolic reaction-diffusion systems with nonlocal coupled diffusivity terms. (English) Zbl 1483.35336 Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106248, 29 p. (2022). MSC: 35R25 35R30 35K51 35K57 35R09 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106248, 29 p. (2022; Zbl 1483.35336) Full Text: DOI OpenURL
Bounadja, Hizia; Khader, Maisa Optimal decay rate for the Cauchy problem of the standard linear solid model with Gurtin-Pipkin thermal law. (English) Zbl 1483.35025 J. Math. Anal. Appl. 509, No. 2, Article ID 125844, 22 p. (2022). MSC: 35B40 35G55 74F05 PDF BibTeX XML Cite \textit{H. Bounadja} and \textit{M. Khader}, J. Math. Anal. Appl. 509, No. 2, Article ID 125844, 22 p. (2022; Zbl 1483.35025) Full Text: DOI OpenURL
Liu, Qingqing; Peng, Hongyun; Wang, Zhi-An Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling vasculogenesis. (English) Zbl 1483.35035 J. Differ. Equations 314, 251-286 (2022). MSC: 35B40 35B45 35G55 35K57 92C17 PDF BibTeX XML Cite \textit{Q. Liu} et al., J. Differ. Equations 314, 251--286 (2022; Zbl 1483.35035) Full Text: DOI arXiv OpenURL
Jaquette, Jonathan; Lessard, Jean-Philippe; Takayasu, Akitoshi Singularities and heteroclinic connections in complex-valued evolutionary equations with a quadratic nonlinearity. (English) Zbl 1483.35119 Commun. Nonlinear Sci. Numer. Simul. 107, Article ID 106188, 14 p. (2022). MSC: 35K58 35K20 35B44 37C29 PDF BibTeX XML Cite \textit{J. Jaquette} et al., Commun. Nonlinear Sci. Numer. Simul. 107, Article ID 106188, 14 p. (2022; Zbl 1483.35119) Full Text: DOI arXiv OpenURL
Berselli, Luigi C.; Růžička, Michael Space-time discretization for nonlinear parabolic systems with \(p\)-structure. (English) Zbl 07465498 IMA J. Numer. Anal. 42, No. 1, 260-299 (2022). MSC: 65-XX PDF BibTeX XML Cite \textit{L. C. Berselli} and \textit{M. Růžička}, IMA J. Numer. Anal. 42, No. 1, 260--299 (2022; Zbl 07465498) Full Text: DOI arXiv OpenURL
Furtat, Igor; Gushchin, Pavel Sampled-data in space nonlinear control of scalar semilinear parabolic and hyperbolic systems. (English) Zbl 1481.93074 J. Franklin Inst. 359, No. 2, 1176-1193 (2022). MSC: 93C57 93C10 93C20 35K58 35L71 PDF BibTeX XML Cite \textit{I. Furtat} and \textit{P. Gushchin}, J. Franklin Inst. 359, No. 2, 1176--1193 (2022; Zbl 1481.93074) Full Text: DOI OpenURL
Jin, Shi; Li, Lei On the mean field limit of the random batch method for interacting particle systems. (English) Zbl 1481.65018 Sci. China, Math. 65, No. 1, 169-202 (2022). MSC: 65C20 34F05 35K55 PDF BibTeX XML Cite \textit{S. Jin} and \textit{L. Li}, Sci. China, Math. 65, No. 1, 169--202 (2022; Zbl 1481.65018) Full Text: DOI arXiv OpenURL
Hu, Mingshang; Jiang, Lianzi; Wang, Falei An averaging principle for nonlinear parabolic PDEs via FBSDEs driven by \(G\)-Brownian motion. (English) Zbl 07461311 J. Math. Anal. Appl. 508, No. 2, Article ID 125893, 22 p. (2022). MSC: 60Hxx 35Kxx 35Bxx PDF BibTeX XML Cite \textit{M. Hu} et al., J. Math. Anal. Appl. 508, No. 2, Article ID 125893, 22 p. (2022; Zbl 07461311) Full Text: DOI OpenURL
Liu, Zhengguang; Li, Xiaoli Step-by-step solving schemes based on scalar auxiliary variable and invariant energy quadratization approaches for gradient flows. (English) Zbl 1481.65195 Numer. Algorithms 89, No. 1, 65-86 (2022). MSC: 65M70 65M06 65N35 65M12 35K20 35K35 35K55 35K41 65Z05 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{X. Li}, Numer. Algorithms 89, No. 1, 65--86 (2022; Zbl 1481.65195) Full Text: DOI arXiv OpenURL
Dai, Feng; Liu, Bin Global boundedness for a \(N\)-dimensional two species cancer invasion haptotaxis model with tissue remodeling. (English) Zbl 1480.35070 Discrete Contin. Dyn. Syst., Ser. B 27, No. 1, 311-341 (2022). MSC: 35B45 35K51 35K55 35A01 35A09 92C17 PDF BibTeX XML Cite \textit{F. Dai} and \textit{B. Liu}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 1, 311--341 (2022; Zbl 1480.35070) Full Text: DOI OpenURL
Yebdri, Mustapha Existence of \(\mathcal{D}\)-pullback attractor for an infinite dimensional dynamical system. (English) Zbl 1480.35058 Discrete Contin. Dyn. Syst., Ser. B 27, No. 1, 167-198 (2022). MSC: 35B41 35K55 37L30 PDF BibTeX XML Cite \textit{M. Yebdri}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 1, 167--198 (2022; Zbl 1480.35058) Full Text: DOI OpenURL
Sharma, Vandana; Prajapat, Jyotshana V. Global existence of solutions to reaction diffusion systems with mass transport type boundary conditions on an evolving domain. (English) Zbl 1480.35283 Discrete Contin. Dyn. Syst. 42, No. 1, 109-135 (2022). MSC: 35K51 35K57 35K61 35B45 35R37 PDF BibTeX XML Cite \textit{V. Sharma} and \textit{J. V. Prajapat}, Discrete Contin. Dyn. Syst. 42, No. 1, 109--135 (2022; Zbl 1480.35283) Full Text: DOI arXiv OpenURL
Eden, Michael; Nikolopoulos, Christos; Muntean, Adrian A multiscale quasilinear system for colloids deposition in porous media: weak solvability and numerical simulation of a near-clogging scenario. (English) Zbl 1479.35222 Nonlinear Anal., Real World Appl. 63, Article ID 103408, 29 p. (2022). MSC: 35D30 35K51 35K59 65M06 76S05 PDF BibTeX XML Cite \textit{M. Eden} et al., Nonlinear Anal., Real World Appl. 63, Article ID 103408, 29 p. (2022; Zbl 1479.35222) Full Text: DOI arXiv OpenURL
Chin, Pius W. M. The analysis of an efficient numerical scheme for the Allen-Cahn equations using the Galerkin method. (English) Zbl 07443073 Commun. Nonlinear Sci. Numer. Simul. 105, Article ID 106061, 14 p. (2022). MSC: 65Mxx 65Lxx 35Kxx PDF BibTeX XML Cite \textit{P. W. M. Chin}, Commun. Nonlinear Sci. Numer. Simul. 105, Article ID 106061, 14 p. (2022; Zbl 07443073) Full Text: DOI OpenURL
Garcke, Harald; Knopf, Patrik; Yayla, Sema Long-time dynamics of the Cahn-Hilliard equation with kinetic rate dependent dynamic boundary conditions. (English) Zbl 1479.35094 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 215, Article ID 112619, 44 p. (2022). MSC: 35B40 35B41 35K35 35K61 35K58 35Q92 37L30 PDF BibTeX XML Cite \textit{H. Garcke} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 215, Article ID 112619, 44 p. (2022; Zbl 1479.35094) Full Text: DOI arXiv OpenURL
Zhou, Yong; Ahmad, Bashir; Alsaedi, Ahmed Theory of fractional evolution equations. (English) Zbl 07438188 Fractional Calculus in Applied Sciences and Engineering 11. Berlin: De Gruyter (ISBN 978-3-11-076918-0/hbk; 978-3-11-076927-2/ebook). xv, 323 p. (2022). MSC: 34-01 35-01 34A08 35R11 37L05 34G20 35K90 35L90 35R20 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Theory of fractional evolution equations. Berlin: De Gruyter (2022; Zbl 07438188) Full Text: DOI OpenURL
Avila-Vales, Eric; Pérez, Ángel G. C. Dynamics of a reaction-diffusion SIRS model with general incidence rate in a heterogeneous environment. (English) Zbl 1478.35128 Z. Angew. Math. Phys. 73, No. 1, Paper No. 9, 23 p. (2022). MSC: 35K57 35B32 35B40 35K51 92D30 PDF BibTeX XML Cite \textit{E. Avila-Vales} and \textit{Á. G. C. Pérez}, Z. Angew. Math. Phys. 73, No. 1, Paper No. 9, 23 p. (2022; Zbl 1478.35128) Full Text: DOI OpenURL
Liang, Bo; Li, Qingchun; Zhang, Jihong; Wang, Ying Existence of solutions to a doubly degenerate fourth-order parabolic equation. (English) Zbl 07427473 Appl. Math. Comput. 413, Article ID 126650, 10 p. (2022). MSC: 35G20 35G30 35G61 PDF BibTeX XML Cite \textit{B. Liang} et al., Appl. Math. Comput. 413, Article ID 126650, 10 p. (2022; Zbl 07427473) Full Text: DOI OpenURL
Pérez, Aroldo; Villa-Morales, José A numerical scheme for the blow-up time of solutions of a system of nonlinear ordinary differential equations. (English) Zbl 07418846 Appl. Numer. Math. 171, 442-452 (2022). MSC: 65Mxx 35Kxx 65Lxx PDF BibTeX XML Cite \textit{A. Pérez} and \textit{J. Villa-Morales}, Appl. Numer. Math. 171, 442--452 (2022; Zbl 07418846) Full Text: DOI OpenURL
Chen, Xiao-Li; Gao, Ya; Lu, Wei; Mao, Jing Mean curvature type flows of graphs with nonzero Neumann boundary data in product manifold \(M^n \times \mathbb{R} \). (English) Zbl 1483.53108 J. Math. Anal. Appl. 505, No. 1, Article ID 125631, 12 p. (2022). Reviewer: Shu-Yu Hsu (Chiayi) MSC: 53E10 35B30 35J99 35K55 PDF BibTeX XML Cite \textit{X.-L. Chen} et al., J. Math. Anal. Appl. 505, No. 1, Article ID 125631, 12 p. (2022; Zbl 1483.53108) Full Text: DOI OpenURL
Breit, Dominic; Diening, Lars; Storn, Johannes; Wichmann, Jörn The parabolic \(p\)-Laplacian with fractional differentiability. (English) Zbl 07528300 IMA J. Numer. Anal. 41, No. 3, 2110-2138 (2021). MSC: 65-XX PDF BibTeX XML Cite \textit{D. Breit} et al., IMA J. Numer. Anal. 41, No. 3, 2110--2138 (2021; Zbl 07528300) Full Text: DOI OpenURL
Karapinar, Erdal; Binh, Ho Duy; Luc, Nguyen Hoang; Can, Nguyen Huu On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems. (English) Zbl 07526169 Adv. Difference Equ. 2021, Paper No. 70, 24 p. (2021). MSC: 35K55 35K70 35K92 47A52 47J06 PDF BibTeX XML Cite \textit{E. Karapinar} et al., Adv. Difference Equ. 2021, Paper No. 70, 24 p. (2021; Zbl 07526169) Full Text: DOI OpenURL
Tang, Min; Zhang, Xiaojiang Semi-implicit front capturing schemes for the degenerate nonlinear radiative diffusion equation. (English) Zbl 07513852 J. Comput. Phys. 436, Article ID 110290, 23 p. (2021). MSC: 65Mxx 35Kxx 76Sxx PDF BibTeX XML Cite \textit{M. Tang} and \textit{X. Zhang}, J. Comput. Phys. 436, Article ID 110290, 23 p. (2021; Zbl 07513852) Full Text: DOI OpenURL
Miao, Shuai; Yao, Yanzhong; Lv, Guixia An efficient parallel iteration algorithm for nonlinear diffusion equations with time extrapolation techniques and the Jacobi explicit scheme. (English) Zbl 07513819 J. Comput. Phys. 441, Article ID 110435, 21 p. (2021). MSC: 65Mxx 35Kxx 65Yxx PDF BibTeX XML Cite \textit{S. Miao} et al., J. Comput. Phys. 441, Article ID 110435, 21 p. (2021; Zbl 07513819) Full Text: DOI OpenURL
Chan, W. Y. Simultaneous and non-simultaneous quenching for a coupled semilinear parabolic system in a \(n\)-dimensional ball with singular localized sources. (English) Zbl 07513658 AIMS Math. 6, No. 7, 7704-7718 (2021). MSC: 35K51 35K57 35K58 35K61 35K67 PDF BibTeX XML Cite \textit{W. Y. Chan}, AIMS Math. 6, No. 7, 7704--7718 (2021; Zbl 07513658) Full Text: DOI OpenURL
Alekseev, Gennady V.; Brizitskii, Roman V. Analysis of the boundary value and control problems for nonlinear reaction-diffusion-convection equation. (English) Zbl 07510968 J. Sib. Fed. Univ., Math. Phys. 14, No. 4, 452-462 (2021). MSC: 35Rxx 49Kxx 35Kxx PDF BibTeX XML Cite \textit{G. V. Alekseev} and \textit{R. V. Brizitskii}, J. Sib. Fed. Univ., Math. Phys. 14, No. 4, 452--462 (2021; Zbl 07510968) Full Text: DOI MNR OpenURL
Wu, Xin; Ma, Zhaohai Wave propagation in a diffusive SEIR epidemic model with nonlocal transmission and a general nonlinear incidence rate. (English) Zbl 07509931 Bound. Value Probl. 2021, Paper No. 87, 32 p. (2021). MSC: 35C07 35K40 35K57 92D30 PDF BibTeX XML Cite \textit{X. Wu} and \textit{Z. Ma}, Bound. Value Probl. 2021, Paper No. 87, 32 p. (2021; Zbl 07509931) Full Text: DOI OpenURL
Efendiev, Messoud A.; Muradova, Antiga; Muradov, Nijat; Zischka, Hans Local vs nonlocal models for mitochondria swelling. (English) Zbl 07470530 Adv. Math. Sci. Appl. 30, No. 2, 377-385 (2021). MSC: 35Q92 35K57 35K61 92C37 92C50 92C17 PDF BibTeX XML Cite \textit{M. A. Efendiev} et al., Adv. Math. Sci. Appl. 30, No. 2, 377--385 (2021; Zbl 07470530) Full Text: Link OpenURL
Bulíček, Miroslav; Maringová, Erika; Málek, Josef On nonlinear problems of parabolic type with implicit constitutive equations involving flux. (English) Zbl 07466894 Math. Models Methods Appl. Sci. 31, No. 10, 2039-2090 (2021). MSC: 35D30 35K51 35K55 35J66 47H05 35Q35 35Q74 PDF BibTeX XML Cite \textit{M. Bulíček} et al., Math. Models Methods Appl. Sci. 31, No. 10, 2039--2090 (2021; Zbl 07466894) Full Text: DOI arXiv OpenURL
Guillén-González, F.; Rodríguez-Bellido, M. A.; Rueda-Gómez, D. A. A chemorepulsion model with superlinear production: analysis of the continuous problem and two approximately positive and energy-stable schemes. (English) Zbl 07462017 Adv. Comput. Math. 47, No. 6, Paper No. 87, 38 p. (2021). MSC: 65-XX 35K51 35Q92 65M12 65M60 92C17 PDF BibTeX XML Cite \textit{F. Guillén-González} et al., Adv. Comput. Math. 47, No. 6, Paper No. 87, 38 p. (2021; Zbl 07462017) Full Text: DOI OpenURL
Lebiedzik, Catherine Uniform stability in a vectorial full von Kármán thermoelastic system with solenoidal dissipation and free boundary conditions. (English) Zbl 1481.35057 Evol. Equ. Control Theory 10, No. 4, 767-796 (2021). MSC: 35B40 35G61 74B20 74F05 74K20 35A01 35A02 35Q74 PDF BibTeX XML Cite \textit{C. Lebiedzik}, Evol. Equ. Control Theory 10, No. 4, 767--796 (2021; Zbl 1481.35057) Full Text: DOI OpenURL
Ding, Juntang Blow-up analysis of solutions for weakly coupled degenerate parabolic systems with nonlinear boundary conditions. (English) Zbl 1481.35082 Nonlinear Anal., Real World Appl. 61, Article ID 103315, 12 p. (2021). MSC: 35B44 35B33 35B40 35K51 35K59 35K61 35K92 PDF BibTeX XML Cite \textit{J. Ding}, Nonlinear Anal., Real World Appl. 61, Article ID 103315, 12 p. (2021; Zbl 1481.35082) Full Text: DOI OpenURL
Barbu, Tudor Nonlinear PDE-based models for photon-limited image restoration. (English) Zbl 07455322 Appl. Sci. 23, 5-16 (2021). MSC: 68U10 94A08 93E11 60G35 35A15 35-XX 35Kxx 35K10 35K55 35Lxx 35L70 PDF BibTeX XML Cite \textit{T. Barbu}, Appl. Sci. 23, 5--16 (2021; Zbl 07455322) Full Text: Link OpenURL
Huntul, M. J. Simultaneous reconstruction of time-dependent coefficients in the parabolic equation from over-specification conditions. (English) Zbl 07455161 Results Appl. Math. 12, Article ID 100197, 11 p. (2021). MSC: 65Mxx 35Kxx 35Rxx PDF BibTeX XML Cite \textit{M. J. Huntul}, Results Appl. Math. 12, Article ID 100197, 11 p. (2021; Zbl 07455161) Full Text: DOI OpenURL
Pei, Yuan Regularity and convergence results of the velocity-vorticity-Voigt model of the 3D Boussinesq equations. (English) Zbl 1477.35092 Acta Appl. Math. 176, Paper No. 8, 25 p. (2021). MSC: 35K40 35K61 35Q30 35B40 35B65 76D03 76D05 PDF BibTeX XML Cite \textit{Y. Pei}, Acta Appl. Math. 176, Paper No. 8, 25 p. (2021; Zbl 1477.35092) Full Text: DOI OpenURL
Brzeźniak, Zdzislaw; Deugoué, Gabriel; Razafimandimby, Paul André On the 2D Ericksen-Leslie equations with anisotropic energy and external forces. (English) Zbl 07452667 J. Evol. Equ. 21, No. 4, 3891-3961 (2021). MSC: 35Qxx 35K45 35K55 PDF BibTeX XML Cite \textit{Z. Brzeźniak} et al., J. Evol. Equ. 21, No. 4, 3891--3961 (2021; Zbl 07452667) Full Text: DOI arXiv OpenURL
Palencia, José An invasive-invaded species dynamics with a high order diffusion operator. (English) Zbl 1480.35280 Dyn. Partial Differ. Equ. 18, No. 4, 257-278 (2021). MSC: 35K46 35K55 35K91 35K92 PDF BibTeX XML Cite \textit{J. Palencia}, Dyn. Partial Differ. Equ. 18, No. 4, 257--278 (2021; Zbl 1480.35280) Full Text: DOI OpenURL
Chen, Yuxuan; Han, Jiangbo Global existence and nonexistence for a class of finitely degenerate coupled parabolic systems with high initial energy level. (English) Zbl 1480.35060 Discrete Contin. Dyn. Syst., Ser. S 14, No. 12, 4179-4200 (2021). MSC: 35B44 35D30 35K51 35K55 35K65 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{J. Han}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 12, 4179--4200 (2021; Zbl 1480.35060) Full Text: DOI OpenURL
Guidotti, Patrick; Merino, Sandro On the maximal parameter range of global stability for a nonlocal thermostat model. (English) Zbl 1480.35037 J. Evol. Equ. 21, No. 3, 3205-3241 (2021). MSC: 35B40 35B35 35B41 35K60 93D15 PDF BibTeX XML Cite \textit{P. Guidotti} and \textit{S. Merino}, J. Evol. Equ. 21, No. 3, 3205--3241 (2021; Zbl 1480.35037) Full Text: DOI arXiv OpenURL
Colli, Pierluigi; Signori, Andrea Boundary control problem and optimality conditions for the Cahn-Hilliard equation with dynamic boundary conditions. (English) Zbl 1480.93192 Int. J. Control 94, No. 7, 1852-1869 (2021). MSC: 93C20 35K61 49J20 49K20 49J50 PDF BibTeX XML Cite \textit{P. Colli} and \textit{A. Signori}, Int. J. Control 94, No. 7, 1852--1869 (2021; Zbl 1480.93192) Full Text: DOI arXiv OpenURL
Xie, Chunlei; Du, Runmei Approximate controllability of a class of semilinear degenerate parabolic equations with boundary control functions. (Chinese. English summary) Zbl 07448441 J. Jilin Univ., Sci. 59, No. 3, 563-567 (2021). MSC: 93B05 35K58 35K65 93C20 93C10 PDF BibTeX XML Cite \textit{C. Xie} and \textit{R. Du}, J. Jilin Univ., Sci. 59, No. 3, 563--567 (2021; Zbl 07448441) Full Text: DOI OpenURL
Levashova, N. T.; Tishchenko, B. V. Existence and stability of the solution to a system of two nonlinear diffusion equations in a medium with discontinuous characteristics. (English. Russian original) Zbl 07444580 Comput. Math. Math. Phys. 61, No. 11, 1811-1833 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 11, 1850-1872 (2021). MSC: 35B25 35K51 35K58 PDF BibTeX XML Cite \textit{N. T. Levashova} and \textit{B. V. Tishchenko}, Comput. Math. Math. Phys. 61, No. 11, 1811--1833 (2021; Zbl 07444580); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 11, 1850--1872 (2021) Full Text: DOI OpenURL
Dashkovskiy, Sergey; Kapustyan, Oleksiy; Perestyuk, Yuriy Stability of uniform attractors of impulsive multi-valued semiflows. (English) Zbl 07443561 Nonlinear Anal., Hybrid Syst. 40, Article ID 101025, 17 p. (2021). MSC: 37C75 37C70 37C10 PDF BibTeX XML Cite \textit{S. Dashkovskiy} et al., Nonlinear Anal., Hybrid Syst. 40, Article ID 101025, 17 p. (2021; Zbl 07443561) Full Text: DOI OpenURL
Xiao, Chun; Xu, Shixin; Yue, Xingye; Zhang, Changjuan; Zhang, Changrong Homogenization of a discrete network model for chemical vapor infiltration process. (English) Zbl 1479.35065 Commun. Math. Sci. 19, No. 7, 1809-1826 (2021). MSC: 35B27 35K51 35K55 35K57 35R02 47E07 PDF BibTeX XML Cite \textit{C. Xiao} et al., Commun. Math. Sci. 19, No. 7, 1809--1826 (2021; Zbl 1479.35065) Full Text: DOI OpenURL
Chen, Jingrun; Sun, Zhiwei; Wang, Yun; Yang, Lei A spin-wave solution to the Landau-Lifshitz-Gilbert equation. (English) Zbl 1479.35188 Commun. Math. Sci. 19, No. 1, 193-204 (2021). MSC: 35C07 34E10 35B40 35C20 35K45 35K55 35Q81 PDF BibTeX XML Cite \textit{J. Chen} et al., Commun. Math. Sci. 19, No. 1, 193--204 (2021; Zbl 1479.35188) Full Text: DOI OpenURL
Gazori, Fereshte; Hesaaraki, Mahmoud Three-dimensional spread analysis of a Dengue disease model with numerical season control. (English) Zbl 1479.35882 Int. J. Biomath. 14, No. 8, Article ID 2150066, 57 p. (2021). MSC: 35Q92 35K51 92D30 92D25 35A01 35A02 35B45 35B09 92-08 65M06 65N06 49N90 PDF BibTeX XML Cite \textit{F. Gazori} and \textit{M. Hesaaraki}, Int. J. Biomath. 14, No. 8, Article ID 2150066, 57 p. (2021; Zbl 1479.35882) Full Text: DOI OpenURL
Palencia, José Luis Díaz Invasive-invaded system of non-Lipschitz porous medium equations with advection. (English) Zbl 1479.35541 Int. J. Biomath. 14, No. 7, Article ID 2150061, 29 p. (2021). MSC: 35K65 35K45 35K57 35K59 PDF BibTeX XML Cite \textit{J. L. D. Palencia}, Int. J. Biomath. 14, No. 7, Article ID 2150061, 29 p. (2021; Zbl 1479.35541) Full Text: DOI OpenURL
Ghani, Mohammad; Li, Jingyu; Zhang, Kaijun Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. (English) Zbl 1478.35036 Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6253-6265 (2021). MSC: 35B40 35C07 35K45 35K59 92C17 PDF BibTeX XML Cite \textit{M. Ghani} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6253--6265 (2021; Zbl 1478.35036) Full Text: DOI OpenURL
Kang, Kyungkeun; Pan, Xing-bin On a quasilinear parabolic curl system motivated by time evolution of Meissner states of superconductors. (English) Zbl 1479.82104 SIAM J. Math. Anal. 53, No. 6, 6471-6516 (2021). MSC: 82D55 35K40 35K45 35K51 35K55 35K59 35B65 35A01 PDF BibTeX XML Cite \textit{K. Kang} and \textit{X.-b. Pan}, SIAM J. Math. Anal. 53, No. 6, 6471--6516 (2021; Zbl 1479.82104) Full Text: DOI OpenURL
Anh, Nguyen Thi Van; Ke, Tran Dinh On the differential variational inequalities of parabolic-parabolic type. (English) Zbl 1478.35048 Acta Appl. Math. 176, Paper No. 5, 25 p. (2021). MSC: 35B41 35K86 35B35 35R35 35R45 35R70 47H08 47J20 PDF BibTeX XML Cite \textit{N. T. Van Anh} and \textit{T. D. Ke}, Acta Appl. Math. 176, Paper No. 5, 25 p. (2021; Zbl 1478.35048) Full Text: DOI OpenURL
Yuan, Yueding; Zou, Xingfu Spatial-temporal dynamics of a diffusive Lotka-Volterra competition model with a shifting habitat II: Case of faster diffuser being a weaker competitor. (English) Zbl 1478.35130 J. Dyn. Differ. Equations 33, No. 4, 2091-2132 (2021). MSC: 35K57 35C07 35K45 92D40 92D25 93C10 PDF BibTeX XML Cite \textit{Y. Yuan} and \textit{X. Zou}, J. Dyn. Differ. Equations 33, No. 4, 2091--2132 (2021; Zbl 1478.35130) Full Text: DOI OpenURL
Cao, Jianzhi; Sun, Hongyan; Hao, Pengmiao; Wang, Peiguang Bifurcation and Turing instability for a predator-prey model with nonlinear reaction cross-diffusion. (English) Zbl 1481.92099 Appl. Math. Modelling 89, Part 2, 1663-1677 (2021). MSC: 92D25 35K51 35Q92 PDF BibTeX XML Cite \textit{J. Cao} et al., Appl. Math. Modelling 89, Part 2, 1663--1677 (2021; Zbl 1481.92099) Full Text: DOI OpenURL
Antil, Harbir; Kubota, Shodai; Shirakawa, Ken; Yamazaki, Noriaki Optimal control problems governed by 1-D Kobayashi-Warren-Carter type systems. (English) Zbl 1483.35297 Math. Control Relat. Fields 11, No. 2, 253-289 (2021). MSC: 35Q93 35Q74 35B65 35K61 49J20 49J45 49K20 74N05 74N20 PDF BibTeX XML Cite \textit{H. Antil} et al., Math. Control Relat. Fields 11, No. 2, 253--289 (2021; Zbl 1483.35297) Full Text: DOI arXiv OpenURL
Frischmuth, Kurt; Budyansky, Alexander V.; Tsybulin, Vyacheslav G. Modeling of invasion on a heterogeneous habitat: taxis and multistability. (English) Zbl 07425980 Appl. Math. Comput. 410, Article ID 126456, 11 p. (2021). MSC: 92Dxx 35Kxx 35Qxx PDF BibTeX XML Cite \textit{K. Frischmuth} et al., Appl. Math. Comput. 410, Article ID 126456, 11 p. (2021; Zbl 07425980) Full Text: DOI OpenURL
Luc, Nguyen Hoang; Baleanu, Dumitru; Agarwal, Ravi P.; Long, Le Dinh Identifying the source function for time fractional diffusion with non-local in time conditions. (English) Zbl 1476.35113 Comput. Appl. Math. 40, No. 5, Paper No. 159, 21 p. (2021). MSC: 35K05 35K99 47J06 47H10 PDF BibTeX XML Cite \textit{N. H. Luc} et al., Comput. Appl. Math. 40, No. 5, Paper No. 159, 21 p. (2021; Zbl 1476.35113) Full Text: DOI OpenURL
Nachid, Halima; N’gohisse, F.; Koffi, N’guessan The phenomenon of quenching for a reaction-diffusion system with non-linear boundary conditions. (English) Zbl 07425445 J. Indian Math. Soc., New Ser. 88, No. 1-2, 155-175 (2021). MSC: 35K51 35B50 65M06 PDF BibTeX XML Cite \textit{H. Nachid} et al., J. Indian Math. Soc., New Ser. 88, No. 1--2, 155--175 (2021; Zbl 07425445) Full Text: DOI OpenURL
Jin, Hai-Yang; Xiang, Tian Negligibility of haptotaxis effect in a chemotaxis-haptotaxis model. (English) Zbl 07423866 Math. Models Methods Appl. Sci. 31, No. 7, 1373-1417 (2021). MSC: 35K51 35K55 35B44 35B45 92C17 35A01 35A09 PDF BibTeX XML Cite \textit{H.-Y. Jin} and \textit{T. Xiang}, Math. Models Methods Appl. Sci. 31, No. 7, 1373--1417 (2021; Zbl 07423866) Full Text: DOI arXiv OpenURL
Bellomo, N.; Brezzi, F. Collective dynamics in science and society. (English) Zbl 07423857 Math. Models Methods Appl. Sci. 31, No. 6, 1053-1058 (2021). Reviewer: Adrian Muntean (Karlstad) MSC: 35Q92 35Q91 35Q70 35B40 35L60 35K55 PDF BibTeX XML Cite \textit{N. Bellomo} and \textit{F. Brezzi}, Math. Models Methods Appl. Sci. 31, No. 6, 1053--1058 (2021; Zbl 07423857) Full Text: DOI OpenURL
Karasözen, Bülent; Mülayim, Gülden; Uzunca, Murat; Yıldız, Süleyman Reduced order modelling of nonlinear cross-diffusion systems. (English) Zbl 07423539 Appl. Math. Comput. 401, Article ID 126058, 16 p. (2021). MSC: 37N25 35K57 35K61 65M06 65L05 34C20 PDF BibTeX XML Cite \textit{B. Karasözen} et al., Appl. Math. Comput. 401, Article ID 126058, 16 p. (2021; Zbl 07423539) Full Text: DOI arXiv OpenURL
Li, Bin; Li, Yuxiang Global existence and eventual smoothness in a 2-D parabolic-elliptic system arising from ion transport networks. (English) Zbl 1477.35287 J. Differ. Equations 305, 1-44 (2021). MSC: 35Q92 35K55 35B65 35B40 35D30 35A01 92C42 PDF BibTeX XML Cite \textit{B. Li} and \textit{Y. Li}, J. Differ. Equations 305, 1--44 (2021; Zbl 1477.35287) Full Text: DOI OpenURL
Bao, Weizhu; Zhao, Quan A structure-preserving parametric finite element method for surface diffusion. (English) Zbl 07423173 SIAM J. Numer. Anal. 59, No. 5, 2775-2799 (2021). Reviewer: Baasansuren Jadamba (Rochester) MSC: 65M60 65M06 65N30 65H10 65M12 35K55 PDF BibTeX XML Cite \textit{W. Bao} and \textit{Q. Zhao}, SIAM J. Numer. Anal. 59, No. 5, 2775--2799 (2021; Zbl 07423173) Full Text: DOI arXiv OpenURL
Castillo, Paul; Gómez, Sergio An interpolatory directional splitting-local discontinuous Galerkin method with application to pattern formation in 2D/3D. (English) Zbl 07422795 Appl. Math. Comput. 397, Article ID 125984, 13 p. (2021). MSC: 65Mxx 35Kxx PDF BibTeX XML Cite \textit{P. Castillo} and \textit{S. Gómez}, Appl. Math. Comput. 397, Article ID 125984, 13 p. (2021; Zbl 07422795) Full Text: DOI OpenURL
Luçon, Eric; Poquet, Christophe Periodicity induced by noise and interaction in the kinetic mean-field FitzHugh-Nagumo model. (English) Zbl 1479.60198 Ann. Appl. Probab. 31, No. 2, 561-593 (2021). MSC: 60K35 35K55 35Q84 82C26 82C31 92C20 PDF BibTeX XML Cite \textit{E. Luçon} and \textit{C. Poquet}, Ann. Appl. Probab. 31, No. 2, 561--593 (2021; Zbl 1479.60198) Full Text: DOI arXiv Link OpenURL
Larios, Adam; Victor, Collin Continuous data assimilation with a moving cluster of data points for a reaction diffusion equation: a computational study. (English) Zbl 07419717 Commun. Comput. Phys. 29, No. 4, 1273-1298 (2021). MSC: 65-XX 35K57 35K40 35K61 37C50 35Q93 34D06 PDF BibTeX XML Cite \textit{A. Larios} and \textit{C. Victor}, Commun. Comput. Phys. 29, No. 4, 1273--1298 (2021; Zbl 07419717) Full Text: DOI arXiv OpenURL
Sari, Murat; Tahir, Shko Ali Synchronization of the nonlinear advection-diffusion-reaction processes. (English) Zbl 1478.35127 Math. Methods Appl. Sci. 44, No. 15, 11970-11984 (2021). MSC: 35K51 35K57 35K58 35A35 65D07 PDF BibTeX XML Cite \textit{M. Sari} and \textit{S. A. Tahir}, Math. Methods Appl. Sci. 44, No. 15, 11970--11984 (2021; Zbl 1478.35127) Full Text: DOI OpenURL
Li, Bin; Li, Yuxiang Blowup criterion of classical solutions for a parabolic-elliptic system in space dimension 3. (English) Zbl 1479.35887 Proc. Am. Math. Soc. 149, No. 12, 5291-5303 (2021). MSC: 35Q92 92C42 35K55 35J60 35B65 PDF BibTeX XML Cite \textit{B. Li} and \textit{Y. Li}, Proc. Am. Math. Soc. 149, No. 12, 5291--5303 (2021; Zbl 1479.35887) Full Text: DOI OpenURL
Huo, Xiaokai; Liu, Hailiang; Tzavaras, Athanasios E.; Wang, Shuaikun An energy stable and positivity-preserving scheme for the Maxwell-Stefan diffusion system. (English) Zbl 07410698 SIAM J. Numer. Anal. 59, No. 5, 2321-2345 (2021). MSC: 65-XX 35K55 35Q79 65M06 35L45 PDF BibTeX XML Cite \textit{X. Huo} et al., SIAM J. Numer. Anal. 59, No. 5, 2321--2345 (2021; Zbl 07410698) Full Text: DOI arXiv OpenURL
Flandoli, Franco; Huang, Ruojun The KPP equation as a scaling limit of locally interacting Brownian particles. (English) Zbl 1471.60149 J. Differ. Equations 303, 608-644 (2021). MSC: 60K35 60J60 82C22 82B05 35K55 PDF BibTeX XML Cite \textit{F. Flandoli} and \textit{R. Huang}, J. Differ. Equations 303, 608--644 (2021; Zbl 1471.60149) Full Text: DOI arXiv OpenURL
Almeida, Luis; Estrada-Rodriguez, Gissell; Oliver, Lisa; Peurichard, Diane; Poulain, Alexandre; Vallette, Francois Treatment-induced shrinking of tumour aggregates: a nonlinear volume-filling chemotactic approach. (English) Zbl 1479.35868 J. Math. Biol. 83, No. 3, Paper No. 29, 41 p. (2021). MSC: 35Q92 35B35 35B36 35K55 82C22 92B05 92C17 92D25 92C37 PDF BibTeX XML Cite \textit{L. Almeida} et al., J. Math. Biol. 83, No. 3, Paper No. 29, 41 p. (2021; Zbl 1479.35868) Full Text: DOI arXiv OpenURL
Frassu, Silvia; Viglialoro, Giuseppe Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent. (English) Zbl 1473.35076 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 213, Article ID 112505, 16 p. (2021). MSC: 35B45 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{S. Frassu} and \textit{G. Viglialoro}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 213, Article ID 112505, 16 p. (2021; Zbl 1473.35076) Full Text: DOI arXiv OpenURL
Li, Chunqiu; Wang, Jintao Bifurcation from infinity of the Schrödinger equation via invariant manifolds. (English) Zbl 1480.37080 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 213, Article ID 112490, 22 p. (2021). MSC: 37K50 35Q55 37B30 PDF BibTeX XML Cite \textit{C. Li} and \textit{J. Wang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 213, Article ID 112490, 22 p. (2021; Zbl 1480.37080) Full Text: DOI arXiv OpenURL
Efendiev, Messoud; Vougalter, Vitali Verification of biomedical processes with anomalous diffusion, transport and interaction of species. (English) Zbl 1483.35285 Volchenkov, Dimitri (ed.), Nonlinear dynamics, chaos, and complexity. In memory of Professor Valentin Afraimovich. Beijing: Higher Education Press; Singapore: Springer. Nonlinear Phys. Sci., 65-74 (2021). MSC: 35Q92 35K55 35K57 92D25 44A10 26A33 35R11 PDF BibTeX XML Cite \textit{M. Efendiev} and \textit{V. Vougalter}, in: Nonlinear dynamics, chaos, and complexity. In memory of Professor Valentin Afraimovich. Beijing: Higher Education Press; Singapore: Springer. 65--74 (2021; Zbl 1483.35285) Full Text: DOI OpenURL
Berger, Thomas Funnel control of the Fokker-Planck equation for a multidimensional Ornstein-Uhlenbeck process. (English) Zbl 1479.35860 SIAM J. Control Optim. 59, No. 5, 3203-3230 (2021). Reviewer: Sven-Ake Wegner (Hamburg) MSC: 35Q84 35K55 93C40 PDF BibTeX XML Cite \textit{T. Berger}, SIAM J. Control Optim. 59, No. 5, 3203--3230 (2021; Zbl 1479.35860) Full Text: DOI arXiv OpenURL
Puche, Marc; Reis, Timo; Schwenninger, Felix L. Funnel control for boundary control systems. (English) Zbl 1471.93141 Evol. Equ. Control Theory 10, No. 3, 519-544 (2021). MSC: 93C20 93B52 93B28 47H06 PDF BibTeX XML Cite \textit{M. Puche} et al., Evol. Equ. Control Theory 10, No. 3, 519--544 (2021; Zbl 1471.93141) Full Text: DOI arXiv OpenURL