×

Modeling with discrete-time recurrent fuzzy systems via mixed-integer optimization. (English) Zbl 1254.93023

Summary: In this paper, we present a new approach for modeling of dynamical systems with discrete-time recurrent fuzzy systems (DTRFS). The modeling problem is divided into two subproblems. The first subproblem considers the identification of the rule base of the DTRFS which can be interpreted as structural modeling. This problem is recast into integer and mixed-integer optimization problems respectively dependent on the chosen cost function and system structure. The second subproblem considers the optimization of the parameters of the system, i.e., quantitative modeling. As a result, we obtain a linguistically interpretable model of the dynamical system which additionally can be interpreted as a linguistic automaton. The applicability of the approach is shown by modeling a thermofluidic process.

MSC:

93A30 Mathematical modelling of systems (MSC2010)
93C65 Discrete event control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. Adamy, Breakout prediction for continuous casting by fuzzy mealy automata, in: Proceedings of EUFIT’95, Aachen, 1995, pp. 754-759.; J. Adamy, Breakout prediction for continuous casting by fuzzy mealy automata, in: Proceedings of EUFIT’95, Aachen, 1995, pp. 754-759.
[2] Adamy, J.; Kempf, R., Regularity and chaos in recurrent fuzzy systems, Fuzzy Sets Syst., 140, 2, 259-284 (2003) · Zbl 1040.93039
[3] Adamy, J.; Schwung, A., Qualitative modeling of dynamical systems employing continuous-time recurrent fuzzy systems, Fuzzy Sets Syst., 161, 23, 3026-3043 (2010) · Zbl 1206.93061
[4] Alcala, R.; Ducange, P.; Herrera, F.; Lazzerini, B.; Marcelloni, F., A multi-objective evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy rule-based systems, IEEE Trans. Fuzzy Syst., 17, 5, 1106-1122 (2009)
[5] Babuška, R.; Verbruggen, H., An overview of fuzzy modeling for control, Control Eng. Pract., 4, 11, 1593-1606 (1996)
[6] A. Bemporad, Hybrid Toolbox—User’s Guide, \( \langle;\) http://www.dii.unisi.it/hybrid/toolbox \(\rangle;\); A. Bemporad, Hybrid Toolbox—User’s Guide, \( \langle;\) http://www.dii.unisi.it/hybrid/toolbox \(\rangle;\)
[7] Bemporad, A.; Morari, M., Control of systems integrating logic, dynamics, and constraints, Automatica, 35, 3, 407-427 (1999) · Zbl 1049.93514
[8] Cassandras, C.; Lafortune, S., Introduction to Discrete Event Systems (2008), Springer · Zbl 1165.93001
[9] Cordon, O.; Gomide, F.; Herrera, F.; Hoffmann, F.; Magdalena, L., Ten years of genetic fuzzy systems: current framework and new trends, Fuzzy Sets Syst., 141, 5-31 (2004) · Zbl 1050.93513
[10] Cordon, O.; Herrera, F., A two-stage evolutionary process for designing TSK fuzzy rule-based systems, IEEE Trans. Syst. Man Cybern.—Part B: Cybern., 29, 6, 703-715 (1999)
[11] De Kleer, J.; Brown, J., A qualitative physics based on confluences, Artif. Intell., 24, 7-83 (1984)
[12] A. Flemming, R. Kempf, J. Adamy, Traffic simulation employing recurrent fuzzy systems, in: Proceedings of the IASTED International Conference on Applied Simulation and Modelling, Palma de Mallorca, Spanien, 2007, pp. 497-502.; A. Flemming, R. Kempf, J. Adamy, Traffic simulation employing recurrent fuzzy systems, in: Proceedings of the IASTED International Conference on Applied Simulation and Modelling, Palma de Mallorca, Spanien, 2007, pp. 497-502.
[13] Floudas, C., Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications (1995), Oxford University Press · Zbl 0886.90106
[14] K. Forbus, Qualitative Process Theory, Technical Report 789, MIT Artificial Intelligence Laboratory, 1984.; K. Forbus, Qualitative Process Theory, Technical Report 789, MIT Artificial Intelligence Laboratory, 1984.
[15] Gama, C.; Evsukoff, A.; Weber, P.; Ebecken, N., Parameter identification of recurrent fuzzy systems with fuzzy finite-state automata representation, IEEE Trans. Fuzzy Syst., 16, 1, 213-224 (2008)
[16] Gomez-Skarmeta, A.; Jimenez, F., Fuzzy modeling with hybrid systems, Fuzzy Sets Syst., 104, 2, 199-208 (1999)
[17] V. Gorrini, H. Bersini, Recurrent fuzzy systems, in: Proceedings of the IEEE International Conference on Fuzzy Systems, Orlando, USA, 1994, pp. 193-198.; V. Gorrini, H. Bersini, Recurrent fuzzy systems, in: Proceedings of the IEEE International Conference on Fuzzy Systems, Orlando, USA, 1994, pp. 193-198.
[18] Grüne, L.; Müller, F.; Jerg, S.; Junge, O.; Post, M.; Lehmann, D.; Lunze, J., Two complementary approaches to event-based control, at-Automatisierungstechnik, 58, 4, 173-182 (2010)
[19] ILOG Inc., ILOG S.A., Gentilly Cedex, France, CPLEX 6.5 User Manual, 1999.; ILOG Inc., ILOG S.A., Gentilly Cedex, France, CPLEX 6.5 User Manual, 1999.
[20] Ishibuchi, H.; Nozaki, K.; Yamamoto, N.; Tanaka, H., Selecting fuzzy if-then rules for classification problems using genetic algorithms, IEEE Trans. Fuzzy Syst., 3, 3, 260-270 (1995)
[21] Ishibuchi, H.; Yamamoto, T., Fuzzy rule selection by multiobjective genetic local search algorithms and rule evaluation measures in data mining, Fuzzy Sets Syst., 141, 1, 59-88 (2004) · Zbl 1081.68091
[22] Jang, J., Anfis: adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Man Cybern.—Part B: Cybern., 23, 3, 665-685 (1993)
[23] Juang, C.-F., A tsk-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithm, IEEE Trans. Fuzzy Syst., 10, 2, 155-170 (2002)
[24] Juang, C.-F.; Chang, P.-H., Designing fuzzy-rule-based systems using continuous ant-colony optimization, IEEE Trans. Fuzzy Syst., 18, 1, 138-149 (2010)
[25] Juang, C.-F.; Lin, C., A recurrent self-organizing neural fuzzy inference network, IEEE Trans. Neural Networks, 10, 4, 828-845 (1999)
[26] Kempf, R.; Adamy, J., Equilibria of recurrent fuzzy systems, Fuzzy Sets Syst., 140, 2, 231-257 (2003) · Zbl 1031.93116
[27] Kempf, R.; Adamy, J., Sequential pattern recognition employing recurrent fuzzy systems, Fuzzy Sets Syst., 146, 3, 451-472 (2004) · Zbl 1068.68132
[28] Kickert, W., Towards an analysis of linguistic modeling, Fuzzy Sets Syst., 2, 293-307 (1979) · Zbl 0413.68089
[29] Kuipers, B., Qualitative simulation, Artif. Intell., 29, 289-338 (1986) · Zbl 0624.68098
[30] Lee, C.-H.; Teng, C.-C., Identification and control of dynamic systems using recurrent fuzzy neural networks, IEEE Trans. Syst. Man Cybern., 8, 4, 349-366 (2000)
[31] Li, C.; Cheng, K.-H., Recurrent neuro-fuzzy hybrid-learning approach to accurate system modeling, Fuzzy Sets Syst., 158, 2, 194-212 (2007) · Zbl 1110.93030
[32] Lin, C.; Chen, C., Identification and prediction using recurrent compensatory neuro-fuzzy systems, Fuzzy Sets Syst., 150, 2, 307-330 (2005) · Zbl 1067.68129
[33] Lunze, J., Qualitative modelling of dynamical systems: motivation, methods, and prospective applications, Math. Comput. Simulation, 46, 465-483 (1998)
[34] Mastorocostas, P.; Theocharis, J., A recurrent fuzzy-neural model for dynamic system identification, IEEE Trans. Syst. Man Cybern.—Part B: Cybern., 32, 2, 176-190 (2002)
[35] Nauck, D.; Kruse, R., Neuro-fuzzy systems for function approximation, Fuzzy Sets Syst., 101, 2, 261-271 (1999) · Zbl 0937.93029
[36] Nürnberger, A.; Kruse, R., A neuro-fuzzy approach to optimize hierarchical recurrent fuzzy systems, Fuzzy Optim. Decision Making, 1, 2, 221-248 (2002) · Zbl 1092.68648
[37] Pulkkinen, P.; Koivisto, H., Fuzzy classifier identification using decision tree and multiobjective evolutionary algorithms, Int. J. Approximate Reasoning, 48, 2, 526-543 (2008)
[38] N. Sahinidis, Baron—Branch and Reduce Optimization Navigator, Technical Report, University of Illinois at Urbana-Champaign, Department of Chemical Engineering, Urbana, USA, 2000.; N. Sahinidis, Baron—Branch and Reduce Optimization Navigator, Technical Report, University of Illinois at Urbana-Champaign, Department of Chemical Engineering, Urbana, USA, 2000.
[39] A. Schwung, Modellierung und Fehlerdiagnose mit rekurrenten Fuzzy-Systemen, Dissertation, Technische Universität Darmstadt, 2011 (in German).; A. Schwung, Modellierung und Fehlerdiagnose mit rekurrenten Fuzzy-Systemen, Dissertation, Technische Universität Darmstadt, 2011 (in German).
[40] Schwung, A.; Ortseifen, A.; Adamy, J., Anwendung zeitdiskreter rekurrenter Fuzzy Systeme zur Fehlerdiagnose, at-Automatisierungstechnik, 58, 6, 322-331 (2010)
[41] Sugeno, M.; Yasukawa, T., A fuzzy-logic-based approach to qualitative modeling, IEEE Trans. Fuzzy Syst., 1, 1, 7-31 (1993)
[42] Surmann, H.; Maniadakis, M., Learning feed-forward and recurrent fuzzy systems: a genetic approach, J. Syst. Archit., 47, 7, 649-662 (2001)
[43] Theocharis, J., A high-order recurrent neuro-fuzzy system with internal dynamics: application to the adaptive noise cancellation, Fuzzy Sets Syst., 157, 4, 471-500 (2006)
[44] Tyler, M.; Morari, M., Propositional logic in control and monitoring problems, Automatica, 35, 4, 565-582 (1999) · Zbl 0925.93245
[45] Weld, D.; deKleer, J., Readings in Qualitative Reasoning (1990), Morgan Kaufmann
[46] Wolsey, L., Integer Programming (1998), John Wiley & Sons · Zbl 0930.90072
[47] Zadeh, L., Optimality and non-scalar-valued performance criteria, IEEE Trans. Autom. Control, 8, 1, 59-60 (1963)
[48] Zadeh, L., Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst. Man Cybern., 3, 28-44 (1973) · Zbl 0273.93002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.