×

Shape and topology optimization of compliant mechanisms using a parameterization level set method. (English) Zbl 1127.65043

Summary: A parameterization level set method is presented to simultaneously perform shape and topology optimization of compliant mechanisms. The structural shape boundary is implicitly embedded into a higher-dimensional scalar function as its zero level set, resultantly, establishing the level set model. By applying the compactly supported radial basis function with favorable smoothness and accuracy to interpolate the level set function, the temporal and spatial Hamilton-Jacobi equation from the conventional level set method is then discretized into a series of algebraic equations. Accordingly, the original shape and topology optimization is now fully transformed into a parameterization problem, namely, size optimization with the expansion coefficients of interpolants as a limited number of design variables.
Design of compliant mechanisms is mathematically formulated as a general optimization problem with a nonconvex objective function and two additionally specified constraints. The structural shape boundary is then advanced as a process of renewing the level set function by iteratively finding the expansion coefficients of the size optimization with a sequential convex programming method. It is highlighted that the present method can not only inherit the merits of the implicit boundary representation, but also avoid some unfavorable features of the conventional discrete level set method, such as the CFL condition restriction, the re-initialization procedure and the velocity extension algorithm. Finally, an extensively investigated example is presented to demonstrate the benefits and advantages of the present method, especially, its capability of creating new holes inside the design domain.

MSC:

65K10 Numerical optimization and variational techniques
49Q10 Optimization of shapes other than minimal surfaces
49M37 Numerical methods based on nonlinear programming

Software:

CONLIN; ToolboxLS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allaire, G.; Jouve, F., optimal design of micro-mechanisms by the homogenization method, European Journal of Finite Element, 11, 405-416 (2002) · Zbl 1120.74710
[2] Allaire, G.; Jouve, F.; Toader, A. M., Structural optimization using sensitivity analysis and a level-set method, Journal of Computational Physics, 194, 1, 363-393 (2004) · Zbl 1136.74368
[3] Allaire, G.; Jouve, F., A level-set method for vibration and multiple loads structural optimization, Computer Methods in Applied Mechanics and Engineering, 194, 30-33, 3269-3290 (2005) · Zbl 1091.74038
[4] Allaire, G.; Jouve, F., Coupling the level set method and the topological gradient in structural optimization, (Bendsoe, M. P.; Olhoff, N.; Sigmund, O., IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials (2006), Springer: Springer Netherlands), 3-12
[5] G.K. Ananthasuresh, S. Kota, Y. Gianchandani, A methodical approach to the design of compliant micro-mechanisms, in: Solid-State Sensor and Actuator Workshop, 1994, pp. 89-192.; G.K. Ananthasuresh, S. Kota, Y. Gianchandani, A methodical approach to the design of compliant micro-mechanisms, in: Solid-State Sensor and Actuator Workshop, 1994, pp. 89-192.
[6] Ananthasuresh, G. K., Optimal Synthesis Methods for MEMS (2003), Kluwer: Kluwer Boston
[7] Belytschko, T.; Xiao, S. P.; Parimi, C., Topology optimization with implicitly function and regularization, International Journal for Numerical Method in Engineering, 57, 1177-1196 (2003) · Zbl 1062.74583
[8] Bendsøe, M. P.; Kikuchi, N., Generating optimal topology in structural design using a homogenization method, Computer Methods in Applied Mechanics and Engineering, 71, 2, 197-224 (1988) · Zbl 0671.73065
[9] Bendsøe, M. P.; Sigmund, O., Material interpolation schemes in topology optimization, Archive of Applied Mechanics, 69, 635-654 (1999) · Zbl 0957.74037
[10] Bendsøe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods, and Applications (2003), Springer: Springer Berlin, Heidelberg · Zbl 0957.74037
[11] Bruns, T. E.; Tortorelli, D. A., Topology optimization of nonlinear elastic structures and compliant mechanisms, Computer Methods in Applied Mechanics and Engineering, 190, 26-27, 3443-3459 (2001) · Zbl 1014.74057
[12] Buhmann, M. D., Radial Basis Functions: Theory and Implementations, Cambridge Monographs on Applied and Computational Mathematics, vol. 12 (2004), Cambridge University Press: Cambridge University Press NY · Zbl 1038.41001
[13] Burger, M.; Hacker, B.; Ring, W., Incorporating topological derivatives into level set methods, Journal of Computational Physics, 194, 344-362 (2004) · Zbl 1044.65053
[14] Canfield, S.; Frecker, M., Topology optimization of compliant mechanical amplifiers for piezoelectric actuators, Structural and Multidisciplinary Optimization, 20, 269-279 (2000)
[15] Cecil, T.; Qian, J. L.; Osher, S., Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions, Journal of Computational Physics, 196, 1, 327-347 (2004) · Zbl 1053.65086
[16] Choi, K. K.; Kim, N. H., Structural Sensitivity Analysis and Optimization I-Linear Systems (2005), Springer: Springer New York
[17] S.K. Chen, M.Y. Wang, Geometric width control in topology optimization using level set method and a quadratic energy functional, in: ASME Proceedings of IDETC/CIE 2006, September 10-13, 2006, Philadelphia, Pennsylvania, USA.; S.K. Chen, M.Y. Wang, Geometric width control in topology optimization using level set method and a quadratic energy functional, in: ASME Proceedings of IDETC/CIE 2006, September 10-13, 2006, Philadelphia, Pennsylvania, USA.
[18] Crandall, M. G.; Lions, P. L., Viscosity solutions of Hamilton-Jacobi equations, Transact American Mathematics Society, 277, 1-43 (1983) · Zbl 0599.35024
[19] Dolbow, J.; Belytschko, T., An introduction to programming the meshless element free Galerkin method, Archives of Computational Methods in Engineering, 5, 3, 207-241 (1998)
[20] Fleury, C., CONLIN: an efficient dual optimizer based on convex approximation concepts, Structural and Multidisciplinary Optimization, 1, 81-89 (1989)
[21] Frecker, M. I.; Ananthasuresh, G. K.; Nishiwaka, S.; Kikuchi, N.; Kota, S., Topological synthesis of compliant mechanisms using multi-criteria optimization, Journal of Mechanical Design, 119, 2, 238-245 (1997)
[22] Frecker, M. I., Recent advances in optimization of smart structures and actuators, Journal of Intelligent Material Systems and Structures, 14, 207-216 (2003)
[23] Haber, E., A multilevel, level-set method for optimizing eigenvalues in shape design problems, Journal of Computational Physics, 198, 2, 518-534 (2004) · Zbl 1051.65073
[24] Kota, S.; Joo, J.; Li, Z., Design of compliant mechanisms: applications to MEMS, Analog Integrated Circuits and Signal Processing - An International Journal, 29, 7-15 (2001)
[25] Kota, S.; Lu, K. J.; Kreiner, Z.; Trease, B.; Arenas, J.; Geiger, J., Design and application of compliant mechanisms for surgical tools, Journal of Biomechanical Engineering, 127, 6, 981-989 (2005)
[26] Howell, L. L.; Midha, A.; Norton, T. W., Evaluation of equivalent spring stiffness for use in a pseudo-rigid-body model of large-deflection compliant mechanisms, Journal of Mechanical Design, 118, 1, 126-131 (1996)
[27] Howell, L. L., Compliant Mechanisms (2001), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York
[28] Lageneste, L. D.D.; Pitsch, H., A Numerical Scheme for the Large-eddy Simulation of Turbulent Combustion using a Level-set Method, Annual Research Briefs (2002), Center for Turbulence Research, Stanford University: Center for Turbulence Research, Stanford University Stanford, CA, USA
[29] Larsen, U. D.; Sigmund, O.; Bouwstra, S., Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio, Journal of Microelectromechanical System, 6, 2, 99-106 (1997)
[30] Lau, G. K.; Du, H.; Lim, M. K., Use of functional specifications as objective functions in topological optimization of compliant mechanism, Computer Methods in Applied Mechanics and Engineering, 190, 4421-4433 (2001)
[31] Lau, G. K.; Du, H.; Lim, M. K., Convex analysis for topology optimization of compliant mechanisms, Structural and Multidisciplinary Optimization, 22, 4, 284-294 (2001)
[32] Luo, Z.; Chen, L. P.; Yang, J. Z.; Zhang, Y. Q.; Abdel-Malek, K., Compliant mechanism design using multi-objective topology optimization scheme of continuum structures, Structural and Multidisciplinary Optimization, 30, 2, 142-154 (2005)
[33] Jiang, G. S.; Peng, D., Weighted ENO schemes for Hamilton-Jacobi equations, SIAM Journal on Scientific Computing, 21, 2126-2143 (2000) · Zbl 0957.35014
[34] Midha, A.; Howell, L. L.; Norton, T. W., Limit positions of compliant mechanisms using the pseudo-rigid-body model concept, Mechanism and Machine Theory, 35, 99-115 (2000) · Zbl 1047.70536
[35] I.M. Mitchell, A toolbox of level set methods, Technical Report, TR-2004-09, Department of Computer Science, University of British Columbia, Canada, 2004.; I.M. Mitchell, A toolbox of level set methods, Technical Report, TR-2004-09, Department of Computer Science, University of British Columbia, Canada, 2004.
[36] Moulton, T.; Ananthasuresh, G. K., Design and manufacture of electro-thermal-compliant micro-devices, Sensors and Actors, Series A: Physical, 90, 38-48 (2001)
[37] Nathan, D.; Howell, L. L., A self-retracted fully compliant bistable micromechanism, Journal of Microelectromechanical Systems, 12, 3, 273-280 (2003)
[38] Nocedal, J.; Wright, S. J., Numerical Optimization (1999), Springer: Springer New York · Zbl 0930.65067
[39] Norato, J.; Haber, J. R.; Tortorelli, D.; Bendsoe, M. P., A geometry projection method for shape optimization, International Journal for Numerical Methods in Engineering, 60, 14, 2289-2312 (2004) · Zbl 1075.74702
[40] Nishiwaki, S.; Frecker, M. I.; Min, S.; Kikuchi, N., Topology optimization of compliant mechanisms using the homogenization method, International Journal for Numerical Methods in Engineering, 42, 535-559 (1998) · Zbl 0908.73051
[41] Osher, S.; Fedkiw, R. P., Level set methods: an overview and some recent results, Journal of Computational Physics, 169, 2, 463-502 (2001) · Zbl 0988.65093
[42] Osher, S.; Fedkiw, R. P., Level Set Methods and Dynamic Implicit Surface (2002), Springer-Verlag: Springer-Verlag New York
[43] Osher, S.; Santosa, F., Level-set methods for optimization problem involving geometry and constraints: I. Frequencies of a two-density inhomogeneous drum, Journal of Computational Physics, 171, 1, 272-288 (2001) · Zbl 1056.74061
[44] Osher, S.; Sethian, J. A., Front propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 78, 12-49 (1988) · Zbl 0659.65132
[45] Pedersen, C. B.W.; Buhl, T.; Sigmund, O., Topology synthesis of large displacement compliant mechanisms, International Journal for Numerical Methods in Engineering, 50, 2683-2705 (2001) · Zbl 0988.74055
[46] Peng, D.; Merriman, B.; Osher, S.; Zhao, H.; Kang, M., A PDE-based fast local level set method, Journal of Computational Physics, 155, 410-438 (1999) · Zbl 0964.76069
[47] Rippa, S., An algorithm for selecting a good value for the parameter c in radial basis functions interpolation, Advances in Computational Mathematics, 11, 2-3, 193-210 (1999) · Zbl 0943.65017
[48] Rozvany, G. I.N.; Kirsch, U.; Bendsøe, M. P.; Sigmund, O., Layout optimization of structures, Applied Mechanics Reviews, 48, 2, 41-119 (1995)
[49] Schaback, R.; Wendland, H., Using compactly supported radial basis functions to solve partial differential equations, (Chen, C. S.; Brebbia, C. A.; Pepper, D. W., Boundary Element Technology XIII (1999), WitPress: WitPress Southampton, Boston), 311-324
[50] Schaback, R.; Wendland, H., Characterization and construction of radial basis functions, (Dyn, N.; Leviatan, D.; Pinkus, A., Multivariate Approximation and Applications (2001), Cambridge University Press: Cambridge University Press Cambridge, UK), 1-24 · Zbl 1035.41013
[51] Schaback, R.; Wendland, H., Inverse and saturation theorems for radial basis function interpolation, Mathematics of Computation, 71, 669-681 (2002) · Zbl 0989.41002
[52] Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Version and Material Science, Cambridge Monograph on Applied and Computational Mathematics (1999), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0973.76003
[53] Sethian, J. A.; Wiegmann, A., Structural boundary design via level set and immersed interface methods, Journal of Computational Physics, 163, 489-528 (2000) · Zbl 0994.74082
[54] Sigmund, O., On the design of compliant mechanisms using topology optimization, Mechanics of Structures and Machines, 25, 4, 493-524 (1997)
[55] Sigmund, O., Design of multiphysics actuator using topology optimization – part I: one material structure, Computer Methods in Applied Mechanics and Engineering, 190, 49-50, 6577-6604 (2001) · Zbl 1116.74407
[56] Sigmund, O., Design of multiphysics actuator using topology optimization – part II: two material structure, Computer Methods in Applied Mechanics and Engineering, 190, 49-50, 6605-6627 (2001) · Zbl 1116.74407
[57] Sigmund, O.; Petersson, J., Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima,, Structural and Multidisciplinary Optimization, 16, 68-75 (1998)
[58] Silva, E. C.N.; Kikuchi, N., Design of piezoelectric transducers using topology optimization, Smart Materials and Structures, 8, 3, 350-364 (1999)
[59] Sokolowski, J.; Zolesio, J. P., Introduction to shape optimization: shape sensitivity analysis (1992), Springer: Springer Berlin · Zbl 0761.73003
[60] Sokolowski, J.; Zochowski, A., On the topological derivative in shape optimization, SIAM Journal of Control Optimization, 37, 1251-1272 (1999) · Zbl 0940.49026
[61] Sussman, M.; Fatemi, E., An efficient interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow, SIAM Journal of Science Computing, 20, 1165-1191 (1999) · Zbl 0958.76070
[62] Svanberg, K., The method of moving asymptotes: a new method for structural optimization, International Journal for Numerical Method in Engineering, 24, 359-373 (1987) · Zbl 0602.73091
[63] Svanberg, K., A globally convergent version of MMA without linesearch, (Olhoff, N.; Rozvany, G., Proceeding of the First World Congress of Structural and Multidisciplinary Optimization (1995), Pergamon Press: Pergamon Press Elmsford, NY), 9-16
[64] K. Svanberg, Two-primal-dual interior-point methods for the MMA subproblems, Technical Report TRITA-MAT-1998-OS12, Department of Mathematics, KTH, Stockholm, 1998.; K. Svanberg, Two-primal-dual interior-point methods for the MMA subproblems, Technical Report TRITA-MAT-1998-OS12, Department of Mathematics, KTH, Stockholm, 1998.
[65] Svanberg, K., A class of globally convergent optimization methods based on conservative convex separable approximations, SIAM Journal of Optimization, 12, 2, 555-573 (2002) · Zbl 1035.90088
[66] Tsai, R.; Osher, S., Level set methods and their applications in image science, Communications in Mathematical Sciences, 1, 4, 623-656 (2003) · Zbl 1080.94003
[67] Wang, M. Y.; Wang, X. M.; Guo, D. M., A level set method for structural topology optimization, Computer Methods in Applied Mechanics and Engineering, 192, 224-246 (2003)
[68] Wang, M. Y.; Wang, X. M., PDE-driven, level sets, shape sensitivity and curvature flow for structural topology optimization, Computer Modeling in Engineering and Science, 6, 4, 373-396 (2004) · Zbl 1075.74065
[69] Wang, M. Y.; Wang, X. M., ‘Color’ level sets: a multiphase method for structural topology optimization with multiple materials, Computer Methods in Applied Mechanics and Engineering, 193, 469-496 (2004) · Zbl 1060.74585
[70] Wang, M. Y.; Chen, S. K.; Wang, X. M.; Mei, Y. L., Design of multi-material compliant mechanisms using level set methods, Journal of Mechanical Design, 127, 5, 941-956 (2005)
[71] P. Wei, M.Y. Wang, Parametric structural shape and topology optimization method with radial basis functions and level-set method, in: Proceedings of ASME, IDETC/CIE, 2006, Philadelphia, USA.; P. Wei, M.Y. Wang, Parametric structural shape and topology optimization method with radial basis functions and level-set method, in: Proceedings of ASME, IDETC/CIE, 2006, Philadelphia, USA.
[72] Wang, S. Y.; Wang, M. Y., A moving superimposed finite element method for structural topology optimization, International Journal for Numerical Method in Engineering, 65, 11, 1892-1922 (2006) · Zbl 1174.74007
[73] Wang, S. Y.; Wang, M. Y., Radial basis functions and level set method for structural topology optimization, International Journal for Numerical Method in Engineering, 65, 12, 2060-2090 (2006) · Zbl 1174.74331
[74] Wang, S. Y.; Wang, M. Y., Structural shape and topology optimization using an implicit free boundary parameterization method, Computer Modeling in Engineering and Science, 13, 2, 119-147 (2006) · Zbl 1232.74084
[75] Wang, S. Y.; Lim, K. M.; Khoo, B. C.; Wang, M. Y., An extended level set method for shape and topology optimization, Journal of Computational Physics, 221, 1, 395-421 (2007) · Zbl 1110.65058
[76] Wendland, H., Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Advances in Computational Mathematics, 4, 389-396 (1995) · Zbl 0838.41014
[77] Wendland, H., Error estimates for interpolation by compactly supported radial functions of minimal degree, Journal of Approximation Theory, 93, 258-272 (1998) · Zbl 0904.41013
[78] Xiao, J. R., Local heaviside weighted MLPG meshless method for two-dimensional solids using compactly supported radial basis functions, Computer Methods in Applied Mechanics and Engineering, 194, 117-138 (2004) · Zbl 1075.74706
[79] Yin, L.; Ananthasuresh, G. K., Design of distributed compliant mechanisms, Mechanics Based Design of Structures and Machines, 31, 2, 151-179 (2003)
[80] Zhou, M.; Rozvany, G. I.N., The COC algorithm, part II: topological geometry and generalized shape optimization, Computer Methods in Applied Mechanics and Engineering, 89, 197-224 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.