Qin, Dongdong; Tang, Xianhua On the planar Choquard equation with indefinite potential and critical exponential growth. (English) Zbl 07332786 J. Differ. Equations 285, 40-98 (2021). MSC: 35J20 35J62 35Q55 PDF BibTeX XML Cite \textit{D. Qin} and \textit{X. Tang}, J. Differ. Equations 285, 40--98 (2021; Zbl 07332786) Full Text: DOI
Liang, Wenning; Zhai, Chengbo Solutions to a gauged Schrödinger equation with concave-convex nonlinearities without (AR) condition. (English) Zbl 07332654 Appl. Anal. 100, No. 6, 1286-1300 (2021). MSC: 35J20 35J60 PDF BibTeX XML Cite \textit{W. Liang} and \textit{C. Zhai}, Appl. Anal. 100, No. 6, 1286--1300 (2021; Zbl 07332654) Full Text: DOI
Romijn, L. B.; ten Thije Boonkkamp, J. H. M.; Anthonissen, M. J. H.; Jzerman, W. L. An iterative least-squares method for generated Jacobian equations in freeform optical design. (English) Zbl 07331000 SIAM J. Sci. Comput. 43, No. 2, B298-B322 (2021). MSC: 35J66 35J96 49K20 65K10 65N99 PDF BibTeX XML Cite \textit{L. B. Romijn} et al., SIAM J. Sci. Comput. 43, No. 2, B298--B322 (2021; Zbl 07331000) Full Text: DOI
Zhang, Hui; Xu, Junxiang Existence and multiplicity of semiclassical states for Gross-Pitaevskii equation in dipolar quantum gases. (English) Zbl 07330391 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 71, 22 p. (2021). MSC: 35J20 35J60 35A15 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{J. Xu}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 71, 22 p. (2021; Zbl 07330391) Full Text: DOI
Alves, Claudianor O.; Nemer, Rodrigo C. M.; Soares, Sergio H. Monari The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. (English) Zbl 07327289 Commun. Pure Appl. Anal. 20, No. 1, 449-465 (2021). MSC: 58E05 35A15 35Q55 35J15 PDF BibTeX XML Cite \textit{C. O. Alves} et al., Commun. Pure Appl. Anal. 20, No. 1, 449--465 (2021; Zbl 07327289) Full Text: DOI
Ardila, Alex H.; Cardoso, Mykael Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. (English) Zbl 07327273 Commun. Pure Appl. Anal. 20, No. 1, 101-119 (2021). MSC: 35Q55 35Q41 35B44 35B35 35A15 35A01 PDF BibTeX XML Cite \textit{A. H. Ardila} and \textit{M. Cardoso}, Commun. Pure Appl. Anal. 20, No. 1, 101--119 (2021; Zbl 07327273) Full Text: DOI
Schätzler, Leah The obstacle problem for degenerate doubly nonlinear equations of porous medium type. (English) Zbl 07326835 Ann. Mat. Pura Appl. (4) 200, No. 2, 641-683 (2021). MSC: 35K86 35K20 35K65 49J40 49J45 PDF BibTeX XML Cite \textit{L. Schätzler}, Ann. Mat. Pura Appl. (4) 200, No. 2, 641--683 (2021; Zbl 07326835) Full Text: DOI
Precup, Radu; Rodríguez-López, Jorge A unified variational approach to discontinuous differential equations. (English) Zbl 07321619 Mediterr. J. Math. 18, No. 2, Paper No. 62, 15 p. (2021). MSC: 34A36 34B15 47J30 47H04 PDF BibTeX XML Cite \textit{R. Precup} and \textit{J. Rodríguez-López}, Mediterr. J. Math. 18, No. 2, Paper No. 62, 15 p. (2021; Zbl 07321619) Full Text: DOI
Knopf, Patrik; Signori, Andrea On the nonlocal Cahn-Hilliard equation with nonlocal dynamic boundary condition and boundary penalization. (English) Zbl 07319432 J. Differ. Equations 280, 236-291 (2021). MSC: 35A01 35A02 35A15 35K61 35B40 35B41 45K05 47H05 47J35 80A22 PDF BibTeX XML Cite \textit{P. Knopf} and \textit{A. Signori}, J. Differ. Equations 280, 236--291 (2021; Zbl 07319432) Full Text: DOI
Khan, Yasir Novel soliton solutions of the fractal Biswas-Milovic model arising in Photonics. (English) Zbl 1455.35235 Int. J. Mod. Phys. B 35, No. 1, Article ID 2150001, 15 p. (2021). MSC: 35Q55 35R11 35C08 PDF BibTeX XML Cite \textit{Y. Khan}, Int. J. Mod. Phys. B 35, No. 1, Article ID 2150001, 15 p. (2021; Zbl 1455.35235) Full Text: DOI
Xiong, Qi; Zhang, Zhenqiu Gradient potential estimates for elliptic obstacle problems. (English) Zbl 07315366 J. Math. Anal. Appl. 495, No. 1, Article ID 124698, 32 p. (2021). MSC: 35J62 35J87 PDF BibTeX XML Cite \textit{Q. Xiong} and \textit{Z. Zhang}, J. Math. Anal. Appl. 495, No. 1, Article ID 124698, 32 p. (2021; Zbl 07315366) Full Text: DOI
Guo, Helin; Zhou, Huan-Song Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. (English) Zbl 07314900 Discrete Contin. Dyn. Syst. 41, No. 3, 1023-1050 (2021). MSC: 35J60 35A02 35J20 PDF BibTeX XML Cite \textit{H. Guo} and \textit{H.-S. Zhou}, Discrete Contin. Dyn. Syst. 41, No. 3, 1023--1050 (2021; Zbl 07314900) Full Text: DOI
Laurençot, Philippe; Walker, Christoph Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. (English) Zbl 07314577 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 677-694 (2021). MSC: 35K86 74H20 35Q74 74M25 35M86 35K25 PDF BibTeX XML Cite \textit{P. Laurençot} and \textit{C. Walker}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 677--694 (2021; Zbl 07314577) Full Text: DOI
Fang, Xiang-Dong Multiple solutions of higher topological type for semiclassical nonlinear Schrödinger equations. (English) Zbl 07309485 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 10, 27 p. (2021). MSC: 35J10 35Q55 35A01 35A15 PDF BibTeX XML Cite \textit{X.-D. Fang}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 10, 27 p. (2021; Zbl 07309485) Full Text: DOI
Faraci, F.; Silva, K. On the Brezis-Nirenberg problem for a Kirchhoff type equation in high dimension. (English) Zbl 07309166 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 22, 33 p. (2021). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J60 35B33 35A01 35J20 PDF BibTeX XML Cite \textit{F. Faraci} and \textit{K. Silva}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 22, 33 p. (2021; Zbl 07309166) Full Text: DOI
Ji, Chao; Rădulescu, Vicenţiu D. Multi-bump solutions for the nonlinear magnetic Schrödinger equation with exponential critical growth in \(\mathbb{R}^2 \). (English) Zbl 07307695 Manuscr. Math. 164, No. 3-4, 509-542 (2021). Reviewer: Patrick Winkert (Berlin) MSC: 35J60 35Q55 35B33 PDF BibTeX XML Cite \textit{C. Ji} and \textit{V. D. Rădulescu}, Manuscr. Math. 164, No. 3--4, 509--542 (2021; Zbl 07307695) Full Text: DOI
Zhang, Jian; Lou, Zhenluo Existence and concentration behavior of solutions to Kirchhoff type equation with steep potential well and critical growth. (English) Zbl 07306518 J. Math. Phys. 62, No. 1, 011506, 14 p. (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q55 35J60 35A15 35A01 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{Z. Lou}, J. Math. Phys. 62, No. 1, 011506, 14 p. (2021; Zbl 07306518) Full Text: DOI
Borrelli, William; Carlone, Raffaele; Tentarelli, Lorenzo On the nonlinear Dirac equation on noncompact metric graphs. (English) Zbl 07303711 J. Differ. Equations 278, 326-357 (2021). MSC: 35Q41 35Q55 35B25 35R02 81Q35 47J07 58E07 47A10 PDF BibTeX XML Cite \textit{W. Borrelli} et al., J. Differ. Equations 278, 326--357 (2021; Zbl 07303711) Full Text: DOI
Cao, Daomin; Jia, Huifang; Luo, Xiao Standing waves with prescribed mass for the Schrödinger equations with van der Waals type potentials. (English) Zbl 07297749 J. Differ. Equations 276, 228-263 (2021). MSC: 35J60 35R11 35Q55 35A01 35B40 35B35 PDF BibTeX XML Cite \textit{D. Cao} et al., J. Differ. Equations 276, 228--263 (2021; Zbl 07297749) Full Text: DOI
Fukaya, Noriyoshi; Hayashi, Masayuki Instability of algebraic standing waves for nonlinear Schrödinger equations with double power nonlinearities. (English) Zbl 07291903 Trans. Am. Math. Soc. 374, No. 2, 1421-1447 (2021). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q41 35A15 35B35 PDF BibTeX XML Cite \textit{N. Fukaya} and \textit{M. Hayashi}, Trans. Am. Math. Soc. 374, No. 2, 1421--1447 (2021; Zbl 07291903) Full Text: DOI
D. D. Qin, Dongdong; Rădulescu, Vicenţiu D.; X. H. Tang, Xianhua Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations. (English) Zbl 07291353 J. Differ. Equations 275, 652-683 (2021). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q40 35J20 35J60 46N50 PDF BibTeX XML Cite \textit{D. D. D. Qin} et al., J. Differ. Equations 275, 652--683 (2021; Zbl 07291353) Full Text: DOI
Zhang, Jian; Lü, Weiran; Lou, Zhenluo Multiplicity and concentration behavior of solutions of the critical Choquard equation. (English) Zbl 1455.35096 Appl. Anal. 100, No. 1, 167-190 (2021). MSC: 35J60 35A15 PDF BibTeX XML Cite \textit{J. Zhang} et al., Appl. Anal. 100, No. 1, 167--190 (2021; Zbl 1455.35096) Full Text: DOI
Deng, Yinbin; Guo, Yujin; Xu, Liangshun Limit behavior of attractive Bose-Einstein condensates passing an obstacle. (English) Zbl 1455.35065 J. Differ. Equations 272, 370-398 (2021). MSC: 35J10 35Q55 35J91 35J20 PDF BibTeX XML Cite \textit{Y. Deng} et al., J. Differ. Equations 272, 370--398 (2021; Zbl 1455.35065) Full Text: DOI
Feng, Xiaojing Nontrivial solution for Schrödinger-Poisson equations involving the fractional Laplacian with critical exponent. (English) Zbl 1454.35137 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 10, 18 p. (2021). MSC: 35J60 35R11 35B33 35A15 35A01 PDF BibTeX XML Cite \textit{X. Feng}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 10, 18 p. (2021; Zbl 1454.35137) Full Text: DOI
El Mokhtar, Mohammed El Mokhtar Ould; Almuhiameed, Zeid I. On singular elliptic equation with singular nonlinearities, Hardy-Sobolev critical exponent and weights. (English) Zbl 07332059 Differ. Equ. Appl. 12, No. 4, 397-410 (2020). MSC: 35J66 35J55 35B40 PDF BibTeX XML Cite \textit{M. E. M. O. El Mokhtar} and \textit{Z. I. Almuhiameed}, Differ. Equ. Appl. 12, No. 4, 397--410 (2020; Zbl 07332059) Full Text: DOI
Min, Dandan; Chen, Fangqi Existence of solutions for a fractional advection-dispersion equation with impulsive effects via variational approach. (English) Zbl 07331946 J. Appl. Anal. Comput. 10, No. 3, 1005-1023 (2020). MSC: 26A33 35A15 34B15 PDF BibTeX XML Cite \textit{D. Min} and \textit{F. Chen}, J. Appl. Anal. Comput. 10, No. 3, 1005--1023 (2020; Zbl 07331946) Full Text: DOI
Gamboa, Janete Soares; Zhou, Jiazheng Antisymmetric solutions for a class generalized quasilinear Schrödinger equations. (English) Zbl 07331856 Differ. Equ. Appl. 12, No. 1, 29-45 (2020). MSC: 35J20 35J60 35D05 PDF BibTeX XML Cite \textit{J. S. Gamboa} and \textit{J. Zhou}, Differ. Equ. Appl. 12, No. 1, 29--45 (2020; Zbl 07331856) Full Text: DOI
Bieganowski, Bartosz; Secchi, Simone Non-local to local transition for ground states of fractional Schrödinger equations on \(\mathbb{R}^N\). (English) Zbl 07328267 J. Fixed Point Theory Appl. 22, No. 3, Paper No. 76, 15 p. (2020). MSC: 35Q55 35A15 35R11 35R01 PDF BibTeX XML Cite \textit{B. Bieganowski} and \textit{S. Secchi}, J. Fixed Point Theory Appl. 22, No. 3, Paper No. 76, 15 p. (2020; Zbl 07328267) Full Text: DOI
Fonda, Alessandro; Mawhin, Jean; Willem, Michel Multiple periodic solutions of infinite-dimensional pendulum-like equations. (English) Zbl 07326980 Pure Appl. Funct. Anal. 5, No. 4, 951-963 (2020). MSC: 34C25 34G20 47J30 PDF BibTeX XML Cite \textit{A. Fonda} et al., Pure Appl. Funct. Anal. 5, No. 4, 951--963 (2020; Zbl 07326980) Full Text: Link
Kang, Jincai; Tang, Chunlei Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. (English) Zbl 07326934 Commun. Pure Appl. Anal. 19, No. 11, 5239-5252 (2020). MSC: 35A10 35Q55 35A01 35A15 PDF BibTeX XML Cite \textit{J. Kang} and \textit{C. Tang}, Commun. Pure Appl. Anal. 19, No. 11, 5239--5252 (2020; Zbl 07326934) Full Text: DOI
Liu, Chuangye; Tian, Rushun Normalized solutions for 3-coupled nonlinear Schrödinger equations. (English) Zbl 07326928 Commun. Pure Appl. Anal. 19, No. 11, 5115-5130 (2020). MSC: 35J10 35Q55 35A01 35J50 PDF BibTeX XML Cite \textit{C. Liu} and \textit{R. Tian}, Commun. Pure Appl. Anal. 19, No. 11, 5115--5130 (2020; Zbl 07326928) Full Text: DOI
He, Xiaoming; Zhao, Xin; Zou, Wenming Maximum principles for a fully nonlinear nonlocal equation on unbounded domains. (English) Zbl 07326897 Commun. Pure Appl. Anal. 19, No. 9, 4387-4399 (2020). MSC: 35J60 35J20 35R11 35S15 PDF BibTeX XML Cite \textit{X. He} et al., Commun. Pure Appl. Anal. 19, No. 9, 4387--4399 (2020; Zbl 07326897) Full Text: DOI
Cai, Ziyi; He, Haiyang Asymptotic behavior of solutions for nonlinear integral equations with Hénon type on the unit ball. (English) Zbl 07326894 Commun. Pure Appl. Anal. 19, No. 9, 4349-4362 (2020). MSC: 45G05 47J30 35B44 PDF BibTeX XML Cite \textit{Z. Cai} and \textit{H. He}, Commun. Pure Appl. Anal. 19, No. 9, 4349--4362 (2020; Zbl 07326894) Full Text: DOI
Schätzler, Leah The obstacle problem for singular doubly nonlinear equations of porous medium type. (English) Zbl 07326803 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 31, No. 3, 503-548 (2020). MSC: 35K86 35K65 49J40 49J45 PDF BibTeX XML Cite \textit{L. Schätzler}, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 31, No. 3, 503--548 (2020; Zbl 07326803) Full Text: DOI
Chen, Sitong; Rădulescu, Vicenţiu D.; Tang, Xianhua; Zhang, Binlin Ground state solutions for quasilinear Schrödinger equations with variable potential and superlinear reaction. (English) Zbl 07318493 Rev. Mat. Iberoam. 36, No. 5, 1549-1570 (2020). Reviewer: Patrick Winkert (Berlin) MSC: 35J20 35J60 35Q55 PDF BibTeX XML Cite \textit{S. Chen} et al., Rev. Mat. Iberoam. 36, No. 5, 1549--1570 (2020; Zbl 07318493) Full Text: DOI
Long, Wei; Tang, Zhongwei; Yang, Sudan Many synchronized vector solutions for a Bose-Einstein system. (English) Zbl 07316381 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3293-3320 (2020). MSC: 35J47 35J10 35Q55 35B09 35A01 35J20 PDF BibTeX XML Cite \textit{W. Long} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3293--3320 (2020; Zbl 07316381) Full Text: DOI
Yang, Jianfu; Yang, Jinge On supercritical nonlinear Schrödinger equations with ellipse-shaped potentials. (English) Zbl 07316377 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3187-3215 (2020). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J20 35Q55 35A01 35J20 PDF BibTeX XML Cite \textit{J. Yang} and \textit{J. Yang}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3187--3215 (2020; Zbl 07316377) Full Text: DOI
Lyons, Jeffrey W. Differentiation with respect to parameters of solutions of nonlocal boundary value problems for higher-order differential equations. (English) Zbl 1454.34043 Int. J. Difference Equ. 15, No. 2, 473-481 (2020). MSC: 34B10 34B15 PDF BibTeX XML Cite \textit{J. W. Lyons}, Int. J. Difference Equ. 15, No. 2, 473--481 (2020; Zbl 1454.34043) Full Text: Link
Safarova, Zumrud R. On a finding the coefficient of one nonlinear wave equation in the mixed problem. (English) Zbl 07308273 Arch. Control Sci. 30, No. 2, 199-212 (2020). MSC: 49J20 49J40 PDF BibTeX XML Cite \textit{Z. R. Safarova}, Arch. Control Sci. 30, No. 2, 199--212 (2020; Zbl 07308273) Full Text: DOI
Li, Anran; Wang, Peiting; Wei, Chongqing Ground state solutions for nonlinearly coupled systems of Choquard type with lower critical exponent. (English) Zbl 07307869 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 56, 18 p. (2020). MSC: 35J10 35J60 35J65 PDF BibTeX XML Cite \textit{A. Li} et al., Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 56, 18 p. (2020; Zbl 07307869) Full Text: DOI
Shang, Tingting; Liang, Ruixi Infinitely many solutions for a quasilinear Schrödinger equation with Hardy potentials. (English) Zbl 07307863 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 50, 18 p. (2020). MSC: 35J20 35J60 PDF BibTeX XML Cite \textit{T. Shang} and \textit{R. Liang}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 50, 18 p. (2020; Zbl 07307863) Full Text: DOI
Nguyen, Nghiem V.; Liu, Chuangye Some models for the interaction of long and short waves in dispersive media. I: Derivation. (English) Zbl 07302963 Water Waves 2, No. 2, 327-359 (2020). MSC: 35Q31 35Q55 35Q41 35Q53 35A15 35B35 76B15 PDF BibTeX XML Cite \textit{N. V. Nguyen} and \textit{C. Liu}, Water Waves 2, No. 2, 327--359 (2020; Zbl 07302963) Full Text: DOI
Khan, Zubair; Khushbu; Asif, Mohd. Generalized \(H\)-resolvent equation with \(H-\phi-\eta\) accretive operator. (English) Zbl 07296937 South East Asian J. Math. Math. Sci. 16, No. 2, 57-70 (2020). MSC: 49J40 47J20 47H06 49J53 PDF BibTeX XML Cite \textit{Z. Khan} et al., South East Asian J. Math. Math. Sci. 16, No. 2, 57--70 (2020; Zbl 07296937) Full Text: Link
Bartsch, Thomas; Liu, Yanyan; Liu, Zhaoli Normalized solutions for a class of nonlinear Choquard equations. (English) Zbl 07296586 SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 34, 24 p. (2020). Reviewer: Rodica Luca (Iaşi) MSC: 35J61 35A01 35J20 PDF BibTeX XML Cite \textit{T. Bartsch} et al., SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 34, 24 p. (2020; Zbl 07296586) Full Text: DOI
Lu, Huiqin; Qu, Xinmin; Wang, Jianing Sign-changing and constant-sign solutions for elliptic problems involving nonlocal integro-differential operators. (English) Zbl 1455.35092 SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 33, 16 p. (2020). MSC: 35J60 35J25 35A01 PDF BibTeX XML Cite \textit{H. Lu} et al., SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 33, 16 p. (2020; Zbl 1455.35092) Full Text: DOI
Wang, Yang; Liu, Yansheng Positive and negative solutions for the nonlinear fractional Kirchhoff equation in \(\mathbb{R}^N \). (English) Zbl 1455.35094 SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 25, 19 p. (2020). MSC: 35J60 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{Y. Liu}, SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 25, 19 p. (2020; Zbl 1455.35094) Full Text: DOI
Chen, Yusong; Chang, Hejie Existence and concentration of solutions for an indefinite Schrödinger-Kirchhoff system. (English) Zbl 07295052 Chin. Q. J. Math. 35, No. 1, 37-45 (2020). MSC: 35J05 35J20 35J60 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{H. Chang}, Chin. Q. J. Math. 35, No. 1, 37--45 (2020; Zbl 07295052) Full Text: DOI
Sofonea, Mircea; Xiao, Yi-bin Tykhonov well-posedness of a viscoplastic contact problem. (English) Zbl 1452.74086 Evol. Equ. Control Theory 9, No. 4, 1167-1185 (2020). MSC: 74M15 74M10 74C10 74G30 49J40 35M86 PDF BibTeX XML Cite \textit{M. Sofonea} and \textit{Y.-b. Xiao}, Evol. Equ. Control Theory 9, No. 4, 1167--1185 (2020; Zbl 1452.74086) Full Text: DOI
Liu, Yongjian; Liu, Zhenhai; Motreanu, Dumitru Differential inclusion problems with convolution and discontinuous nonlinearities. (English) Zbl 07293862 Evol. Equ. Control Theory 9, No. 4, 1057-1071 (2020). Reviewer: Igor Bock (Bratislava) MSC: 35J92 35J87 49J52 PDF BibTeX XML Cite \textit{Y. Liu} et al., Evol. Equ. Control Theory 9, No. 4, 1057--1071 (2020; Zbl 07293862) Full Text: DOI
Manafian, Jalil; Ilhan, Onur Alp; Alizadeh, As’ad; Mohammed, Sizar Abid Multiple rogue wave and solitary solutions for the generalized BK equation via Hirota bilinear and SIVP schemes arising in fluid mechanics. (English) Zbl 1451.76026 Commun. Theor. Phys. 72, No. 7, Article ID 075002, 13 p. (2020). MSC: 76B15 35Q53 35C08 35Q51 PDF BibTeX XML Cite \textit{J. Manafian} et al., Commun. Theor. Phys. 72, No. 7, Article ID 075002, 13 p. (2020; Zbl 1451.76026) Full Text: DOI
Yun, Yongzhen; An, Tianqing; Ye, Guoju; Zuo, Jiabin Existence of solutions for asymptotically periodic fractional Schrödinger equation with critical growth. (English) Zbl 1455.35095 Math. Methods Appl. Sci. 43, No. 17, 10081-10097 (2020). MSC: 35J60 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{Y. Yun} et al., Math. Methods Appl. Sci. 43, No. 17, 10081--10097 (2020; Zbl 1455.35095) Full Text: DOI
Wang, Youjun; Zhang, Yimin Positive solutions for a relativistic nonlinear Schrödinger equation with square-root nonlinearity. (English) Zbl 1454.35354 J. Math. Phys. 61, No. 11, 111509, 14 p. (2020). MSC: 35Q55 35A15 78A60 35B09 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{Y. Zhang}, J. Math. Phys. 61, No. 11, 111509, 14 p. (2020; Zbl 1454.35354) Full Text: DOI
Molica Bisci, Giovanni A group-theoretical approach for nonlinear Schrödinger equations. (English) Zbl 1454.49005 Adv. Calc. Var. 13, No. 4, 403-423 (2020). MSC: 49J20 35J91 35J60 35A01 35D30 PDF BibTeX XML Cite \textit{G. Molica Bisci}, Adv. Calc. Var. 13, No. 4, 403--423 (2020; Zbl 1454.49005) Full Text: DOI
Heidarkhani, S.; De Araujo, A. L. A.; Afrouzi, G. A.; Moradi, S. Existence of three weak solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions. (English) Zbl 1455.35091 Fixed Point Theory 21, No. 2, 525-548 (2020). MSC: 35J60 35A01 35A15 PDF BibTeX XML Cite \textit{S. Heidarkhani} et al., Fixed Point Theory 21, No. 2, 525--548 (2020; Zbl 1455.35091) Full Text: Link
Kraus, Johannes; Nakov, Svetoslav; Repin, Sergey Reliable computer simulation methods for electrostatic biomolecular models based on the Poisson-Boltzmann equation. (English) Zbl 1451.65197 Comput. Methods Appl. Math. 20, No. 4, 643-676 (2020). MSC: 65N30 65N15 65N50 35R06 35J20 35J61 49M29 65J15 PDF BibTeX XML Cite \textit{J. Kraus} et al., Comput. Methods Appl. Math. 20, No. 4, 643--676 (2020; Zbl 1451.65197) Full Text: DOI
Musaeva, M. A. Variational method for determining the complex-valued coefficients of a nonlinear nonstationary Schrödinger-type equation. (English. Russian original) Zbl 1455.78012 Comput. Math. Math. Phys. 60, No. 11, 1923-1935 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 11, 1985-1997 (2020). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 78A46 78A60 81V10 35Q55 35Q41 35R30 35R25 35A15 65J20 49J20 PDF BibTeX XML Cite \textit{M. A. Musaeva}, Comput. Math. Math. Phys. 60, No. 11, 1923--1935 (2020; Zbl 1455.78012); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 11, 1985--1997 (2020) Full Text: DOI
Albu, A. F.; Evtushenko, Yu. G.; Zubov, V. I. Choice of finite-difference schemes in solving coefficient inverse problems. (English. Russian original) Zbl 1453.65288 Comput. Math. Math. Phys. 60, No. 10, 1589-1600 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 10, 1643-1655 (2020). MSC: 65M32 65M06 65K10 35K05 35Q79 PDF BibTeX XML Cite \textit{A. F. Albu} et al., Comput. Math. Math. Phys. 60, No. 10, 1589--1600 (2020; Zbl 1453.65288); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 10, 1643--1655 (2020) Full Text: DOI
Huang, Xiaomeng; Zhang, Yimin Existence and uniqueness of minimizers for \(L^2\)-constrained problems related to fractional Kirchhoff equation. (English) Zbl 1454.35086 Math. Methods Appl. Sci. 43, No. 15, 8763-8775 (2020). MSC: 35J20 35J60 35R11 35A01 35A02 PDF BibTeX XML Cite \textit{X. Huang} and \textit{Y. Zhang}, Math. Methods Appl. Sci. 43, No. 15, 8763--8775 (2020; Zbl 1454.35086) Full Text: DOI
Cheng, Rong; Wu, Yijia Remarks on infinitely many solutions for a class of Schrödinger equations with sublinear nonlinearity. (English) Zbl 1454.35069 Math. Methods Appl. Sci. 43, No. 15, 8527-8537 (2020). MSC: 35J10 35Q55 35A01 PDF BibTeX XML Cite \textit{R. Cheng} and \textit{Y. Wu}, Math. Methods Appl. Sci. 43, No. 15, 8527--8537 (2020; Zbl 1454.35069) Full Text: DOI
Ding, Yanheng; Gao, Fashun; Yang, Minbo Semiclassical states for Choquard type equations with critical growth: critical frequency case. (English) Zbl 1454.35085 Nonlinearity 33, No. 12, 6695-6728 (2020). MSC: 35J20 35J60 35B33 PDF BibTeX XML Cite \textit{Y. Ding} et al., Nonlinearity 33, No. 12, 6695--6728 (2020; Zbl 1454.35085) Full Text: DOI
Tang, Xianhua; Wei, Jiuyang; Chen, Sitong Nehari-type ground state solutions for a Choquard equation with lower critical exponent and local nonlinear perturbation. (English) Zbl 1454.35089 Math. Methods Appl. Sci. 43, No. 10, 6627-6638 (2020). MSC: 35J20 35J62 35Q55 PDF BibTeX XML Cite \textit{X. Tang} et al., Math. Methods Appl. Sci. 43, No. 10, 6627--6638 (2020; Zbl 1454.35089) Full Text: DOI
Chao, Xiaoqian; Liu, Wenbin; Shen, Tengfei Solvability of the boundary value problems for the elastic beam equations with impulsive effects crossing resonance points. (English) Zbl 07271514 Math. Methods Appl. Sci. 43, No. 10, 6324-6337 (2020). Reviewer: Jan Tomeček (Olomouc) MSC: 34B37 34B15 47J30 PDF BibTeX XML Cite \textit{X. Chao} et al., Math. Methods Appl. Sci. 43, No. 10, 6324--6337 (2020; Zbl 07271514) Full Text: DOI
Yang, Yunyan; Zhu, Xiaobao Mean field equations on a closed Riemannian surface with the action of an isometric group. (English) Zbl 1451.58009 Int. J. Math. 31, No. 9, Article ID 2050072, 26 p. (2020). MSC: 58J05 58E15 35J60 58J60 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{X. Zhu}, Int. J. Math. 31, No. 9, Article ID 2050072, 26 p. (2020; Zbl 1451.58009) Full Text: DOI
Xu, Liang; Li, Peiluan The existence of nontrivial solutions for an impulsive fractional differential equation with Dirichlet boundary conditions. (Chinese. English summary) Zbl 07267342 Math. Pract. Theory 50, No. 2, 235-242 (2020). MSC: 34B37 34A08 34A37 58E05 47J30 PDF BibTeX XML Cite \textit{L. Xu} and \textit{P. Li}, Math. Pract. Theory 50, No. 2, 235--242 (2020; Zbl 07267342)
Zhang, Xue; Sun, Yan; Luan, Shixia Existence of solutions for asymptotically linear Kirchhoff equations. (English) Zbl 07266978 J. Qufu Norm. Univ., Nat. Sci. 46, No. 2, 19-25 (2020). MSC: 35J60 PDF BibTeX XML Cite \textit{X. Zhang} et al., J. Qufu Norm. Univ., Nat. Sci. 46, No. 2, 19--25 (2020; Zbl 07266978) Full Text: DOI
Messenger, Daniel; Fetecau, Razvan C. Equilibria of an aggregation model with linear diffusion in domains with boundaries. (English) Zbl 1453.65373 Math. Models Methods Appl. Sci. 30, No. 4, 805-845 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 65M75 35K55 35B36 60H30 92C15 PDF BibTeX XML Cite \textit{D. Messenger} and \textit{R. C. Fetecau}, Math. Models Methods Appl. Sci. 30, No. 4, 805--845 (2020; Zbl 1453.65373) Full Text: DOI
Cho, Yumi; Scheven, Christoph Higher integrability in the obstacle problem for the fast diffusion equation. (English) Zbl 1452.35084 J. Math. Anal. Appl. 491, No. 2, Article ID 124365, 43 p. (2020). Reviewer: Vincenzo Vespri (Firenze) MSC: 35K86 35K65 35K20 35B45 35B65 PDF BibTeX XML Cite \textit{Y. Cho} and \textit{C. Scheven}, J. Math. Anal. Appl. 491, No. 2, Article ID 124365, 43 p. (2020; Zbl 1452.35084) Full Text: DOI
Jin, Qingfei Multiple sign-changing solutions for nonlinear Schrödinger equations with potential well. (English) Zbl 1454.35073 Appl. Anal. 99, No. 15, 2555-2570 (2020). MSC: 35J10 35J20 35B40 35A01 PDF BibTeX XML Cite \textit{Q. Jin}, Appl. Anal. 99, No. 15, 2555--2570 (2020; Zbl 1454.35073) Full Text: DOI
Do Ó, João Marcos; Souto, Marco; Ubilla, Pedro Stationary Kirchhoff equations involving critical growth and vanishing potential. (English) Zbl 07262083 ESAIM, Control Optim. Calc. Var. 26, Paper No. 74, 19 p. (2020). MSC: 35J20 35J60 35B33 PDF BibTeX XML Cite \textit{J. M. Do Ó} et al., ESAIM, Control Optim. Calc. Var. 26, Paper No. 74, 19 p. (2020; Zbl 07262083) Full Text: DOI
Ruzhansky, Michael; Tokmagambetov, Niyaz; Yessirkegenov, Nurgissa Best constants in Sobolev and Gagliardo-Nirenberg inequalities on graded groups and ground states for higher order nonlinear subelliptic equations. (English) Zbl 1453.35076 Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 175, 22 p. (2020). Reviewer: Said El Manouni (Berlin) MSC: 35J35 35G20 22E30 43A80 PDF BibTeX XML Cite \textit{M. Ruzhansky} et al., Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 175, 22 p. (2020; Zbl 1453.35076) Full Text: DOI
Djoko, Jules K.; Konlack, Virginie S.; Mbehou, Mohamed Stokes equations under nonlinear slip boundary conditions coupled with the heat equation: a priori error analysis. (English) Zbl 1452.65331 Numer. Methods Partial Differ. Equations 36, No. 1, 86-117 (2020). Reviewer: Murli Gupta (Washington, D. C.) MSC: 65N30 65N12 65N15 76D07 76M10 35K05 80A19 PDF BibTeX XML Cite \textit{J. K. Djoko} et al., Numer. Methods Partial Differ. Equations 36, No. 1, 86--117 (2020; Zbl 1452.65331) Full Text: DOI
Wei, Yunfeng; Chen, Caisheng; Yang, Hongwei; Yu, Hongwang Existence of weak solutions for quasilinear Schrödinger equations with a parameter. (English) Zbl 07254951 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 41, 20 p. (2020). MSC: 35J62 35J20 35Q55 PDF BibTeX XML Cite \textit{Y. Wei} et al., Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 41, 20 p. (2020; Zbl 07254951) Full Text: DOI
Soares Gamboa, Janete; Zhou, Jiazheng Antisymmetric solutions for a class of quasilinear defocusing Schrödinger equations. (English) Zbl 07254926 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 16, 18 p. (2020). MSC: 35J20 35J60 35D05 PDF BibTeX XML Cite \textit{J. Soares Gamboa} and \textit{J. Zhou}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 16, 18 p. (2020; Zbl 07254926) Full Text: DOI
Albuquerque, Francisco; Chen, Shang-Jie; Li, Lin Solitary wave of ground state type for a nonlinear Klein-Gordon equation coupled with Born-Infeld theory in \(\mathbb{R}^{2}\). (English) Zbl 07254922 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 12, 18 p. (2020). MSC: 35J60 35A23 35J50 PDF BibTeX XML Cite \textit{F. Albuquerque} et al., Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 12, 18 p. (2020; Zbl 07254922) Full Text: DOI
Zhao, Jian-Xun; Wang, Song An interior penalty approach to a large-scale discretized obstacle problem with nonlinear constraints. (English) Zbl 07250892 Numer. Algorithms 85, No. 2, 571-589 (2020). MSC: 65 90C33 65K10 49M30 PDF BibTeX XML Cite \textit{J.-X. Zhao} and \textit{S. Wang}, Numer. Algorithms 85, No. 2, 571--589 (2020; Zbl 07250892) Full Text: DOI
Molica Bisci, Giovanni; Rădulescu, Vicenţiu D. On the nonlinear Schrödinger equation on the Poincaré ball model. (English) Zbl 1447.58025 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 201, Article ID 111812, 18 p. (2020). MSC: 58J35 35J60 49J20 35A01 35R01 PDF BibTeX XML Cite \textit{G. Molica Bisci} and \textit{V. D. Rădulescu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 201, Article ID 111812, 18 p. (2020; Zbl 1447.58025) Full Text: DOI
Liang, Sihua; Repovš, Dušan D.; Zhang, Binlin Fractional magnetic Schrödinger-Kirchhoff problems with convolution and critical nonlinearities. (English) Zbl 1448.35128 Math. Methods Appl. Sci. 43, No. 5, 2473-2490 (2020). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J10 35J60 35R11 PDF BibTeX XML Cite \textit{S. Liang} et al., Math. Methods Appl. Sci. 43, No. 5, 2473--2490 (2020; Zbl 1448.35128) Full Text: DOI
Zhang, Jiafeng; Guo, Wei; Chu, Changmu; Suo, Hongmin Existence of solutions for a Schrödinger-Poisson system with critical nonlocal term and general nonlinearity. (English) Zbl 1447.81119 J. Funct. Spaces 2020, Article ID 2197207, 5 p. (2020). MSC: 81Q05 35J05 35G20 35A15 35A01 PDF BibTeX XML Cite \textit{J. Zhang} et al., J. Funct. Spaces 2020, Article ID 2197207, 5 p. (2020; Zbl 1447.81119) Full Text: DOI
Xiao, Lu; Geng, Qiuping; Wang, Jun; Zhu, Maochun Existence and stability of standing waves for the Choquard equation with partial confinement. (English) Zbl 1448.35211 Topol. Methods Nonlinear Anal. 55, No. 2, 451-474 (2020). MSC: 35J61 35J20 35Q55 49J40 PDF BibTeX XML Cite \textit{L. Xiao} et al., Topol. Methods Nonlinear Anal. 55, No. 2, 451--474 (2020; Zbl 1448.35211) Full Text: DOI Euclid
Liang, Sihua; Chung, Nguyen Thanh; Zhang, Binlin Multi-bump solutions for fractional Schrödinger equation with electromagnetic fields and critical nonlinearity. (English) Zbl 1448.35127 Adv. Differ. Equ. 25, No. 7-8, 423-456 (2020). MSC: 35J10 35R11 35J60 35A01 35A15 PDF BibTeX XML Cite \textit{S. Liang} et al., Adv. Differ. Equ. 25, No. 7--8, 423--456 (2020; Zbl 1448.35127) Full Text: Euclid
Figueiredo, Giovany M.; Siciliano, Gaetano Existence and asymptotic behaviour of solutions for a quasi-linear Schrödinger-Poisson system with a critical nonlinearity. (English) Zbl 1446.35193 Z. Angew. Math. Phys. 71, No. 4, Paper No. 130, 21 p. (2020). MSC: 35Q60 35Q55 35B40 35J10 35J50 35J92 35J60 35J61 PDF BibTeX XML Cite \textit{G. M. Figueiredo} and \textit{G. Siciliano}, Z. Angew. Math. Phys. 71, No. 4, Paper No. 130, 21 p. (2020; Zbl 1446.35193) Full Text: DOI
Chu, Changmu; Sun, Jiaojiao Multiplicity of positive solutions for a class of \(p\)-Kirchhoff equation with critical exponent. (English) Zbl 1447.35136 Ann. Funct. Anal. 11, No. 4, 1126-1140 (2020). MSC: 35J25 35J60 35B09 35B33 35A15 PDF BibTeX XML Cite \textit{C. Chu} and \textit{J. Sun}, Ann. Funct. Anal. 11, No. 4, 1126--1140 (2020; Zbl 1447.35136) Full Text: DOI
Abele, Daniel; Kleefeld, Andreas New numerical results for the optimization of Neumann eigenvalues. (English) Zbl 1448.65275 Constanda, Christian (ed.), Computational and analytic methods in science and engineering. Selected papers based on the presentations at the 19th international conference on computational and mathematical methods in science and engineering, CMMSE’19, Rota, Spain, June 30 – July 6, 2019. Cham: Birkhäuser. 1-20 (2020). MSC: 65R15 65K10 65F15 35P30 PDF BibTeX XML Cite \textit{D. Abele} and \textit{A. Kleefeld}, in: Computational and analytic methods in science and engineering. Selected papers based on the presentations at the 19th international conference on computational and mathematical methods in science and engineering, CMMSE'19, Rota, Spain, June 30 -- July 6, 2019. Cham: Birkhäuser. 1--20 (2020; Zbl 1448.65275) Full Text: DOI
Kalyakin, L. A.; Zvezdin, A. K.; Gareeva, Z. V. Asymptotic analysis of a multiferroic model. (English. Russian original) Zbl 1446.82088 Theor. Math. Phys. 203, No. 1, 457-468 (2020); translation from Teor. Mat. Fiz. 203, No. 1, 26-39 (2020). MSC: 82D45 34A34 PDF BibTeX XML Cite \textit{L. A. Kalyakin} et al., Theor. Math. Phys. 203, No. 1, 457--468 (2020; Zbl 1446.82088); translation from Teor. Mat. Fiz. 203, No. 1, 26--39 (2020) Full Text: DOI
He, Zhu; Cai, Jiaxiang; Shen, Bangyu Decoupled conservative schemes for computing dynamics of the strongly coupled nonlinear Schrödinger system. (English) Zbl 1448.37105 Appl. Numer. Math. 157, 276-290 (2020). MSC: 37M15 65P10 35Q55 PDF BibTeX XML Cite \textit{Z. He} et al., Appl. Numer. Math. 157, 276--290 (2020; Zbl 1448.37105) Full Text: DOI
Abbaszadeh, Mostafa; Dehghan, Mehdi; Khodadadian, Amirreza; Heitzinger, Clemens Error analysis of interpolating element free Galerkin method to solve non-linear extended Fisher-Kolmogorov equation. (English) Zbl 1446.65103 Comput. Math. Appl. 80, No. 1, 247-262 (2020). MSC: 65M60 65N30 65M06 65M12 65M15 65K10 35Q92 PDF BibTeX XML Cite \textit{M. Abbaszadeh} et al., Comput. Math. Appl. 80, No. 1, 247--262 (2020; Zbl 1446.65103) Full Text: DOI
Kalise, Dante; Kundu, Sudeep; Kunisch, Karl Robust feedback control of nonlinear PDEs by numerical approximation of high-dimensional Hamilton-Jacobi-Isaacs equations. (English) Zbl 1443.49041 SIAM J. Appl. Dyn. Syst. 19, No. 2, 1496-1524 (2020). MSC: 49N35 49K20 49L20 93B52 93B36 49M25 65K15 PDF BibTeX XML Cite \textit{D. Kalise} et al., SIAM J. Appl. Dyn. Syst. 19, No. 2, 1496--1524 (2020; Zbl 1443.49041) Full Text: DOI
Ghali, R. E.; Kabbaj, S. 2-Banach stability results for the radical cubic functional equation related to quadratic mapping. (English) Zbl 1442.39029 J. Linear Topol. Algebra 9, No. 1, 35-51 (2020). MSC: 39B52 39B82 39B62 47H14 47J20 47H10 PDF BibTeX XML Cite \textit{R. E. Ghali} and \textit{S. Kabbaj}, J. Linear Topol. Algebra 9, No. 1, 35--51 (2020; Zbl 1442.39029) Full Text: Link
Guo, Zihua; Ning, Cui; Wu, Yifei Instability of the solitary wave solutions for the generalized derivative nonlinear Schrödinger equation in the critical frequency case. (English) Zbl 1442.35420 Math. Res. Lett. 27, No. 2, 339-375 (2020). MSC: 35Q55 35A15 35B35 35C08 PDF BibTeX XML Cite \textit{Z. Guo} et al., Math. Res. Lett. 27, No. 2, 339--375 (2020; Zbl 1442.35420) Full Text: DOI
Maia, Liliane A.; Soares, Mayra; Ruviaro, Ricardo Non-cooperative elliptic systems modeling interactions of Bose-Einstein condensates in \(\mathbb{R}^N\). (English) Zbl 1442.35087 Z. Angew. Math. Phys. 71, No. 4, Paper No. 105, 20 p. (2020). MSC: 35J10 35J47 35J50 35P30 PDF BibTeX XML Cite \textit{L. A. Maia} et al., Z. Angew. Math. Phys. 71, No. 4, Paper No. 105, 20 p. (2020; Zbl 1442.35087) Full Text: DOI
de Oliveira, F. R.; Ferreira, O. P. Inexact Newton method with feasible inexact projections for solving constrained smooth and nonsmooth equations. (English) Zbl 1435.65094 Appl. Numer. Math. 156, 63-76 (2020). MSC: 65K05 90C30 65H10 90C33 PDF BibTeX XML Cite \textit{F. R. de Oliveira} and \textit{O. P. Ferreira}, Appl. Numer. Math. 156, 63--76 (2020; Zbl 1435.65094) Full Text: DOI
Arutyunov, Aram V.; Izmailov, Alexey F.; Zhukovskiy, Sergey E. Continuous selections of solutions for locally Lipschitzian equations. (English) Zbl 07211746 J. Optim. Theory Appl. 185, No. 3, 679-699 (2020). Reviewer: Rita Pini (Milano) MSC: 47J05 47J07 49J52 49J53 58C15 PDF BibTeX XML Cite \textit{A. V. Arutyunov} et al., J. Optim. Theory Appl. 185, No. 3, 679--699 (2020; Zbl 07211746) Full Text: DOI
Okabe, Shinya; Yoshizawa, Kensuke The obstacle problem for a fourth order semilinear parabolic equation. (English) Zbl 1443.35065 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 198, Article ID 111902, 22 p. (2020). MSC: 35K52 35B44 35K86 35K91 49J40 74H20 PDF BibTeX XML Cite \textit{S. Okabe} and \textit{K. Yoshizawa}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 198, Article ID 111902, 22 p. (2020; Zbl 1443.35065) Full Text: DOI
Barilla, David; Caristi, Giuseppe; Heidarkhani, Shapour; Moradi, Shahin Generalized Yamabe equations on Riemannian manifolds and applications to Emden-Fowler problems. (English) Zbl 1441.35120 Quaest. Math. 43, No. 4, 547-567 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 35J60 35A01 58J05 PDF BibTeX XML Cite \textit{D. Barilla} et al., Quaest. Math. 43, No. 4, 547--567 (2020; Zbl 1441.35120) Full Text: DOI
Luo, Huxiao Nontrivial solutions for nonlinear Schrödinger-Choquard equations with critical exponents. (English) Zbl 1442.35129 Appl. Math. Lett. 107, Article ID 106422, 6 p. (2020). MSC: 35J61 35J10 35J20 PDF BibTeX XML Cite \textit{H. Luo}, Appl. Math. Lett. 107, Article ID 106422, 6 p. (2020; Zbl 1442.35129) Full Text: DOI
Soave, Nicola Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. (English) Zbl 1440.35311 J. Funct. Anal. 279, No. 6, Article ID 108610, 42 p. (2020). MSC: 35Q55 35J20 35J60 PDF BibTeX XML Cite \textit{N. Soave}, J. Funct. Anal. 279, No. 6, Article ID 108610, 42 p. (2020; Zbl 1440.35311) Full Text: DOI
Papageorgiou, Nikolaos S.; Zhang, Chao Double phase problem with critical and locally defined reaction terms. (English) Zbl 1442.35448 Asymptotic Anal. 116, No. 2, 73-92 (2020). MSC: 35Q74 35B40 35B20 35B65 35A15 35J60 74B20 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} and \textit{C. Zhang}, Asymptotic Anal. 116, No. 2, 73--92 (2020; Zbl 1442.35448) Full Text: DOI
Ardila, Alex H.; Cely, Liliana; Squassina, Marco Logarithmic Bose-Einstein condensates with harmonic potential. (English) Zbl 1442.35413 Asymptotic Anal. 116, No. 1, 27-40 (2020). MSC: 35Q55 35Q41 82C10 35A15 35A01 35A02 35C08 PDF BibTeX XML Cite \textit{A. H. Ardila} et al., Asymptotic Anal. 116, No. 1, 27--40 (2020; Zbl 1442.35413) Full Text: DOI
Song, Yueqiang; Shi, Shaoyun Multiplicity results for Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity. (English) Zbl 1440.35119 J. Dyn. Control Syst. 26, No. 3, 469-480 (2020). MSC: 35J60 35J20 PDF BibTeX XML Cite \textit{Y. Song} and \textit{S. Shi}, J. Dyn. Control Syst. 26, No. 3, 469--480 (2020; Zbl 1440.35119) Full Text: DOI
Liu, Xiaoman; Liu, Jijun Image restoration from noisy incomplete frequency data by alternative iteration scheme. (English) Zbl 1447.65117 Inverse Probl. Imaging 14, No. 4, 583-606 (2020). Reviewer: Carlos A. De Moura (Rio de Janeiro) MSC: 65N20 68U10 65N21 65T50 65K10 35Q31 PDF BibTeX XML Cite \textit{X. Liu} and \textit{J. Liu}, Inverse Probl. Imaging 14, No. 4, 583--606 (2020; Zbl 1447.65117) Full Text: DOI