Prugger, Artur; Rademacher, Jens D. M.; Yang, Jichen Rotating shallow water equations with bottom drag: bifurcations and growth due to kinetic energy backscatter. (English) Zbl 07741165 SIAM J. Appl. Dyn. Syst. 22, No. 3, 2490-2526 (2023). MSC: 35B32 35B35 35C07 35G50 35K91 35P99 37N10 76D33 86A05 PDF BibTeX XML Cite \textit{A. Prugger} et al., SIAM J. Appl. Dyn. Syst. 22, No. 3, 2490--2526 (2023; Zbl 07741165) Full Text: DOI arXiv
Wu, Mengling; Wang, Zhi; Ge, Yongbin High-order compact difference schemes based on the local one-dimensional method for high-dimensional nonlinear wave equations. (English) Zbl 07739725 Comput. Geosci. 27, No. 4, 687-705 (2023). MSC: 65L05 65M06 65N06 35L05 35Q35 PDF BibTeX XML Cite \textit{M. Wu} et al., Comput. Geosci. 27, No. 4, 687--705 (2023; Zbl 07739725) Full Text: DOI
Ikehata, Ryo A note on local energy decay results for wave equations with a potential. (English) Zbl 07739276 Asymptotic Anal. 134, No. 1-2, 281-295 (2023). MSC: 35Q74 74B20 35L05 35L15 PDF BibTeX XML Cite \textit{R. Ikehata}, Asymptotic Anal. 134, No. 1--2, 281--295 (2023; Zbl 07739276) Full Text: DOI arXiv
Yagasaki, Kazuyuki; Yamazoe, Shotaro Bifurcations and spectral stability of solitary waves in coupled nonlinear Schrödinger equations. (English) Zbl 07739117 J. Differ. Equations 372, 348-401 (2023). MSC: 35B32 35B35 35C08 35Q55 37K45 37K50 PDF BibTeX XML Cite \textit{K. Yagasaki} and \textit{S. Yamazoe}, J. Differ. Equations 372, 348--401 (2023; Zbl 07739117) Full Text: DOI arXiv
Anco, Stephen C. Symmetry actions and brackets for adjoint-symmetries. II: Physical examples. (English) Zbl 07738697 Eur. J. Appl. Math. 34, No. 5, 974-997 (2023). MSC: 35B06 35G50 35K57 35Q30 PDF BibTeX XML Cite \textit{S. C. Anco}, Eur. J. Appl. Math. 34, No. 5, 974--997 (2023; Zbl 07738697) Full Text: DOI arXiv
Keanini, Russell G.; Dahlberg, Jerry; Brown, Philip; Morovati, Mehdi; Moradi, Hamidreza; Jacobs, Donald; Tkacik, Peter T. Stochastic estimation of Green’s functions with application to diffusion and advection-diffusion-reaction problems. (English) Zbl 07736210 Appl. Math. Comput. 457, Article ID 128186, 20 p. (2023). MSC: 60H10 35-01 35R30 35J05 62G05 PDF BibTeX XML Cite \textit{R. G. Keanini} et al., Appl. Math. Comput. 457, Article ID 128186, 20 p. (2023; Zbl 07736210) Full Text: DOI arXiv
Lai, Geng Interactions of rarefaction waves and rarefaction shocks of the two-dimensional compressible Euler equations with general equation of state. (English) Zbl 07735766 J. Dyn. Differ. Equations 35, No. 1, 381-419 (2023). MSC: 35Q31 76P05 76L05 76N15 35L65 35L60 35L67 PDF BibTeX XML Cite \textit{G. Lai}, J. Dyn. Differ. Equations 35, No. 1, 381--419 (2023; Zbl 07735766) Full Text: DOI
Flamarion, Marcelo V.; Ribeiro-Jr, Roberto The wave stability of solitary waves over a bump for the full Euler equations. (English) Zbl 07735398 Comput. Appl. Math. 42, No. 6, Paper No. 282, 11 p. (2023). MSC: 76B07 76B25 76B15 PDF BibTeX XML Cite \textit{M. V. Flamarion} and \textit{R. Ribeiro-Jr}, Comput. Appl. Math. 42, No. 6, Paper No. 282, 11 p. (2023; Zbl 07735398) Full Text: DOI arXiv
Chen, Geng; Shen, Yannan; Zhu, Shihui Existence and regularity for global weak solutions to the \(\lambda\)-family water wave equations. (English) Zbl 07734993 Q. Appl. Math. 81, No. 4, 751-776 (2023). MSC: 35Q35 76B15 35L05 35D30 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{G. Chen} et al., Q. Appl. Math. 81, No. 4, 751--776 (2023; Zbl 07734993) Full Text: DOI
Vanspranghe, Nicolas; Ferrante, Francesco; Prieur, Christophe Stabilization of the wave equation through nonlinear Dirichlet actuation. (English) Zbl 07734429 ESAIM, Control Optim. Calc. Var. 29, Paper No. 57, 23 p. (2023). MSC: 35B40 35L05 35L20 93D15 93D20 PDF BibTeX XML Cite \textit{N. Vanspranghe} et al., ESAIM, Control Optim. Calc. Var. 29, Paper No. 57, 23 p. (2023; Zbl 07734429) Full Text: DOI arXiv
An, Xinliang; Chen, Haoyang; Yin, Silu Low regularity ill-posedness for elastic waves driven by shock formation. (English) Zbl 07732557 Am. J. Math. 145, No. 4, 1111-1181 (2023). MSC: 35L72 35L52 35R25 74J30 PDF BibTeX XML Cite \textit{X. An} et al., Am. J. Math. 145, No. 4, 1111--1181 (2023; Zbl 07732557) Full Text: DOI arXiv
Gusev, O. I.; Skiba, V. S.; Khakimzyanov, G. S.; Chubarov, L. B. Influence of bottom irregularity on solitary-wave interaction with a partially immersed rectangular body. (English. Russian original) Zbl 07732476 J. Appl. Mech. Tech. Phys. 64, No. 1, 50-63 (2023); translation from Prikl. Mekh. Tekh. Fiz. 64, No. 1, 60-75 (2023). MSC: 35Qxx 76-XX PDF BibTeX XML Cite \textit{O. I. Gusev} et al., J. Appl. Mech. Tech. Phys. 64, No. 1, 50--63 (2023; Zbl 07732476); translation from Prikl. Mekh. Tekh. Fiz. 64, No. 1, 60--75 (2023) Full Text: DOI
Ahmadkhanlu, A. Positive solutions to conformable fractional differential equation with integral boundary condition with \(p\)-Laplacian operator. (English) Zbl 07731418 Southeast Asian Bull. Math. 47, No. 3, 297-314 (2023). MSC: 34B18 35J05 34A08 PDF BibTeX XML Cite \textit{A. Ahmadkhanlu}, Southeast Asian Bull. Math. 47, No. 3, 297--314 (2023; Zbl 07731418) Full Text: Link
Feola, Roberto; Grébert, Benoît; Iandoli, Felice Long time solutions for quasilinear Hamiltonian perturbations of Schrödinger and Klein-Gordon equations on tori. (English) Zbl 07730956 Anal. PDE 16, No. 5, 1133-1203 (2023). MSC: 37K45 35S50 35B35 35B45 35L05 35Q55 PDF BibTeX XML Cite \textit{R. Feola} et al., Anal. PDE 16, No. 5, 1133--1203 (2023; Zbl 07730956) Full Text: DOI arXiv
Fečkan, Michal Travelling waves in nonlinear lattices. (English) Zbl 07729449 Dutta, Hemen (ed.), Mathematical modelling. Theory and application. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 787, 1-25 (2023). MSC: 34A33 34K16 PDF BibTeX XML Cite \textit{M. Fečkan}, Contemp. Math. 787, 1--25 (2023; Zbl 07729449) Full Text: DOI
Montes, Alex M. Solitons and periodic traveling waves for a hyperelastic dispersive equation. (English) Zbl 07729192 J. Dyn. Differ. Equations 35, No. 3, 2013-2033 (2023). MSC: 35Q74 74K20 74B20 35C07 35C08 35B10 35A15 35Q53 PDF BibTeX XML Cite \textit{A. M. Montes}, J. Dyn. Differ. Equations 35, No. 3, 2013--2033 (2023; Zbl 07729192) Full Text: DOI
Hupkes, Hermen Jan; Jukić, Mia; Stehlík, Petr; Švígler, Vladimír Propagation reversal for bistable differential equations on trees. (English) Zbl 07729131 SIAM J. Appl. Dyn. Syst. 22, No. 3, 1906-1944 (2023). MSC: 34A33 34C37 35K55 35C07 05C05 PDF BibTeX XML Cite \textit{H. J. Hupkes} et al., SIAM J. Appl. Dyn. Syst. 22, No. 3, 1906--1944 (2023; Zbl 07729131) Full Text: DOI arXiv
Gárriz, Alejandro Singular integral equations with applications to travelling waves for doubly nonlinear diffusion. (English) Zbl 07729125 J. Evol. Equ. 23, No. 3, Paper No. 54, 41 p. (2023). MSC: 45G05 45D05 35C07 35K57 35K59 PDF BibTeX XML Cite \textit{A. Gárriz}, J. Evol. Equ. 23, No. 3, Paper No. 54, 41 p. (2023; Zbl 07729125) Full Text: DOI arXiv
Wang, Zhenguo; Li, Qiuying Standing waves solutions for the discrete Schrödinger equations with resonance. (English) Zbl 07729096 Bull. Malays. Math. Sci. Soc. (2) 46, No. 5, Paper No. 171, 17 p. (2023). MSC: 39A22 39A70 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{Q. Li}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 5, Paper No. 171, 17 p. (2023; Zbl 07729096) Full Text: DOI
Chen, Gong; Su, Qingtang Nonlinear modulational instabililty of the Stokes waves in 2D full water waves. (English) Zbl 07727593 Commun. Math. Phys. 402, No. 2, 1345-1452 (2023). Reviewer: Changxing Miao (Beijing) MSC: 76B15 76E99 76M45 35Q35 35Q55 PDF BibTeX XML Cite \textit{G. Chen} and \textit{Q. Su}, Commun. Math. Phys. 402, No. 2, 1345--1452 (2023; Zbl 07727593) Full Text: DOI arXiv
Tsai, Je-Chiang Minimal wave speed for a population model with density-dependent migrations and the Allee effect. (English) Zbl 07727546 Discrete Contin. Dyn. Syst., Ser. B 28, No. 12, 6393-6411 (2023). MSC: 34C37 34B08 35C07 35K57 92D25 47J30 PDF BibTeX XML Cite \textit{J.-C. Tsai}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 12, 6393--6411 (2023; Zbl 07727546) Full Text: DOI
Camps, Nicolas; Gassot, Louise Pathological set of initial data for scaling-supercritical nonlinear Schrödinger equations. (English) Zbl 07727475 Int. Math. Res. Not. 2023, No. 15, 13214-13254 (2023). MSC: 35Q55 35Q41 35L05 35L15 35L71 35B65 35R01 PDF BibTeX XML Cite \textit{N. Camps} and \textit{L. Gassot}, Int. Math. Res. Not. 2023, No. 15, 13214--13254 (2023; Zbl 07727475) Full Text: DOI arXiv
Rybkin, Alexei; Pelinovsky, Efim; Palmer, Noah Inverse problem for the nonlinear long wave runup on a plane sloping beach. (English) Zbl 07727153 Appl. Math. Lett. 145, Article ID 108786, 6 p. (2023). MSC: 76B15 76M21 35Qxx 86Axx PDF BibTeX XML Cite \textit{A. Rybkin} et al., Appl. Math. Lett. 145, Article ID 108786, 6 p. (2023; Zbl 07727153) Full Text: DOI arXiv
Khater, Mostafa M. A. Numerous accurate and stable solitary wave solutions to the generalized modified equal-width equation. (English) Zbl 07727053 Int. J. Theor. Phys. 62, No. 7, Paper No. 151, 17 p. (2023). MSC: 35C08 35Q51 PDF BibTeX XML Cite \textit{M. M. A. Khater}, Int. J. Theor. Phys. 62, No. 7, Paper No. 151, 17 p. (2023; Zbl 07727053) Full Text: DOI
Benguria, R. D.; Depassier, M. C. Upper and lower bounds for the speed of fronts of the reaction diffusion equation with Stefan boundary conditions. (English) Zbl 07726734 Nonlinearity 36, No. 8, 4425-4437 (2023). MSC: 35C07 35A15 35K57 80A22 35R37 PDF BibTeX XML Cite \textit{R. D. Benguria} and \textit{M. C. Depassier}, Nonlinearity 36, No. 8, 4425--4437 (2023; Zbl 07726734) Full Text: DOI arXiv
Grunert, Katrin; Reigstad, Audun A regularized system for the nonlinear variational wave equation. (English) Zbl 07726380 SN Partial Differ. Equ. Appl. 4, No. 4, Paper No. 35, 71 p. (2023). MSC: 35A01 35A02 35B35 35B65 35L52 35L60 35L71 PDF BibTeX XML Cite \textit{K. Grunert} and \textit{A. Reigstad}, SN Partial Differ. Equ. Appl. 4, No. 4, Paper No. 35, 71 p. (2023; Zbl 07726380) Full Text: DOI arXiv
Yoshida, Natsumi Global asymptotic stability of the rarefaction waves to the Cauchy problem for the generalized Rosenau-Korteweg-de Vries-Burgers equation. (English) Zbl 07725823 Methods Appl. Anal. 30, No. 1, 1-16 (2023). MSC: 35Q35 35Q53 76P05 35B40 35B35 35G20 35G25 35L65 35Q53 PDF BibTeX XML Cite \textit{N. Yoshida}, Methods Appl. Anal. 30, No. 1, 1--16 (2023; Zbl 07725823) Full Text: DOI
Fan, Lili; Li, Kaiqiang Asymptotic stability of viscous contact wave to a radiation hydrodynamic limit model. (English) Zbl 07725788 Nonlinear Anal., Real World Appl. 74, Article ID 103950, 24 p. (2023). MSC: 35B40 35L45 35L60 35Q35 PDF BibTeX XML Cite \textit{L. Fan} and \textit{K. Li}, Nonlinear Anal., Real World Appl. 74, Article ID 103950, 24 p. (2023; Zbl 07725788) Full Text: DOI
Abdel-Gawad, H. I. Field and reverse field solitons in wave-operator nonlinear Schrödinger equation with space-time reverse: modulation instability. (English) Zbl 07724049 Commun. Theor. Phys. 75, No. 6, Article ID 065005, 12 p. (2023). MSC: 35Q55 35C08 37K45 PDF BibTeX XML Cite \textit{H. I. Abdel-Gawad}, Commun. Theor. Phys. 75, No. 6, Article ID 065005, 12 p. (2023; Zbl 07724049) Full Text: DOI
Herrmann, Michael; Niethammer, Barbara Instability of hysteretic phase interfaces in a mean-field model with inhomogeneities. (English) Zbl 07723856 SIAM J. Appl. Math. 83, No. 4, 1422-1443 (2023). MSC: 74-XX 34C55 35C07 70K50 74N30 PDF BibTeX XML Cite \textit{M. Herrmann} and \textit{B. Niethammer}, SIAM J. Appl. Math. 83, No. 4, 1422--1443 (2023; Zbl 07723856) Full Text: DOI arXiv
Hong, Si-Yu; Zhang, Wei-Guo; Ling, Xing-Qian Orbital stability of dn periodic wave solutions of the Boussinesq equation with quadratic-cubic nonlinear terms. (English) Zbl 07723462 J. Nonlinear Math. Phys. 30, No. 2, 455-474 (2023). MSC: 35B35 35Q51 35C07 37K45 PDF BibTeX XML Cite \textit{S.-Y. Hong} et al., J. Nonlinear Math. Phys. 30, No. 2, 455--474 (2023; Zbl 07723462) Full Text: DOI
Chen, Yong; Duan, Jinqiao; Gao, Hongjun Well-posedness and wave-breaking for the stochastic rotation-two-component Camassa-Holm system. (English) Zbl 07720491 Ann. Appl. Probab. 33, No. 4, 2734-2785 (2023). MSC: 60H15 35L05 35L70 PDF BibTeX XML Cite \textit{Y. Chen} et al., Ann. Appl. Probab. 33, No. 4, 2734--2785 (2023; Zbl 07720491) Full Text: DOI Link
Dawod, Lafta Abed; Lakestani, Mehrdad; Manafian, Jalil Breather wave solutions for the \((3+1)\)-D generalized shallow water wave equation with variable coefficients. (English) Zbl 07717001 Qual. Theory Dyn. Syst. 22, No. 4, Paper No. 127, 37 p. (2023). MSC: 35Q35 35Q86 76B15 86A05 86A10 35C08 35C07 35Q53 PDF BibTeX XML Cite \textit{L. A. Dawod} et al., Qual. Theory Dyn. Syst. 22, No. 4, Paper No. 127, 37 p. (2023; Zbl 07717001) Full Text: DOI
Hamouda, Makram; Hamza, Mohamed Ali Improvement on the blow-up for a weakly coupled wave equations with scale-invariant damping and mass and time derivative nonlinearity. (English) Zbl 07716466 Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1468-1483 (2023). MSC: 35L71 35B44 35L52 PDF BibTeX XML Cite \textit{M. Hamouda} and \textit{M. A. Hamza}, Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1468--1483 (2023; Zbl 07716466) Full Text: DOI arXiv
Fino, Ahmad Z.; Hamza, Mohamed Ali Blow-up and lifespan estimate for wave equations with critical damping term of space-dependent type related to Glassey conjecture. (English) Zbl 07716461 Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1383-1400 (2023). MSC: 35L71 35B44 35L15 PDF BibTeX XML Cite \textit{A. Z. Fino} and \textit{M. A. Hamza}, Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1383--1400 (2023; Zbl 07716461) Full Text: DOI arXiv
Chen, Wenhui; Fino, Ahmad Z. A competition on blow-up for semilinear wave equations with scale-invariant damping and nonlinear memory term. (English) Zbl 07716456 Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1264-1285 (2023). MSC: 35B44 35L15 35L71 26A33 35B33 PDF BibTeX XML Cite \textit{W. Chen} and \textit{A. Z. Fino}, Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1264--1285 (2023; Zbl 07716456) Full Text: DOI arXiv
Liu, Rui; Zhang, Hai-Qiang; Wei, Yun-Chun; Zhang, Yan Multi-breather and high-order rogue waves for the quintic nonlinear Schrödinger equation on the elliptic function background. (English) Zbl 07714020 Commun. Nonlinear Sci. Numer. Simul. 124, Article ID 107314, 20 p. (2023). MSC: 35Q55 PDF BibTeX XML Cite \textit{R. Liu} et al., Commun. Nonlinear Sci. Numer. Simul. 124, Article ID 107314, 20 p. (2023; Zbl 07714020) Full Text: DOI
Li, Qianfeng; Zhang, Yongqian The global Lipschitz solution for a peeling model. (English) Zbl 07713410 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 5, 2263-2278 (2023). MSC: 35L70 35D05 35L05 PDF BibTeX XML Cite \textit{Q. Li} and \textit{Y. Zhang}, Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 5, 2263--2278 (2023; Zbl 07713410) Full Text: DOI
Yao, Huancheng; Zhu, Changjiang Nonlinear stability of rarefaction waves for the compressible MHD equations. (English) Zbl 07713354 Z. Angew. Math. Phys. 74, No. 4, Paper No. 137, 21 p. (2023). MSC: 35Q35 35Q60 76N30 76W05 76E30 76E25 35B40 PDF BibTeX XML Cite \textit{H. Yao} and \textit{C. Zhu}, Z. Angew. Math. Phys. 74, No. 4, Paper No. 137, 21 p. (2023; Zbl 07713354) Full Text: DOI
Huang, Meixiang; Sheng, Shouqiong; Shao, Zhiqiang Concentration of mass in the vanishing adiabatic exponent limit of Aw-Rascle traffic model with relaxation. (English) Zbl 07713297 J. Eng. Math. 140, Paper No. 3, 21 p. (2023). MSC: 35L60 35L45 76A30 PDF BibTeX XML Cite \textit{M. Huang} et al., J. Eng. Math. 140, Paper No. 3, 21 p. (2023; Zbl 07713297) Full Text: DOI
Tyvand, Peder A. Wave radiation from bottom vibrations in open-channel flow with uniform vorticity. (English) Zbl 07711184 Water Waves 5, No. 1, 41-64 (2023). MSC: 76B15 86A05 PDF BibTeX XML Cite \textit{P. A. Tyvand}, Water Waves 5, No. 1, 41--64 (2023; Zbl 07711184) Full Text: DOI
Khasi, Manoochehr; Rashidinia, Jalil; Rasoulizadeh, Mohammad Navaz Fast computing approaches based on a bilinear pseudo-spectral method for nonlinear acoustic wave equations. (English) Zbl 07710280 SIAM J. Sci. Comput. 45, No. 4, B413-B439 (2023). MSC: 65M70 65L06 65F15 65N15 35L05 41A60 76Q05 35Q35 15A18 PDF BibTeX XML Cite \textit{M. Khasi} et al., SIAM J. Sci. Comput. 45, No. 4, B413--B439 (2023; Zbl 07710280) Full Text: DOI
Colombo, Maria; Haffter, Silja Global regularity for the nonlinear wave equation with slightly supercritical power. (English) Zbl 07709760 Anal. PDE 16, No. 3, 613-642 (2023). MSC: 35B65 35L15 35L71 PDF BibTeX XML Cite \textit{M. Colombo} and \textit{S. Haffter}, Anal. PDE 16, No. 3, 613--642 (2023; Zbl 07709760) Full Text: DOI arXiv
Chen, Yuxuan; Li, Yanan; Yang, Zhijian Stability of strong exponential attractors for the Kirchhoff wave model with structural nonlinear damping. (English) Zbl 07708927 Appl. Math. Lett. 144, Article ID 108716, 7 p. (2023). MSC: 35B41 35B35 35L35 35L77 PDF BibTeX XML Cite \textit{Y. Chen} et al., Appl. Math. Lett. 144, Article ID 108716, 7 p. (2023; Zbl 07708927) Full Text: DOI
Jia, Man; Lou, S. Y. A novel \((2 + 1)\)-dimensional nonlinear Schrödinger equation deformed from \((1 + 1)\)-dimensional nonlinear Schrödinger equation. (A novel \((2 + 1)\)-dimensional nonlinear schördinger equation deformed from \((1 + 1)\)-dimensional nonlinear Schrödinger equation.) (English) Zbl 07708842 Appl. Math. Lett. 143, Article ID 108684, 7 p. (2023). MSC: 35Q55 35Rxx 35Cxx 35Qxx PDF BibTeX XML Cite \textit{M. Jia} and \textit{S. Y. Lou}, Appl. Math. Lett. 143, Article ID 108684, 7 p. (2023; Zbl 07708842) Full Text: DOI
Ivanov, Rossen I. On the modelling of short and intermediate water waves. (English) Zbl 07708816 Appl. Math. Lett. 142, Article ID 108653, 7 p. (2023). MSC: 76B15 76M45 PDF BibTeX XML Cite \textit{R. I. Ivanov}, Appl. Math. Lett. 142, Article ID 108653, 7 p. (2023; Zbl 07708816) Full Text: DOI
Yan, Xinying; Liu, Jinzhou; Yang, Jiajia; Xin, Xiangpeng Retraction note to: “Lie symmetry analysis, optimal system and exact solutions for variable-coefficients (2+1)-dimensional dissipative long-wave system”. (English) Zbl 1515.35224 J. Math. Anal. Appl. 526, No. 2, Article ID 127423, 1 p. (2023). MSC: 35Q35 76B15 76B25 76M60 35C07 35A24 PDF BibTeX XML Cite \textit{X. Yan} et al., J. Math. Anal. Appl. 526, No. 2, Article ID 127423, 1 p. (2023; Zbl 1515.35224) Full Text: DOI
Hao, Yu-Cai; Zhang, Guo-Bao; He, Juan Exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis. (English) Zbl 07707325 Z. Angew. Math. Phys. 74, No. 3, Paper No. 116, 27 p. (2023). MSC: 35B40 35C07 35K55 92D25 PDF BibTeX XML Cite \textit{Y.-C. Hao} et al., Z. Angew. Math. Phys. 74, No. 3, Paper No. 116, 27 p. (2023; Zbl 07707325) Full Text: DOI
Bu, Zhen-Hui; Wang, Chen-Lu; Zhang, Xin-Tian Pyramidal traveling fronts of a time periodic diffusion equation with degenerate monostable nonlinearity. (English) Zbl 07705831 Electron. J. Differ. Equ. 2023, Paper No. 31, 23 p. (2023). MSC: 35C07 35B08 35K57 PDF BibTeX XML Cite \textit{Z.-H. Bu} et al., Electron. J. Differ. Equ. 2023, Paper No. 31, 23 p. (2023; Zbl 07705831) Full Text: Link
Halder, A. K.; Duba, C. T.; Leach, P. G. L. Symmetries and solutions for the inviscid oceanic Rossby wave equation. (English) Zbl 07705596 Int. J. Comput. Math. 100, No. 4, 796-823 (2023). MSC: 34A05 34A34 34C14 22E60 35B06 35C05 35C07 PDF BibTeX XML Cite \textit{A. K. Halder} et al., Int. J. Comput. Math. 100, No. 4, 796--823 (2023; Zbl 07705596) Full Text: DOI
Wu, Zhi-Jia; Tian, Shou-Fu Breather-to-soliton conversions and their mechanisms of the \((2+1)\)-dimensional generalized Hirota-Satsuma-Ito equation. (English) Zbl 07703862 Math. Comput. Simul. 210, 235-259 (2023). MSC: 35-XX 37-XX PDF BibTeX XML Cite \textit{Z.-J. Wu} and \textit{S.-F. Tian}, Math. Comput. Simul. 210, 235--259 (2023; Zbl 07703862) Full Text: DOI
Sun, Yulin; Xing, Chen; Zhang, Chao; Tao, Chongcong; Ji, Hongli; Qiu, Jinhao An element-based homogenized model for nonlinear wave interaction with 2D distributed microcracks. (English) Zbl 07701807 Meccanica 58, No. 1, 159-177 (2023). MSC: 74J30 74J25 74R10 74M25 74Q15 74S05 PDF BibTeX XML Cite \textit{Y. Sun} et al., Meccanica 58, No. 1, 159--177 (2023; Zbl 07701807) Full Text: DOI
Hu, Qingying; Li, Donghao; Liu, Shuo; Zhang, Hongwei Blow-up of solutions for a wave equation with nonlinear averaged damping and nonlocal nonlinear source terms. (English) Zbl 07701636 Quaest. Math. 46, No. 4, 695-710 (2023). MSC: 35B44 35L20 35L71 35R09 PDF BibTeX XML Cite \textit{Q. Hu} et al., Quaest. Math. 46, No. 4, 695--710 (2023; Zbl 07701636) Full Text: DOI
Dong, Min-Jie; Wang, Yun; Tian, Li-Xin; Wei, Jing-Dong The peakon solutions of a new integrable Camassa-Holm equation. (English) Zbl 07701293 Appl. Math. Lett. 141, Article ID 108603, 8 p. (2023). Reviewer: Piotr Biler (Wrocław) MSC: 76B15 35Q53 PDF BibTeX XML Cite \textit{M.-J. Dong} et al., Appl. Math. Lett. 141, Article ID 108603, 8 p. (2023; Zbl 07701293) Full Text: DOI
Li, Li; Wang, Lu; Yu, Faj Some general bright soliton solutions and interactions for a \((2+1)\)-dimensional nonlocal nonlinear Schrödinger equation. (English) Zbl 1514.35408 Appl. Math. Lett. 141, Article ID 108600, 8 p. (2023). MSC: 35Q55 35C08 37K40 35Q51 81Q05 PDF BibTeX XML Cite \textit{L. Li} et al., Appl. Math. Lett. 141, Article ID 108600, 8 p. (2023; Zbl 1514.35408) Full Text: DOI
Cui, Jianan; Chai, Shugen Energy decay for a wave equation of variable coefficients with logarithmic nonlinearity source term. (English) Zbl 1517.35039 Appl. Anal. 102, No. 6, 1696-1710 (2023). MSC: 35B40 35L20 35L71 PDF BibTeX XML Cite \textit{J. Cui} and \textit{S. Chai}, Appl. Anal. 102, No. 6, 1696--1710 (2023; Zbl 1517.35039) Full Text: DOI
Kelleche, Abdelkarim; Feng, Baowei On general decay for a nonlinear viscoelastic equation. (English) Zbl 1517.35043 Appl. Anal. 102, No. 6, 1582-1600 (2023). MSC: 35B40 35L35 35L77 74D10 93D15 93D20 PDF BibTeX XML Cite \textit{A. Kelleche} and \textit{B. Feng}, Appl. Anal. 102, No. 6, 1582--1600 (2023; Zbl 1517.35043) Full Text: DOI
Luo, Wei; Yin, Zhaoyang Local bifurcation of steady almost periodic water waves with constant vorticity. (English) Zbl 07699595 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 4, 1633-1644 (2023). MSC: 35Q53 35B30 35B44 35C07 35G25 PDF BibTeX XML Cite \textit{W. Luo} and \textit{Z. Yin}, Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 4, 1633--1644 (2023; Zbl 07699595) Full Text: DOI arXiv
Niu, Jia-Xue; Guo, Rui The zero-phase solution and rarefaction wave structures for the higher-order Chen-Lee-Liu equation. (English) Zbl 07699060 Appl. Math. Lett. 140, Article ID 108568, 7 p. (2023). MSC: 35Q55 37K15 76L05 76P05 35G25 PDF BibTeX XML Cite \textit{J.-X. Niu} and \textit{R. Guo}, Appl. Math. Lett. 140, Article ID 108568, 7 p. (2023; Zbl 07699060) Full Text: DOI
Gusu, Daba Meshesha; Gudeta, Wakjira Solving nonlinear partial differential equations of special kinds of 3rd order using balance method and its models. (English) Zbl 07698784 Int. J. Differ. Equ. 2023, Article ID 7663326, 28 p. (2023). MSC: 35Q53 35Q51 37K10 35C08 35C07 76B15 PDF BibTeX XML Cite \textit{D. M. Gusu} and \textit{W. Gudeta}, Int. J. Differ. Equ. 2023, Article ID 7663326, 28 p. (2023; Zbl 07698784) Full Text: DOI
Li, Meng-Syue; Chen, Yang-Yih; Zou, Qingping; Hsu, Hung-Chu Perturbation analysis of nonlinear partial reflected wave on a sloping bottom. (English) Zbl 07698284 Nonlinear Anal., Real World Appl. 73, Article ID 103885, 21 p. (2023). MSC: 76B15 35Qxx 86Axx PDF BibTeX XML Cite \textit{M.-S. Li} et al., Nonlinear Anal., Real World Appl. 73, Article ID 103885, 21 p. (2023; Zbl 07698284) Full Text: DOI
Lv, Mengxian; Hao, Jianghao General decay and blow-up for coupled Kirchhoff wave equations with dynamic boundary conditions. (English) Zbl 1517.35048 Math. Control Relat. Fields 13, No. 1, 303-329 (2023). MSC: 35B40 35B44 35L57 35L77 35R09 93D15 80A17 PDF BibTeX XML Cite \textit{M. Lv} and \textit{J. Hao}, Math. Control Relat. Fields 13, No. 1, 303--329 (2023; Zbl 1517.35048) Full Text: DOI
Lokharu, Evgeniy; Wahlén, Erik; Weber, Jörg On the amplitude of steady water waves with favorable constant vorticity. (English) Zbl 1516.76015 J. Math. Fluid Mech. 25, No. 3, Paper No. 58, 7 p. (2023). MSC: 76B15 35Q35 PDF BibTeX XML Cite \textit{E. Lokharu} et al., J. Math. Fluid Mech. 25, No. 3, Paper No. 58, 7 p. (2023; Zbl 1516.76015) Full Text: DOI arXiv
Oh, Tadahiro; Robert, Tristan; Tzvetkov, Nikolay Stochastic nonlinear wave dynamics on compact surfaces. (Sur l’équation des ondes non-linéaire stochastique sur les surfaces compactes.) (English. French summary) Zbl 07697376 Ann. Henri Lebesgue 6, 161-223 (2023). MSC: 35L71 35L15 35R01 35R60 60H15 PDF BibTeX XML Cite \textit{T. Oh} et al., Ann. Henri Lebesgue 6, 161--223 (2023; Zbl 07697376) Full Text: DOI arXiv
Ait Temghart, S.; El Hammar, H.; Allalou, C.; Hilal, K. Existence of weak solutions for a class of (p(b(u)), q(b(u)))-Laplacian problems. (English) Zbl 07696843 Nonlinear Dyn. Syst. Theory 23, No. 1, 107-118 (2023). MSC: 35J60 35J05 35-XX 35Kxx PDF BibTeX XML Cite \textit{S. Ait Temghart} et al., Nonlinear Dyn. Syst. Theory 23, No. 1, 107--118 (2023; Zbl 07696843) Full Text: Link
Binid, Abdellaziz; Taboye, Ahmat Mahamat; Laabissi, Mohamed Cone-bounded feedback laws for linear second order systems. (English) Zbl 07696687 Evol. Equ. Control Theory 12, No. 4, 1174-1192 (2023). MSC: 93D15 93D20 93C35 93C20 35L05 PDF BibTeX XML Cite \textit{A. Binid} et al., Evol. Equ. Control Theory 12, No. 4, 1174--1192 (2023; Zbl 07696687) Full Text: DOI
Martynova, V. Yu.; Smirnov, Yu. G.; Tikhonravov, A. V. A numerical method for the optimization of the diffraction efficiency of thin-layer coatings with diffraction gratings. (English. Russian original) Zbl 07694840 Differ. Equ. 59, No. 3, 404-413 (2023); translation from Differ. Uravn. 59, No. 3, 400-408 (2023). MSC: 78M50 65K10 65N25 65Y05 78A45 78A60 78A40 78A48 35J05 35A20 74K35 35R10 PDF BibTeX XML Cite \textit{V. Yu. Martynova} et al., Differ. Equ. 59, No. 3, 404--413 (2023; Zbl 07694840); translation from Differ. Uravn. 59, No. 3, 400--408 (2023) Full Text: DOI
Martynova, Valeria; Valovik, Dmitry Nonlinearized nonlinear electromagnetic guided waves in a circle cylindrical waveguide filled with nonlinear dielectric medium. (English) Zbl 07694742 J. Differ. Equations 367, 804-833 (2023). MSC: 35Q61 78A60 78A50 78A40 35P30 35P20 35B53 35B40 45G10 PDF BibTeX XML Cite \textit{V. Martynova} and \textit{D. Valovik}, J. Differ. Equations 367, 804--833 (2023; Zbl 07694742) Full Text: DOI
Zhang, Zaiyun; Ouyang, Qiancheng Global existence, blow-up and optimal decay for a nonlinear viscoelastic equation with nonlinear damping and source term. (English) Zbl 07694349 Discrete Contin. Dyn. Syst., Ser. B 28, No. 9, 4735-4760 (2023). MSC: 35B40 35B44 35L20 35L72 35R09 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{Q. Ouyang}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 9, 4735--4760 (2023; Zbl 07694349) Full Text: DOI
Soleimani, L.; RabieiMotlagh, O. Multiple families of bounded solutions near perturbed homoclinic orbits, application to a nonlinear wave equation. (English) Zbl 07694345 Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 115, 20 p. (2023). MSC: 34C37 34D09 34C11 34E10 34G20 PDF BibTeX XML Cite \textit{L. Soleimani} and \textit{O. RabieiMotlagh}, Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 115, 20 p. (2023; Zbl 07694345) Full Text: DOI
Adeyemo, Oke Davies; Khalique, Chaudry Masood Lie group theory, stability analysis with dispersion property, new soliton solutions and conserved quantities of 3D generalized nonlinear wave equation in liquid containing gas bubbles with applications in mechanics of fluids, biomedical sciences and cell biology. (English) Zbl 1516.35022 Commun. Nonlinear Sci. Numer. Simul. 123, Article ID 107261, 30 p. (2023). MSC: 35B06 35C08 35Q51 PDF BibTeX XML Cite \textit{O. D. Adeyemo} and \textit{C. M. Khalique}, Commun. Nonlinear Sci. Numer. Simul. 123, Article ID 107261, 30 p. (2023; Zbl 1516.35022) Full Text: DOI
dos Santos, Gelson C. G.; Fontinele, Laila C.; Nascimentoa, Rubia G.; Arrudab, Suellen Cristina Q. Solutions for a quasilinear Schrödinger equation: subcritical and critical cases. (English) Zbl 1512.35530 J. Math. Phys. 64, No. 5, Article ID 051510, 21 p. (2023). MSC: 35Q55 35C07 PDF BibTeX XML Cite \textit{G. C. G. dos Santos} et al., J. Math. Phys. 64, No. 5, Article ID 051510, 21 p. (2023; Zbl 1512.35530) Full Text: DOI
Chen, Jing; Li, Erbo; Xue, Yushan Complete classification of solutions to the Riemann initial value problem for the Hirota equation with weak dispersion term. (English) Zbl 1516.35370 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 232, Article ID 113281, 59 p. (2023). MSC: 35Q53 35Q55 35Q31 37K15 76L05 35C08 35C07 35B65 65M70 65L06 PDF BibTeX XML Cite \textit{J. Chen} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 232, Article ID 113281, 59 p. (2023; Zbl 1516.35370) Full Text: DOI
Abrashkin, A. A.; Pelinovsky, E. N. Cauchy invariants and exact solutions of nonlinear equations of hydrodynamics. (English. Russian original) Zbl 07691613 Theor. Math. Phys. 215, No. 2, 599-608 (2023); translation from Teor. Mat. Fiz. 215, No. 2, 165-175 (2023). MSC: 35Q86 35Q31 86A05 76U60 76B15 35C08 35B05 PDF BibTeX XML Cite \textit{A. A. Abrashkin} and \textit{E. N. Pelinovsky}, Theor. Math. Phys. 215, No. 2, 599--608 (2023; Zbl 07691613); translation from Teor. Mat. Fiz. 215, No. 2, 165--175 (2023) Full Text: DOI
Romanov, V. G. An inverse problem for the wave equation with nonlinear dumping. (English. Russian original) Zbl 1516.35534 Sib. Math. J. 64, No. 3, 670-685 (2023); translation from Sib. Mat. Zh. 64, No. 3, 635-652 (2023). MSC: 35R30 35L20 35L71 PDF BibTeX XML Cite \textit{V. G. Romanov}, Sib. Math. J. 64, No. 3, 670--685 (2023; Zbl 1516.35534); translation from Sib. Mat. Zh. 64, No. 3, 635--652 (2023) Full Text: DOI
Berntson, Bjorn K.; Klabbers, Rob Periodic solutions of the non-chiral intermediate Heisenberg ferromagnet equation described by elliptic spin Calogero-Moser dynamics. (English) Zbl 07690490 Nonlinearity 36, No. 6, 3068-3108 (2023). MSC: 33E05 35B10 35Q51 35Q70 37J35 37K20 37K40 PDF BibTeX XML Cite \textit{B. K. Berntson} and \textit{R. Klabbers}, Nonlinearity 36, No. 6, 3068--3108 (2023; Zbl 07690490) Full Text: DOI arXiv
Valovik, Dmitry V. Maxwell’s equations with nonlinear inhomogeneous constitutive relation: guided waves in a film filled with inhomogeneous Kerr medium. (English) Zbl 07689743 SIAM J. Appl. Math. 83, No. 2, 553-575 (2023). MSC: 78M35 78A60 78A40 35P20 35P30 34B15 34B60 35Q60 PDF BibTeX XML Cite \textit{D. V. Valovik}, SIAM J. Appl. Math. 83, No. 2, 553--575 (2023; Zbl 07689743) Full Text: DOI
Luong, Hung; Saut, Jean-Claude The Boussinesq systems on the background of a line solitary wave. (English) Zbl 1515.35218 Discrete Contin. Dyn. Syst. 43, No. 5, 1787-1823 (2023). MSC: 35Q35 35Q53 35C08 35B35 76B15 76B03 35A01 35A02 PDF BibTeX XML Cite \textit{H. Luong} and \textit{J.-C. Saut}, Discrete Contin. Dyn. Syst. 43, No. 5, 1787--1823 (2023; Zbl 1515.35218) Full Text: DOI
Ketov, I. V.; Spiridonov, A. O.; Repina, A. I.; Karchevskii, E. M. Numerical modeling of lattice modes of photonic-crystal lasers by Galerkin method with exact matrix elements. (English) Zbl 07688816 Lobachevskii J. Math. 44, No. 1, 325-340 (2023). MSC: 78A60 35Q61 35P30 65F15 35J05 35R09 45F05 PDF BibTeX XML Cite \textit{I. V. Ketov} et al., Lobachevskii J. Math. 44, No. 1, 325--340 (2023; Zbl 07688816) Full Text: DOI
Dong, Shijie; Li, Kuijie; Yuan, Xu Global solution to the 3D Dirac-Klein-Gordon system with uniform energy bounds. (English) Zbl 1516.35349 Calc. Var. Partial Differ. Equ. 62, No. 5, Paper No. 146, 42 p. (2023). MSC: 35Q40 35Q41 81R20 35L70 PDF BibTeX XML Cite \textit{S. Dong} et al., Calc. Var. Partial Differ. Equ. 62, No. 5, Paper No. 146, 42 p. (2023; Zbl 1516.35349) Full Text: DOI arXiv
Chen, Chao-Nien; Choi, Y. S. Front propagation in both directions and coexistence of traveling fronts and pulses. (English) Zbl 07686991 Calc. Var. Partial Differ. Equ. 62, No. 5, Paper No. 145, 35 p. (2023). MSC: 34C37 47J30 35C07 35K57 PDF BibTeX XML Cite \textit{C.-N. Chen} and \textit{Y. S. Choi}, Calc. Var. Partial Differ. Equ. 62, No. 5, Paper No. 145, 35 p. (2023; Zbl 07686991) Full Text: DOI arXiv
Ammari, Zied; Sohinger, Vedran Gibbs measures as unique KMS equilibrium states of nonlinear Hamiltonian PDEs. (English) Zbl 1514.35403 Rev. Mat. Iberoam. 39, No. 1, 29-90 (2023). MSC: 35Q55 35L05 37D35 60H07 60H40 60G15 82B05 28C20 PDF BibTeX XML Cite \textit{Z. Ammari} and \textit{V. Sohinger}, Rev. Mat. Iberoam. 39, No. 1, 29--90 (2023; Zbl 1514.35403) Full Text: DOI arXiv
Uhlmann, Gunther; Zhang, Yang An inverse boundary value problem arising in nonlinear acoustics. (English) Zbl 1515.35358 SIAM J. Math. Anal. 55, No. 2, 1364-1404 (2023). Reviewer: Giovanni S. Alberti (Genova) MSC: 35R30 35L20 35L72 PDF BibTeX XML Cite \textit{G. Uhlmann} and \textit{Y. Zhang}, SIAM J. Math. Anal. 55, No. 2, 1364--1404 (2023; Zbl 1515.35358) Full Text: DOI arXiv
Kuznetsov, S. V. Harmonic acoustic waves in FG rods with exponential inhomogeneity. (English) Zbl 1514.35283 Z. Angew. Math. Phys. 74, No. 2, Paper No. 63, 10 p. (2023). MSC: 35L67 35L10 74J30 74K10 PDF BibTeX XML Cite \textit{S. V. Kuznetsov}, Z. Angew. Math. Phys. 74, No. 2, Paper No. 63, 10 p. (2023; Zbl 1514.35283) Full Text: DOI
Mamonov, Alexander Book review of: A. Kirsch, An introduction to the mathematical theory of inverse problems. Third Edition. (English) Zbl 07683997 SIAM Rev. 65, No. 2, 591 (2023). MSC: 00A17 35-02 35R30 65J20 34B24 35P25 65J10 65J15 35J05 PDF BibTeX XML Cite \textit{A. Mamonov}, SIAM Rev. 65, No. 2, 591 (2023; Zbl 07683997) Full Text: DOI
Ehrnström, Mats; Walsh, Samuel; Zeng, Chongchun Smooth stationary water waves with exponentially localized vorticity. (English) Zbl 1515.35193 J. Eur. Math. Soc. (JEMS) 25, No. 3, 1045-1090 (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q31 35Q86 76B15 76B25 76B45 76B47 86A05 35B25 35J61 35R35 PDF BibTeX XML Cite \textit{M. Ehrnström} et al., J. Eur. Math. Soc. (JEMS) 25, No. 3, 1045--1090 (2023; Zbl 1515.35193) Full Text: DOI arXiv
Gu, Longfei; Liu, Yuanyuan Nonlinear Riemann type problems associated to Hermitian Helmholtz equations. (English) Zbl 1516.35203 Complex Var. Elliptic Equ. 68, No. 5, 763-775 (2023). MSC: 35J05 30G35 35J25 PDF BibTeX XML Cite \textit{L. Gu} and \textit{Y. Liu}, Complex Var. Elliptic Equ. 68, No. 5, 763--775 (2023; Zbl 1516.35203) Full Text: DOI
Zhao, Jianmin; Yang, Shaojie Blow-up issues for the hyperelastic rod equation. (English) Zbl 1514.35429 Monatsh. Math. 201, No. 2, 565-571 (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q74 35Q53 74K10 74J30 35B44 35A01 35A02 PDF BibTeX XML Cite \textit{J. Zhao} and \textit{S. Yang}, Monatsh. Math. 201, No. 2, 565--571 (2023; Zbl 1514.35429) Full Text: DOI
Sakkaravarthi, K.; Mareeswaran, R. Babu; Kanna, T. Bright matter-wave bound soliton molecules in spin-1 Bose-Einstein condensates with non-autonomous nonlinearities. (English) Zbl 1514.35411 Physica D 448, Article ID 133694, 15 p. (2023). MSC: 35Q55 35Q41 81V55 35C08 82C10 PDF BibTeX XML Cite \textit{K. Sakkaravarthi} et al., Physica D 448, Article ID 133694, 15 p. (2023; Zbl 1514.35411) Full Text: DOI arXiv
Baumstark, Julian; Jahnke, Tobias Approximation of high-frequency wave propagation in dispersive media. (English) Zbl 1512.35029 SIAM J. Math. Anal. 55, No. 2, 1214-1245 (2023). MSC: 35B25 35A35 35B05 35B40 35L45 35L60 35Q60 35Q61 PDF BibTeX XML Cite \textit{J. Baumstark} and \textit{T. Jahnke}, SIAM J. Math. Anal. 55, No. 2, 1214--1245 (2023; Zbl 1512.35029) Full Text: DOI arXiv
Zhou, Yue; Xu, Hang A novel wavelet-homotopy Galerkin method for unsteady nonlinear wave equations. (English) Zbl 07682864 Adv. Appl. Math. Mech. 15, No. 4, 964-983 (2023). MSC: 76B15 65Mxx 76Mxx PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{H. Xu}, Adv. Appl. Math. Mech. 15, No. 4, 964--983 (2023; Zbl 07682864) Full Text: DOI
Nhan Cong Le; Truong Xuan Le; Y. Van Nguyen Exponential decay and blow-up results for a viscoelastic equation with variable sources. (English) Zbl 1512.35088 Appl. Anal. 102, No. 3, 782-799 (2023). MSC: 35B40 35B44 35L20 35L71 35R09 74Dxx PDF BibTeX XML Cite \textit{Nhan Cong Le} et al., Appl. Anal. 102, No. 3, 782--799 (2023; Zbl 1512.35088) Full Text: DOI
Demeio, Lucio; Lenci, Stefano Wave propagation on a string resting on a general nonlinear substrate. (English) Zbl 1512.35025 SIAM J. Appl. Math. 83, No. 1, 1-24 (2023). MSC: 35B10 35C07 35L71 74J30 PDF BibTeX XML Cite \textit{L. Demeio} and \textit{S. Lenci}, SIAM J. Appl. Math. 83, No. 1, 1--24 (2023; Zbl 1512.35025) Full Text: DOI
Sun, Yan Breather and interaction solutions for a \((3+1)\)-dimensional generalized shallow water wave equation. (English) Zbl 1512.35510 Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 91, 12 p. (2023). MSC: 35Q51 35Q53 35Q86 35C07 35C08 76B15 86A05 86A10 PDF BibTeX XML Cite \textit{Y. Sun}, Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 91, 12 p. (2023; Zbl 1512.35510) Full Text: DOI
Hoefer, Mark A.; Mucalica, Ana; Pelinovsky, Dmitry E. KdV breathers on a cnoidal wave background. (English) Zbl 1512.35515 J. Phys. A, Math. Theor. 56, No. 18, Article ID 185701, 25 p. (2023). MSC: 35Q53 35Q55 35C07 35C08 35B10 33E05 PDF BibTeX XML Cite \textit{M. A. Hoefer} et al., J. Phys. A, Math. Theor. 56, No. 18, Article ID 185701, 25 p. (2023; Zbl 1512.35515) Full Text: DOI arXiv
Korzyuk, Viktor I.; Rudzko, Jan V. Classical and mild solution of the first mixed problem for the telegraph equation with a nonlinear potential. (English) Zbl 1512.35397 Izv. Irkutsk. Gos. Univ., Ser. Mat. 43, 48-63 (2023). MSC: 35L20 35A09 35D35 35L71 PDF BibTeX XML Cite \textit{V. I. Korzyuk} and \textit{J. V. Rudzko}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 43, 48--63 (2023; Zbl 1512.35397) Full Text: DOI Link
Rebhi, Salem; Mahmoudi, Fethi Liouville theorems for Hénon type elliptic equation with mixed boundary conditions and finite Morse index. (English) Zbl 1512.35177 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 3, Paper No. 41, 23 p. (2023). MSC: 35J05 35J91 35J66 35B53 PDF BibTeX XML Cite \textit{S. Rebhi} and \textit{F. Mahmoudi}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 3, Paper No. 41, 23 p. (2023; Zbl 1512.35177) Full Text: DOI
Hamano, Masaru; Ikeda, Masahiro Stability and instability of radial standing waves to NLKG equation with an inverse-square potential. (English) Zbl 1512.35028 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 3, Paper No. 39, 32 p. (2023). MSC: 35B15 35A15 35B35 35L15 35L71 PDF BibTeX XML Cite \textit{M. Hamano} and \textit{M. Ikeda}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 3, Paper No. 39, 32 p. (2023; Zbl 1512.35028) Full Text: DOI arXiv
Azaiez, Asma; Benjemaa, Mondher; Jrajria, Aida; Zaag, Hatem Discontinuous Galerkin method for blow-up solutions of nonlinear wave equations. (English) Zbl 07678583 Turk. J. Math. 47, No. 3, SI-1, 1015-1038 (2023). MSC: 65-XX 35Lxx 65M12 65M60 PDF BibTeX XML Cite \textit{A. Azaiez} et al., Turk. J. Math. 47, No. 3, 1015--1038 (2023; Zbl 07678583) Full Text: DOI arXiv
Yoshida, Natsumi Global asymptotic stability of the rarefaction waves to the Cauchy problem for the scalar non-viscous diffusive dispersive conservation laws. (English) Zbl 1512.35101 Commun. Pure Appl. Anal. 22, No. 3, 825-850 (2023). MSC: 35B40 35G25 35L65 35Q35 35Q53 PDF BibTeX XML Cite \textit{N. Yoshida}, Commun. Pure Appl. Anal. 22, No. 3, 825--850 (2023; Zbl 1512.35101) Full Text: DOI