Prakasa Rao, B. L. S. Nonparametric estimation of trend for stochastic differential equations driven by fractional Levy process. (English) Zbl 07302995 J. Stat. Theory Pract. 15, No. 1, Paper No. 7, 12 p. (2021). MSC: 62G07 62M09 60G15 60G22 60G65 60H15 PDF BibTeX XML Cite \textit{B. L. S. Prakasa Rao}, J. Stat. Theory Pract. 15, No. 1, Paper No. 7, 12 p. (2021; Zbl 07302995) Full Text: DOI
Albeverio, Sergio; Brzeźniak, Zdzisław; Daletskii, Alexei Stochastic Camassa-Holm equation with convection type noise. (English) Zbl 07297755 J. Differ. Equations 276, 404-432 (2021). MSC: 60H15 60H25 35R60 76B15 35Q86 PDF BibTeX XML Cite \textit{S. Albeverio} et al., J. Differ. Equations 276, 404--432 (2021; Zbl 07297755) Full Text: DOI
Li, Xiaojun Uniform random attractors for 2D non-autonomous stochastic Navier-Stokes equations. (English) Zbl 07297744 J. Differ. Equations 276, 1-42 (2021). MSC: 35Q30 35B40 37B55 35B41 35B65 76D05 60J65 37L30 37L05 35R60 PDF BibTeX XML Cite \textit{X. Li}, J. Differ. Equations 276, 1--42 (2021; Zbl 07297744) Full Text: DOI
Wang, Renhai; Wang, Bixiang Random dynamics of non-autonomous fractional stochastic \(p\)-Laplacian equations on \(\mathbb{R}^N\). (English) Zbl 07296638 Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021). MSC: 35R60 35R11 35K93 35K15 35B40 35B41 37L30 PDF BibTeX XML Cite \textit{R. Wang} and \textit{B. Wang}, Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021; Zbl 07296638) Full Text: DOI
Li, Linyan; Shu, Ji; Bai, Qianqian; Li, Hui Asymptotic behavior of fractional stochastic heat equations in materials with memory. (English) Zbl 07291038 Appl. Anal. 100, No. 1, 145-166 (2021). MSC: 37L55 37L65 37L30 35R60 60H15 PDF BibTeX XML Cite \textit{L. Li} et al., Appl. Anal. 100, No. 1, 145--166 (2021; Zbl 07291038) Full Text: DOI
Cruz, José M. T. S.; Ševčovič, Daniel On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models. (English) Zbl 07309987 Japan J. Ind. Appl. Math. 37, No. 3, 697-721 (2020). MSC: 45K05 35K58 34G20 91G20 PDF BibTeX XML Cite \textit{J. M. T. S. Cruz} and \textit{D. Ševčovič}, Japan J. Ind. Appl. Math. 37, No. 3, 697--721 (2020; Zbl 07309987) Full Text: DOI
Kaikina, Elena I.; Sotelo-Garcia, Norma Stochastic nonlinear Schrödinger equation on an upper-right quarter plane with Dirichlet random boundary. (English) Zbl 07287260 J. Math. Phys. 61, No. 10, 101509, 15 p. (2020). MSC: 35Q55 35Q41 35R60 60H40 35A01 35A02 PDF BibTeX XML Cite \textit{E. I. Kaikina} and \textit{N. Sotelo-Garcia}, J. Math. Phys. 61, No. 10, 101509, 15 p. (2020; Zbl 07287260) Full Text: DOI
Oh, Tadahiro; Pocovnicu, Oana; Wang, Yuzhao On the stochastic nonlinear Schrödinger equations with nonsmooth additive noise. (English) Zbl 07286663 Kyoto J. Math. 60, No. 4, 1227-1243 (2020). MSC: 35Q55 60H40 35R60 35A01 35A02 PDF BibTeX XML Cite \textit{T. Oh} et al., Kyoto J. Math. 60, No. 4, 1227--1243 (2020; Zbl 07286663) Full Text: DOI Euclid
Cotter, Colin; Crisan, Dan; Holm, Darryl D.; Pan, Wei; Shevchenko, Igor A particle filter for stochastic advection by Lie transport: a case study for the damped and forced incompressible two-dimensional Euler equation. (English) Zbl 07283166 SIAM/ASA J. Uncertain. Quantif. 8, 1446-1492 (2020). MSC: 62P35 60H15 76D05 35Q31 35Q35 65C35 65C40 PDF BibTeX XML Cite \textit{C. Cotter} et al., SIAM/ASA J. Uncertain. Quantif. 8, 1446--1492 (2020; Zbl 07283166) Full Text: DOI
Grecksch, Wilfried; Lisei, Hannelore Stochastic Schrödinger equations. (English) Zbl 1453.49009 Grecksch, Wilfried (ed.) et al., Infinite dimensional and finite dimensional stochastic equations and applications in physics. Hackensack, NJ: World Scientific. 115-160 (2020). MSC: 49J55 60H15 35R60 60H30 60G22 PDF BibTeX XML Cite \textit{W. Grecksch} and \textit{H. Lisei}, in: Infinite dimensional and finite dimensional stochastic equations and applications in physics. Hackensack, NJ: World Scientific. 115--160 (2020; Zbl 1453.49009) Full Text: DOI
Brzeźniak, Zdzisław; Hussain, Javed Global solution of nonlinear stochastic heat equation with solutions in a Hilbert manifold. (English) Zbl 07272864 Stoch. Dyn. 20, No. 6, Article ID 2040012, 29 p. (2020). Reviewer: Dejun Luo (Beijing) MSC: 60H15 35K05 35K55 58J35 58J65 60J60 60J65 PDF BibTeX XML Cite \textit{Z. Brzeźniak} and \textit{J. Hussain}, Stoch. Dyn. 20, No. 6, Article ID 2040012, 29 p. (2020; Zbl 07272864) Full Text: DOI
Hornung, Fabian The stochastic nonlinear Schrödinger equation in unbounded domains and non-compact manifolds. (English) Zbl 1448.35426 NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 4, Paper No. 40, 46 p. (2020). MSC: 35Q41 35R60 60H15 60H30 60H40 37L65 PDF BibTeX XML Cite \textit{F. Hornung}, NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 4, Paper No. 40, 46 p. (2020; Zbl 1448.35426) Full Text: DOI
Zhang, Deng Optimal bilinear control of stochastic nonlinear Schrödinger equations: mass-(sub)critical case. (English) Zbl 1447.60127 Probab. Theory Relat. Fields 178, No. 1-2, 69-120 (2020). MSC: 60H15 35Q40 49K20 35J10 49K45 PDF BibTeX XML Cite \textit{D. Zhang}, Probab. Theory Relat. Fields 178, No. 1--2, 69--120 (2020; Zbl 1447.60127) Full Text: DOI
Balanzario, E. P.; Kaikina, E. I. Regularity analysis for stochastic complex Landau-Ginzburg equation with Dirichlet white-noise boundary conditions. (English) Zbl 1446.35190 SIAM J. Math. Anal. 52, No. 4, 3376-3396 (2020). MSC: 35Q56 60H15 35R60 35B65 60H40 PDF BibTeX XML Cite \textit{E. P. Balanzario} and \textit{E. I. Kaikina}, SIAM J. Math. Anal. 52, No. 4, 3376--3396 (2020; Zbl 1446.35190) Full Text: DOI
Tolomeo, Leonardo Unique ergodicity for a class of stochastic hyperbolic equations with additive space-time white noise. (English) Zbl 1442.35460 Commun. Math. Phys. 377, No. 2, 1311-1347 (2020). MSC: 35Q84 35B44 35L70 60H40 35R06 35R60 37A50 35A01 35A02 PDF BibTeX XML Cite \textit{L. Tolomeo}, Commun. Math. Phys. 377, No. 2, 1311--1347 (2020; Zbl 1442.35460) Full Text: DOI
Zhang, Shuai; Xu, Shaopeng The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities. (English) Zbl 1440.35289 Commun. Pure Appl. Anal. 19, No. 7, 3785-3803 (2020). MSC: 35Q41 35Q55 35R60 60H15 35A01 35A02 35B65 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{S. Xu}, Commun. Pure Appl. Anal. 19, No. 7, 3785--3803 (2020; Zbl 1440.35289) Full Text: DOI
Wang, Renhai; Wang, Bixiang Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise. (English) Zbl 1443.37060 Discrete Contin. Dyn. Syst., Ser. B 25, No. 7, 2461-2493 (2020). MSC: 37L60 37L55 35B41 35B40 35R60 PDF BibTeX XML Cite \textit{R. Wang} and \textit{B. Wang}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 7, 2461--2493 (2020; Zbl 1443.37060) Full Text: DOI
Zhang, Shuai; Xu, Shaopeng The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities. (English) Zbl 07196904 Commun. Pure Appl. Anal. 19, No. 6, 3367-3385 (2020). MSC: 35R60 35Q41 35Q55 60H15 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{S. Xu}, Commun. Pure Appl. Anal. 19, No. 6, 3367--3385 (2020; Zbl 07196904) Full Text: DOI
Gao, Peng Averaging principle for multiscale stochastic fractional Schrödinger equation. (English) Zbl 1440.60052 Ann. Henri Poincaré 21, No. 5, 1637-1675 (2020). Reviewer: Michael Perelmuter (Kyïv) MSC: 60H15 70K65 70K70 PDF BibTeX XML Cite \textit{P. Gao}, Ann. Henri Poincaré 21, No. 5, 1637--1675 (2020; Zbl 1440.60052) Full Text: DOI
Collot, C.; de Suzzoni, Anne-Sophie Stability of equilibria for a Hartree equation for random fields. (English. French summary) Zbl 1439.35438 J. Math. Pures Appl. (9) 137, 70-100 (2020). MSC: 35Q55 35B35 35B40 35B25 35P25 35R60 35Q40 PDF BibTeX XML Cite \textit{C. Collot} and \textit{A.-S. de Suzzoni}, J. Math. Pures Appl. (9) 137, 70--100 (2020; Zbl 1439.35438) Full Text: DOI
Marinoschi, Gabriela Rescaling approach for a stochastic population dynamics equation perturbed by a linear multiplicative Gaussian noise. (English) Zbl 1436.35333 Appl. Math. Optim. 81, No. 2, 511-544 (2020). MSC: 35R60 60H15 92D25 35Q92 PDF BibTeX XML Cite \textit{G. Marinoschi}, Appl. Math. Optim. 81, No. 2, 511--544 (2020; Zbl 1436.35333) Full Text: DOI
Hocquet, Antoine; Nilssen, Torstein; Stannat, Wilhelm Generalized Burgers equation with rough transport noise. (English) Zbl 1437.35709 Stochastic Processes Appl. 130, No. 4, 2159-2184 (2020). MSC: 35R60 35Q53 60H15 47J30 60L20 PDF BibTeX XML Cite \textit{A. Hocquet} et al., Stochastic Processes Appl. 130, No. 4, 2159--2184 (2020; Zbl 1437.35709) Full Text: DOI
Tölle, Jonas M. Stochastic evolution equations with singular drift and gradient noise via curvature and commutation conditions. (English) Zbl 1439.35250 Stochastic Processes Appl. 130, No. 5, 3220-3248 (2020). MSC: 35K55 35K92 60H15 49J40 58J65 PDF BibTeX XML Cite \textit{J. M. Tölle}, Stochastic Processes Appl. 130, No. 5, 3220--3248 (2020; Zbl 1439.35250) Full Text: DOI
Li, Qiuqi; Zhang, Pingwen A variable-separation method for nonlinear partial differential equations with random inputs. (English) Zbl 1432.35266 SIAM J. Sci. Comput. 42, No. 2, A723-A750 (2020). MSC: 35R60 60H35 76D05 76M10 PDF BibTeX XML Cite \textit{Q. Li} and \textit{P. Zhang}, SIAM J. Sci. Comput. 42, No. 2, A723--A750 (2020; Zbl 1432.35266) Full Text: DOI
Juárez-Campos, B.; Kaikina, E. I.; Ruiz-Paredes, H. F. Stochastic Ginzburg-Landau equation on a half-line with Neumann type white-noise boundary conditions. (English) Zbl 1435.35366 J. Math. Anal. Appl. 487, No. 1, Article ID 123952, 29 p. (2020). MSC: 35Q56 35R60 35A01 35A02 35B65 60H15 PDF BibTeX XML Cite \textit{B. Juárez-Campos} et al., J. Math. Anal. Appl. 487, No. 1, Article ID 123952, 29 p. (2020; Zbl 1435.35366) Full Text: DOI
Brzeźniak, Zdzisław; Hornung, Fabian; Manna, Utpal Weak martingale solutions for the stochastic nonlinear Schrödinger equation driven by pure jump noise. (English) Zbl 1439.35584 Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 1, 1-53 (2020). Reviewer: Martin Ondreját (Praha) MSC: 35R60 60H15 35Q40 58J65 35Q55 PDF BibTeX XML Cite \textit{Z. Brzeźniak} et al., Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 1, 1--53 (2020; Zbl 1439.35584) Full Text: DOI
Wang, Li; Yan, Zhenya; Guo, Boling Numerical analysis of the Hirota equation: modulational instability, breathers, rogue waves, and interactions. (English) Zbl 1435.35369 Chaos 30, No. 1, 013114, 10 p. (2020). MSC: 35Q60 35Q55 78A60 35C08 37K10 35R60 37K15 65M70 PDF BibTeX XML Cite \textit{L. Wang} et al., Chaos 30, No. 1, 013114, 10 p. (2020; Zbl 1435.35369) Full Text: DOI
Goldys, Beniamin; Grotowski, Joseph F.; Le, Kim-Ngan Weak martingale solutions to the stochastic Landau-Lifshitz-Gilbert equation with multi-dimensional noise via a convergent finite-element scheme. (English) Zbl 1433.35380 Stochastic Processes Appl. 130, No. 1, 232-261 (2020). MSC: 35Q60 35K55 35R60 60H15 65L60 65L20 65C30 35A01 35D30 82D40 60H10 34F05 65N30 35R09 78A25 PDF BibTeX XML Cite \textit{B. Goldys} et al., Stochastic Processes Appl. 130, No. 1, 232--261 (2020; Zbl 1433.35380) Full Text: DOI
Chen, Mingjuan; Zhang, Shuai Random data Cauchy problem for the fourth order Schrödinger equation with the second order derivative nonlinearities. (English) Zbl 1433.35356 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 190, Article ID 111608, 23 p. (2020). MSC: 35Q55 35Q41 35J30 35R60 35B65 35A01 PDF BibTeX XML Cite \textit{M. Chen} and \textit{S. Zhang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 190, Article ID 111608, 23 p. (2020; Zbl 1433.35356) Full Text: DOI
Xu, Pengfei; Zou, Guang-an; Huang, Jianhua Time-space fractional stochastic Ginzburg-Landau equation driven by fractional Brownian motion. (English) Zbl 1443.60069 Comput. Math. Appl. 78, No. 12, 3790-3806 (2019). MSC: 60H15 35R11 35Q55 35R60 60G22 PDF BibTeX XML Cite \textit{P. Xu} et al., Comput. Math. Appl. 78, No. 12, 3790--3806 (2019; Zbl 1443.60069) Full Text: DOI
Qiao, Dan; Wang, Miaomiao; Li, Xiaojun Dynamical behavior for stochastic wave equation with nonlinear damping and white noise on unbounded domains. (Chinese. English summary) Zbl 1449.35075 J. Tianjin Norm. Univ., Nat. Sci. Ed. 39, No. 5, 22-29 (2019). MSC: 35B40 35B41 35L05 35R60 PDF BibTeX XML Cite \textit{D. Qiao} et al., J. Tianjin Norm. Univ., Nat. Sci. Ed. 39, No. 5, 22--29 (2019; Zbl 1449.35075) Full Text: DOI
Vanvinckenroye, H.; Kougioumtzoglou, I. A.; Denoël, V. Reliability function determination of nonlinear oscillators under evolutionary stochastic excitation via a Galerkin projection technique. (English) Zbl 1439.35594 Nonlinear Dyn. 95, No. 1, 293-308 (2019). MSC: 35R60 65M60 65C30 PDF BibTeX XML Cite \textit{H. Vanvinckenroye} et al., Nonlinear Dyn. 95, No. 1, 293--308 (2019; Zbl 1439.35594) Full Text: DOI
Gong, Ruoting; Mou, Chenchen; Święch, Andrzej Stochastic representations for solutions to parabolic Dirichlet problems for nonlocal Bellman equations. (English) Zbl 07172335 Ann. Appl. Probab. 29, No. 6, 3271-3310 (2019). MSC: 35R09 35K61 35K65 49L20 49L25 60H10 60H30 93E20 PDF BibTeX XML Cite \textit{R. Gong} et al., Ann. Appl. Probab. 29, No. 6, 3271--3310 (2019; Zbl 07172335) Full Text: DOI Euclid
Meimaris, Antonios T.; Kougioumtzoglou, Ioannis A.; Pantelous, Athanasios A.; Pirrotta, Antonina An approximate technique for determining in closed form the response transition probability density function of diverse nonlinear/hysteretic oscillators. (English) Zbl 1430.35229 Nonlinear Dyn. 97, No. 4, 2627-2641 (2019). MSC: 35Q84 35R60 PDF BibTeX XML Cite \textit{A. T. Meimaris} et al., Nonlinear Dyn. 97, No. 4, 2627--2641 (2019; Zbl 1430.35229) Full Text: DOI
Chen, Yong; Gao, Hongjun; Huang, Jianhua Periodic stochastic high-order Degasperis-Procesi equation with cylindrical fBm. (English) Zbl 1434.60149 Stoch. Dyn. 19, No. 6, Article ID 1950043, 19 p. (2019). MSC: 60H15 60H40 35L70 PDF BibTeX XML Cite \textit{Y. Chen} et al., Stoch. Dyn. 19, No. 6, Article ID 1950043, 19 p. (2019; Zbl 1434.60149) Full Text: DOI
Han, Yinghao; Pei, Tong; Yang, Yutong; Chang, Yifang Global attractor for stochastic strongly damped semilinear wave equations on unbounded domain. (Chinese. English summary) Zbl 1449.35092 J. Liaoning Norm. Univ., Nat. Sci. 42, No. 2, 145-151 (2019). MSC: 35B41 35L05 35R60 PDF BibTeX XML Cite \textit{Y. Han} et al., J. Liaoning Norm. Univ., Nat. Sci. 42, No. 2, 145--151 (2019; Zbl 1449.35092) Full Text: DOI
Yang, Hengzhan; Fu, Yueyuan; Gao, Song; Qian, Fucai PDF control of nonlinear stochastic systems based on MGC method. (Chinese. English summary) Zbl 1449.93244 Control Decis. 34, No. 7, 1463-1468 (2019). MSC: 93E03 93C20 35Q84 93C10 62P30 60H40 PDF BibTeX XML Cite \textit{H. Yang} et al., Control Decis. 34, No. 7, 1463--1468 (2019; Zbl 1449.93244) Full Text: DOI
Teretenkov, A. E. Non-Markovian evolution of multi-level system interacting with several reservoirs. Exact and approximate. (English) Zbl 1433.35400 Lobachevskii J. Math. 40, No. 10, 1587-1605 (2019). MSC: 35Q82 35R09 35Q55 81S22 81S25 82C10 PDF BibTeX XML Cite \textit{A. E. Teretenkov}, Lobachevskii J. Math. 40, No. 10, 1587--1605 (2019; Zbl 1433.35400) Full Text: DOI
Newton, Nigel J. A class of non-parametric statistical manifolds modelled on Sobolev space. (English) Zbl 1444.46053 Inf. Geom. 2, No. 2, 283-312 (2019). MSC: 46N30 46T05 62R30 60D05 60H15 62B10 93E11 47H30 PDF BibTeX XML Cite \textit{N. J. Newton}, Inf. Geom. 2, No. 2, 283--312 (2019; Zbl 1444.46053) Full Text: DOI arXiv
Bogachev, V. I.; Röckner, M.; Shaposhnikov, S. V. On convergence to stationary distributions for solutions of nonlinear Fokker-Planck-Kolmogorov equations. (English. Russian original) Zbl 1431.35208 J. Math. Sci., New York 242, No. 1, 69-84 (2019); translation from Probl. Mat. Anal. 98, 59-71 (2019). MSC: 35Q84 35K55 82C31 60H15 35Q60 PDF BibTeX XML Cite \textit{V. I. Bogachev} et al., J. Math. Sci., New York 242, No. 1, 69--84 (2019; Zbl 1431.35208); translation from Probl. Mat. Anal. 98, 59--71 (2019) Full Text: DOI
Covei, Dragos-Patru Symmetric solutions for an elliptic partial differential equation that arises in stochastic production planning with production constraints. (English) Zbl 1428.90060 Appl. Math. Comput. 350, 190-197 (2019). MSC: 90B30 35J91 93E20 35J60 PDF BibTeX XML Cite \textit{D.-P. Covei}, Appl. Math. Comput. 350, 190--197 (2019; Zbl 1428.90060) Full Text: DOI
Scarpa, Luca Optimal distributed control of a stochastic Cahn-Hilliard equation. (English) Zbl 1425.35090 SIAM J. Control Optim. 57, No. 5, 3571-3602 (2019). MSC: 35K55 35R60 60H15 80A22 82C26 PDF BibTeX XML Cite \textit{L. Scarpa}, SIAM J. Control Optim. 57, No. 5, 3571--3602 (2019; Zbl 1425.35090) Full Text: DOI arXiv
Fan, Chenjie; Xu, Weijun Subcritical approximations to stochastic defocusing mass-critical nonlinear Schrödinger equation on \(\mathbb{R}\). (English) Zbl 1428.35506 J. Differ. Equations 268, No. 1, 160-185 (2019). MSC: 35Q55 35R60 PDF BibTeX XML Cite \textit{C. Fan} and \textit{W. Xu}, J. Differ. Equations 268, No. 1, 160--185 (2019; Zbl 1428.35506) Full Text: DOI arXiv
Cui, Jianbo; Hong, Jialin; Sun, Liying On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. (English) Zbl 1423.60097 Discrete Contin. Dyn. Syst., Ser. B 24, No. 12, 6837-6854 (2019). MSC: 60H15 35Q55 35R60 PDF BibTeX XML Cite \textit{J. Cui} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 12, 6837--6854 (2019; Zbl 1423.60097) Full Text: DOI
Gao, Peng Averaging principle for multiscale stochastic Klein-Gordon-heat system. (English) Zbl 1436.60063 J. Nonlinear Sci. 29, No. 4, 1701-1759 (2019). MSC: 60H15 70K65 70K70 37H10 37L55 PDF BibTeX XML Cite \textit{P. Gao}, J. Nonlinear Sci. 29, No. 4, 1701--1759 (2019; Zbl 1436.60063) Full Text: DOI
Beck, Christian; E, Weinan; Jentzen, Arnulf Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. (English) Zbl 1442.91116 J. Nonlinear Sci. 29, No. 4, 1563-1619 (2019). MSC: 91G60 65M75 91G20 60H15 35Q91 PDF BibTeX XML Cite \textit{C. Beck} et al., J. Nonlinear Sci. 29, No. 4, 1563--1619 (2019; Zbl 1442.91116) Full Text: DOI arXiv
Gao, Peng Averaging principle for stochastic Korteweg-de Vries equation. (English) Zbl 1428.35447 J. Differ. Equations 267, No. 12, 6872-6909 (2019). MSC: 35Q53 60H15 70K65 35B40 35R60 PDF BibTeX XML Cite \textit{P. Gao}, J. Differ. Equations 267, No. 12, 6872--6909 (2019; Zbl 1428.35447) Full Text: DOI
Yan, Wei; Yang, Meihua; Duan, Jinqiao White noise driven Ostrovsky equation. (English) Zbl 1420.35483 J. Differ. Equations 267, No. 10, 5701-5735 (2019). MSC: 35R60 35G25 PDF BibTeX XML Cite \textit{W. Yan} et al., J. Differ. Equations 267, No. 10, 5701--5735 (2019; Zbl 1420.35483) Full Text: DOI
Kelbert, Mark; Moreno-Franco, Harold A. HJB equations with gradient constraint associated with controlled jump-diffusion processes. (English) Zbl 1420.49032 SIAM J. Control Optim. 57, No. 3, 2185-2213 (2019). MSC: 49L99 45K05 93E20 PDF BibTeX XML Cite \textit{M. Kelbert} and \textit{H. A. Moreno-Franco}, SIAM J. Control Optim. 57, No. 3, 2185--2213 (2019; Zbl 1420.49032) Full Text: DOI arXiv
Hong, Jialin; Miao, Lijun; Zhang, Liying Convergence analysis of a symplectic semi-discretization for stochastic nls equation with quadratic potential. (English) Zbl 1420.60082 Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 4295-4315 (2019). MSC: 60H15 60H35 65P10 PDF BibTeX XML Cite \textit{J. Hong} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 4295--4315 (2019; Zbl 1420.60082) Full Text: DOI arXiv
Ghosh, Himadri; Prajneshu Optimum fitting of Richards growth model in random environment. (English) Zbl 1435.62386 J. Stat. Theory Pract. 13, No. 1, Paper No. 6, 11 p. (2019). MSC: 62P10 60H15 62M10 PDF BibTeX XML Cite \textit{H. Ghosh} and \textit{Prajneshu}, J. Stat. Theory Pract. 13, No. 1, Paper No. 6, 11 p. (2019; Zbl 1435.62386) Full Text: DOI
Hocquet, Antoine Finite-time singularity of the stochastic harmonic map flow. (English. French summary) Zbl 1427.60124 Ann. Inst. Henri Poincaré, Probab. Stat. 55, No. 2, 1011-1041 (2019). MSC: 60H15 35R60 58E20 35K55 35B44 PDF BibTeX XML Cite \textit{A. Hocquet}, Ann. Inst. Henri Poincaré, Probab. Stat. 55, No. 2, 1011--1041 (2019; Zbl 1427.60124) Full Text: DOI Euclid arXiv
Mishura, Yu.; Ralchenko, K.; Shevchenko, G. Existence and uniqueness of a mild solution to the stochastic heat equation with white and fractional noises. (English) Zbl 1433.60059 Theory Probab. Math. Stat. 98, 149-170 (2019) and Teor. Jmovirn. Mat. Stat. 98, 142-162 (2018). MSC: 60H15 35R60 35K55 60G22 PDF BibTeX XML Cite \textit{Yu. Mishura} et al., Theory Probab. Math. Stat. 98, 149--170 (2019; Zbl 1433.60059) Full Text: DOI
Gao, Peng Averaging principle for Korteweg-de Vries equation with a random fast oscillation. (English) Zbl 1421.35324 Z. Angew. Math. Phys. 70, No. 4, Paper No. 123, 28 p. (2019). MSC: 35Q53 60H15 70K65 70K70 35R60 PDF BibTeX XML Cite \textit{P. Gao}, Z. Angew. Math. Phys. 70, No. 4, Paper No. 123, 28 p. (2019; Zbl 1421.35324) Full Text: DOI
Kilianová, Soňa; Ševčovič, Daniel Dynamic intertemporal utility optimization by means of Riccati transformation of Hamilton-Jacobi-Bellman equation. (English) Zbl 1419.35095 Japan J. Ind. Appl. Math. 36, No. 2, 497-519 (2019). MSC: 35K55 35Q91 91G10 65N30 91G60 35R60 PDF BibTeX XML Cite \textit{S. Kilianová} and \textit{D. Ševčovič}, Japan J. Ind. Appl. Math. 36, No. 2, 497--519 (2019; Zbl 1419.35095) Full Text: DOI
Ren, Jiagang; Wu, Jing Probabilistic approach for nonlinear partial differential equations and stochastic partial differential equations with Neumann boundary conditions. (English) Zbl 1415.60078 J. Math. Anal. Appl. 477, No. 1, 1-40 (2019). MSC: 60H15 35G31 35C05 35D40 PDF BibTeX XML Cite \textit{J. Ren} and \textit{J. Wu}, J. Math. Anal. Appl. 477, No. 1, 1--40 (2019; Zbl 1415.60078) Full Text: DOI
Bauzet, Caroline; Lebon, Frédéric; Maitlo, Asghar The Neumann problem for a Barenblatt equation with a multiplicative stochastic force and a nonlinear source term. (English) Zbl 07086120 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 3, Paper No. 21, 28 p. (2019). MSC: 47J35 60H15 47H10 47H05 PDF BibTeX XML Cite \textit{C. Bauzet} et al., NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 3, Paper No. 21, 28 p. (2019; Zbl 07086120) Full Text: DOI
Gess, Benjamin; Smith, Scott Stochastic continuity equations with conservative noise. (English. French summary) Zbl 1415.60071 J. Math. Pures Appl. (9) 128, 225-263 (2019). MSC: 60H15 60H30 35L02 35K55 PDF BibTeX XML Cite \textit{B. Gess} and \textit{S. Smith}, J. Math. Pures Appl. (9) 128, 225--263 (2019; Zbl 1415.60071) Full Text: DOI arXiv
Brzeźniak, Zdzisław; Hornung, Fabian; Weis, Lutz Martingale solutions for the stochastic nonlinear Schrödinger equation in the energy space. (English) Zbl 1420.35276 Probab. Theory Relat. Fields 174, No. 3-4, 1273-1338 (2019). MSC: 35Q41 35R60 60H15 60H30 42B25 PDF BibTeX XML Cite \textit{Z. Brzeźniak} et al., Probab. Theory Relat. Fields 174, No. 3--4, 1273--1338 (2019; Zbl 1420.35276) Full Text: DOI
Baili, Hana Parametric identification of stochastic interaction networks. (English) Zbl 1417.93323 IMA J. Math. Control Inf. 36, No. 1, 145-168 (2019). MSC: 93E12 93C20 92C42 92C40 92D40 PDF BibTeX XML Cite \textit{H. Baili}, IMA J. Math. Control Inf. 36, No. 1, 145--168 (2019; Zbl 1417.93323) Full Text: DOI
Zhu, C. X.; Zhu, W. Q. Control of quasi non-integrable Hamiltonian systems for targeting a specified stationary probability density. (English) Zbl 1416.93190 Int. J. Control 92, No. 5, 1117-1122 (2019). MSC: 93E03 93C10 93B52 93C20 35Q84 PDF BibTeX XML Cite \textit{C. X. Zhu} and \textit{W. Q. Zhu}, Int. J. Control 92, No. 5, 1117--1122 (2019; Zbl 1416.93190) Full Text: DOI
Ren, Panpan; Yang, Fen-Fen Path independence of additive functionals for stochastic differential equations under \(G\)-framework. (English) Zbl 1414.60046 Front. Math. China 14, No. 1, 135-148 (2019). MSC: 60H10 60H15 PDF BibTeX XML Cite \textit{P. Ren} and \textit{F.-F. Yang}, Front. Math. China 14, No. 1, 135--148 (2019; Zbl 1414.60046) Full Text: DOI
Mou, Chenchen Remarks on Schauder estimates and existence of classical solutions for a class of uniformly parabolic Hamilton-Jacobi-Bellman integro-PDEs. (English) Zbl 1414.35253 J. Dyn. Differ. Equations 31, No. 2, 719-743 (2019). Reviewer: Vincenzo Vespri (Firenze) MSC: 35R09 35D40 35K61 45K05 47G20 93E20 PDF BibTeX XML Cite \textit{C. Mou}, J. Dyn. Differ. Equations 31, No. 2, 719--743 (2019; Zbl 1414.35253) Full Text: DOI
Hofmanová, Martina; Leahy, James-Michael; Nilssen, Torstein On the Navier-Stokes equation perturbed by rough transport noise. (English) Zbl 1427.60125 J. Evol. Equ. 19, No. 1, 203-247 (2019). MSC: 60H15 76D05 47J30 60H05 35A15 60L20 PDF BibTeX XML Cite \textit{M. Hofmanová} et al., J. Evol. Equ. 19, No. 1, 203--247 (2019; Zbl 1427.60125) Full Text: DOI arXiv
Högele, Michael Anton The first exit problem of reaction-diffusion equations for small multiplicative Lévy noise. (English) Zbl 1423.60100 ALEA, Lat. Am. J. Probab. Math. Stat. 16, No. 1, 665-709 (2019). MSC: 60H15 60G51 60G52 60G55 35K05 35K91 PDF BibTeX XML Cite \textit{M. A. Högele}, ALEA, Lat. Am. J. Probab. Math. Stat. 16, No. 1, 665--709 (2019; Zbl 1423.60100) Full Text: Link
Hwang, Gyeongha Probabilistic well-posedness of the mass-critical NLS with radial data below \(L^2(\mathbb{R}^d)\). (English) Zbl 1416.35240 J. Math. Anal. Appl. 475, No. 2, 1842-1854 (2019). MSC: 35Q55 35A01 35R60 PDF BibTeX XML Cite \textit{G. Hwang}, J. Math. Anal. Appl. 475, No. 2, 1842--1854 (2019; Zbl 1416.35240) Full Text: DOI
de Bouard, Anne; Hausenblas, Erika The nonlinear Schrödinger equation driven by jump processes. (English) Zbl 07053102 J. Math. Anal. Appl. 475, No. 1, 215-252 (2019). MSC: 60 62 PDF BibTeX XML Cite \textit{A. de Bouard} and \textit{E. Hausenblas}, J. Math. Anal. Appl. 475, No. 1, 215--252 (2019; Zbl 07053102) Full Text: DOI
Pu, Xueke; Huang, Ting Large deviations for the 2-D derivative Ginzburg-Landau equation with multiplicative noise. (English) Zbl 1422.60047 Appl. Math. Lett. 93, 46-51 (2019). MSC: 60F10 35Q55 35Q56 60H15 PDF BibTeX XML Cite \textit{X. Pu} and \textit{T. Huang}, Appl. Math. Lett. 93, 46--51 (2019; Zbl 1422.60047) Full Text: DOI
Abdelrahman, Mahmoud A. E.; Sohaly, M. A.; Moaaz, Osama The deterministic and stochastic solutions of the NLEEs in mathematical physics. (English) Zbl 1414.35197 Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 40, 15 p. (2019). MSC: 35Q53 26A33 34A08 35A20 83C15 35R11 65Z05 35R60 PDF BibTeX XML Cite \textit{M. A. E. Abdelrahman} et al., Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 40, 15 p. (2019; Zbl 1414.35197) Full Text: DOI
Dodson, Benjamin; Lührmann, Jonas; Mendelson, Dana Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation. (English) Zbl 1428.35503 Adv. Math. 347, 619-676 (2019). Reviewer: Ayman Kachmar (Nabaṭiyya) MSC: 35Q55 35B40 35B25 35P25 35L05 35R60 PDF BibTeX XML Cite \textit{B. Dodson} et al., Adv. Math. 347, 619--676 (2019; Zbl 1428.35503) Full Text: DOI
Degond, Pierre; Merino-Aceituno, Sara; Vergnet, Fabien; Yu, Hui Coupled self-organized hydrodynamics and Stokes models for suspensions of active particles. (English) Zbl 1420.35232 J. Math. Fluid Mech. 21, No. 1, Paper No. 6, 36 p. (2019); correction ibid. 22, No. 4, Paper No. 57, 3 p. (2020). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q35 35L60 35L65 35P10 35Q70 82C22 82C70 82C80 92D50 35B35 76B07 35R60 PDF BibTeX XML Cite \textit{P. Degond} et al., J. Math. Fluid Mech. 21, No. 1, Paper No. 6, 36 p. (2019; Zbl 1420.35232) Full Text: DOI arXiv
Cui, Jianbo; Hong, Jialin; Liu, Zhihui; Zhou, Weien Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations. (English) Zbl 1431.60066 J. Differ. Equations 266, No. 9, 5625-5663 (2019). MSC: 60H35 60H15 60G05 PDF BibTeX XML Cite \textit{J. Cui} et al., J. Differ. Equations 266, No. 9, 5625--5663 (2019; Zbl 1431.60066) Full Text: DOI
Debussche, Arnaud; Martin, Jörg Solution to the stochastic Schrödinger equation on the full space. (English) Zbl 1407.35236 Nonlinearity 32, No. 4, 1147-1174 (2019). MSC: 35R60 35Q55 PDF BibTeX XML Cite \textit{A. Debussche} and \textit{J. Martin}, Nonlinearity 32, No. 4, 1147--1174 (2019; Zbl 1407.35236) Full Text: DOI
Bényi, Árpád; Oh, Tadahiro; Pocovnicu, Oana Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on \(\mathbb {R}^3\). (English) Zbl 1410.35195 Trans. Am. Math. Soc., Ser. B 6, 114-160 (2019). MSC: 35Q55 35R60 35B65 PDF BibTeX XML Cite \textit{Á. Bényi} et al., Trans. Am. Math. Soc., Ser. B 6, 114--160 (2019; Zbl 1410.35195) Full Text: DOI arXiv
Brereton, Justin Almost sure local well-posedness for the supercritical quintic NLS. (English) Zbl 1407.35186 Tunis. J. Math. 1, No. 3, 427-453 (2019). MSC: 35Q55 35R60 PDF BibTeX XML Cite \textit{J. Brereton}, Tunis. J. Math. 1, No. 3, 427--453 (2019; Zbl 1407.35186) Full Text: DOI
Orrieri, Carlo; Scarpa, Luca Singular stochastic Allen-Cahn equations with dynamic boundary conditions. (English) Zbl 07018381 J. Differ. Equations 266, No. 8, 4624-4667 (2019). MSC: 35K55 35K61 35R60 60H15 80A22 PDF BibTeX XML Cite \textit{C. Orrieri} and \textit{L. Scarpa}, J. Differ. Equations 266, No. 8, 4624--4667 (2019; Zbl 07018381) Full Text: DOI
Yin, Hui-Min; Tian, Bo; Chai, Jun; Liu, Lei; Sun, Yan Numerical solutions of a variable-coefficient nonlinear Schrödinger equation for an inhomogeneous optical fiber. (English) Zbl 1442.65129 Comput. Math. Appl. 76, No. 8, 1827-1836 (2018). MSC: 65L06 35R60 65M20 35Q55 78A48 PDF BibTeX XML Cite \textit{H.-M. Yin} et al., Comput. Math. Appl. 76, No. 8, 1827--1836 (2018; Zbl 1442.65129) Full Text: DOI
Khurshudyan, Asatur Zh. Exact and approximate controllability conditions for the micro-swimmers deflection governed by electric field on a plane: the Green’s function approach. (English) Zbl 1440.93032 Arch. Control Sci. 28, No. 3, 335-347 (2018). MSC: 93B05 93E03 93C20 65M80 PDF BibTeX XML Cite \textit{A. Zh. Khurshudyan}, Arch. Control Sci. 28, No. 3, 335--347 (2018; Zbl 1440.93032)
Barbu, Tudor A nonlinear second-order partial differential equation-based algorithm for additive noise reduction. (English) Zbl 1438.35467 Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 11(60), No. 2, 49-56 (2018). MSC: 35R60 35L20 35L70 35Q94 65M06 94A08 PDF BibTeX XML Cite \textit{T. Barbu}, Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 11(60), No. 2, 49--56 (2018; Zbl 1438.35467)
Ralchenko, Kostiantyn; Shevchenko, Georgiy Existence and uniqueness of mild solution to fractional stochastic heat equation. (English) Zbl 1442.60068 Mod. Stoch., Theory Appl. 6, No. 1, 57-79 (2019). MSC: 60H15 35R60 35K55 60G22 35R11 PDF BibTeX XML Cite \textit{K. Ralchenko} and \textit{G. Shevchenko}, Mod. Stoch., Theory Appl. 6, No. 1, 57--79 (2018; Zbl 1442.60068) Full Text: DOI arXiv
Barbu, Viorel; Röckner, Michael Variational solutions to nonlinear stochastic differential equations in Hilbert spaces. (English) Zbl 1427.60115 Stoch. Partial Differ. Equ., Anal. Comput. 6, No. 3, 500-524 (2018). MSC: 60H15 47H05 47J05 PDF BibTeX XML Cite \textit{V. Barbu} and \textit{M. Röckner}, Stoch. Partial Differ. Equ., Anal. Comput. 6, No. 3, 500--524 (2018; Zbl 1427.60115) Full Text: DOI arXiv
Brennan, Catherine; Venturi, Daniele Data-driven closures for stochastic dynamical systems. (English) Zbl 1415.65014 J. Comput. Phys. 372, 281-298 (2018). MSC: 65C30 37H10 60H15 60H35 PDF BibTeX XML Cite \textit{C. Brennan} and \textit{D. Venturi}, J. Comput. Phys. 372, 281--298 (2018; Zbl 1415.65014) Full Text: DOI
de Bouard, Anne; Debussche, Arnaud; Fukuizumi, Reika; Poncet, Romain Fluctuations and temperature effects in Bose-Einstein condensation. (English. French summary) Zbl 1407.82037 ESAIM, Proc. Surv. 61, 55-67 (2018). MSC: 82C31 35Q55 35Q40 60H15 82C26 65M06 82-08 PDF BibTeX XML Cite \textit{A. de Bouard} et al., ESAIM, Proc. Surv. 61, 55--67 (2018; Zbl 1407.82037) Full Text: DOI
Zhang, Deng Recent progress on stochastic nonlinear Schrödinger equations. (English) Zbl 1405.60100 Eberle, Andreas (ed.) et al., Stochastic partial differential equations and related fields. In honor of Michael Röckner, SPDERF, Bielefeld, Germany, October 10–14, 2016. Cham: Springer (ISBN 978-3-319-74928-0/hbk; 978-3-319-74929-7/ebook). Springer Proceedings in Mathematics & Statistics 229, 279-289 (2018). MSC: 60H15 60H30 35Q55 47H05 81Q93 PDF BibTeX XML Cite \textit{D. Zhang}, in: Stochastic partial differential equations and related fields. In honor of Michael Röckner, SPDERF, Bielefeld, Germany, October 10--14, 2016. Cham: Springer. 279--289 (2018; Zbl 1405.60100) Full Text: DOI
Tölle, Jonas M. Estimates for nonlinear stochastic partial differential equations with gradient noise via Dirichlet forms. (English) Zbl 1405.35268 Eberle, Andreas (ed.) et al., Stochastic partial differential equations and related fields. In honor of Michael Röckner, SPDERF, Bielefeld, Germany, October 10–14, 2016. Cham: Springer (ISBN 978-3-319-74928-0/hbk; 978-3-319-74929-7/ebook). Springer Proceedings in Mathematics & Statistics 229, 249-262 (2018). MSC: 35R60 35K55 35K92 60H15 PDF BibTeX XML Cite \textit{J. M. Tölle}, in: Stochastic partial differential equations and related fields. In honor of Michael Röckner, SPDERF, Bielefeld, Germany, October 10--14, 2016. Cham: Springer. 249--262 (2018; Zbl 1405.35268) Full Text: DOI
Brzeźniak, Zdzisław; Dhariwal, Gaurav; Hussain, Javed; Mariani, Mauro Stochastic and deterministic constrained partial differential equations. (English) Zbl 1405.60084 Eberle, Andreas (ed.) et al., Stochastic partial differential equations and related fields. In honor of Michael Röckner, SPDERF, Bielefeld, Germany, October 10–14, 2016. Cham: Springer (ISBN 978-3-319-74928-0/hbk; 978-3-319-74929-7/ebook). Springer Proceedings in Mathematics & Statistics 229, 133-146 (2018). MSC: 60H15 35K05 35K55 35Q30 35Q60 58J65 60J25 76M35 PDF BibTeX XML Cite \textit{Z. Brzeźniak} et al., in: Stochastic partial differential equations and related fields. In honor of Michael Röckner, SPDERF, Bielefeld, Germany, October 10--14, 2016. Cham: Springer. 133--146 (2018; Zbl 1405.60084) Full Text: DOI
Funaki, Tadahisa Hydrodynamic limit for exclusion processes. (English) Zbl 1404.60150 Commun. Math. Stat. 6, No. 4, 417-480 (2018). MSC: 60K35 82C22 60H15 PDF BibTeX XML Cite \textit{T. Funaki}, Commun. Math. Stat. 6, No. 4, 417--480 (2018; Zbl 1404.60150) Full Text: DOI
Martirosyan, D.; Nersesyan, V. Local large deviations principle for occupation measures of the stochastic damped nonlinear wave equation. (English. French summary) Zbl 06996557 Ann. Inst. Henri Poincaré, Probab. Stat. 54, No. 4, 2002-2041 (2018). MSC: 35R60 35L70 60B12 60F10 PDF BibTeX XML Cite \textit{D. Martirosyan} and \textit{V. Nersesyan}, Ann. Inst. Henri Poincaré, Probab. Stat. 54, No. 4, 2002--2041 (2018; Zbl 06996557) Full Text: DOI Euclid
Kim, Sangil; Park, Jong-Yeoul; Kang, Yong Han Stochastic quasilinear viscoelastic wave equation with nonlinear damping and source terms. (English) Zbl 1403.60055 Bound. Value Probl. 2018, Paper No. 14, 15 p. (2018). MSC: 60H15 35L05 35L70 PDF BibTeX XML Cite \textit{S. Kim} et al., Bound. Value Probl. 2018, Paper No. 14, 15 p. (2018; Zbl 1403.60055) Full Text: DOI
Barbu, Viorel; Brzeźniak, Zdzisław; Tubaro, Luciano Stochastic nonlinear parabolic equations with Stratonovich gradient noise. (English) Zbl 1404.93032 Appl. Math. Optim. 78, No. 2, 361-377 (2018). MSC: 93E20 49J55 60H15 PDF BibTeX XML Cite \textit{V. Barbu} et al., Appl. Math. Optim. 78, No. 2, 361--377 (2018; Zbl 1404.93032) Full Text: DOI
de Bouard, Anne; Debussche, Arnaud; Fukuizumi, Reika Long time behavior of Gross-Pitaevskii equation at positive temperature. (English) Zbl 1406.35376 SIAM J. Math. Anal. 50, No. 6, 5887-5920 (2018). Reviewer: Thomas Ernst (Uppsala) MSC: 35Q55 60H15 35R60 35Q56 PDF BibTeX XML Cite \textit{A. de Bouard} et al., SIAM J. Math. Anal. 50, No. 6, 5887--5920 (2018; Zbl 1406.35376) Full Text: DOI arXiv
Zawisza, Dariusz Existence results for Isaacs equations with local conditions and related semilinear Cauchy problems. (English) Zbl 1421.35194 Ann. Pol. Math. 121, No. 2, 175-196 (2018). Reviewer: Vyacheslav I. Maksimov (Ekaterinburg) MSC: 35K55 35K58 35A09 35Q93 49J20 91A15 91A23 PDF BibTeX XML Cite \textit{D. Zawisza}, Ann. Pol. Math. 121, No. 2, 175--196 (2018; Zbl 1421.35194) Full Text: DOI
Hocquet, Antoine Struwe-like solutions for the stochastic harmonic map flow. (English) Zbl 1434.60157 J. Evol. Equ. 18, No. 3, 1189-1228 (2018). MSC: 60H15 35R60 58E20 35K55 34A12 PDF BibTeX XML Cite \textit{A. Hocquet}, J. Evol. Equ. 18, No. 3, 1189--1228 (2018; Zbl 1434.60157) Full Text: DOI arXiv
Hornung, Fabian The nonlinear stochastic Schrödinger equation via stochastic Strichartz estimates. (English) Zbl 1401.35257 J. Evol. Equ. 18, No. 3, 1085-1114 (2018). MSC: 35Q41 35R60 60H15 60H30 PDF BibTeX XML Cite \textit{F. Hornung}, J. Evol. Equ. 18, No. 3, 1085--1114 (2018; Zbl 1401.35257) Full Text: DOI
Aliyu, M. D. S. Iterative computational approach to the solution of the Hamilton-Jacobi-Bellman-lsaacs equation in nonlinear optimal control. (English) Zbl 1413.65392 Control Theory Technol. 16, No. 1, 38-48 (2018). MSC: 65M99 49J20 93C10 65M12 93E20 PDF BibTeX XML Cite \textit{M. D. S. Aliyu}, Control Theory Technol. 16, No. 1, 38--48 (2018; Zbl 1413.65392) Full Text: DOI
Poppe, G.; Schäfer, T. Computation of minimum action paths of the stochastic nonlinear Schrödinger equation with dissipation. (English) Zbl 1397.81064 J. Phys. A, Math. Theor. 51, No. 33, Article ID 335102, 11 p. (2018). MSC: 81Q05 35Q55 35C08 14D21 35A15 35R60 PDF BibTeX XML Cite \textit{G. Poppe} and \textit{T. Schäfer}, J. Phys. A, Math. Theor. 51, No. 33, Article ID 335102, 11 p. (2018; Zbl 1397.81064) Full Text: DOI
Gao, Peng Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. (English) Zbl 1401.60121 Discrete Contin. Dyn. Syst. 38, No. 11, 5649-5684 (2018). MSC: 60H15 70K65 70K70 PDF BibTeX XML Cite \textit{P. Gao}, Discrete Contin. Dyn. Syst. 38, No. 11, 5649--5684 (2018; Zbl 1401.60121) Full Text: DOI
Kettani, Perla El; Hilhorst, Danielle; Lee, Kai A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. (English) Zbl 1401.60122 Discrete Contin. Dyn. Syst. 38, No. 11, 5615-5648 (2018). MSC: 60H15 60H30 35K55 35K57 PDF BibTeX XML Cite \textit{P. E. Kettani} et al., Discrete Contin. Dyn. Syst. 38, No. 11, 5615--5648 (2018; Zbl 1401.60122) Full Text: DOI
Nerlich, Alexander A randomized weighted \(p\)-Laplacian evolution equation with Neumann boundary conditions. (English) Zbl 1401.35360 NoDEA, Nonlinear Differ. Equ. Appl. 25, No. 4, Paper No. 31, 39 p. (2018). MSC: 35R60 35A01 35A02 35B40 47J35 PDF BibTeX XML Cite \textit{A. Nerlich}, NoDEA, Nonlinear Differ. Equ. Appl. 25, No. 4, Paper No. 31, 39 p. (2018; Zbl 1401.35360) Full Text: DOI arXiv
Millet, Annie; Roudenko, Svetlana Generalized KdV equation subject to a stochastic perturbation. (English) Zbl 1395.60073 Discrete Contin. Dyn. Syst., Ser. B 23, No. 3, 1177-1198 (2018). MSC: 60H15 35R60 35Q53 35L75 37K10 PDF BibTeX XML Cite \textit{A. Millet} and \textit{S. Roudenko}, Discrete Contin. Dyn. Syst., Ser. B 23, No. 3, 1177--1198 (2018; Zbl 1395.60073) Full Text: DOI arXiv