Li, Zaizheng; Luo, Haijun; Zhang, Zhitao Blow-up profile of normalized solutions for fractional nonlinear Schrödinger equation with negative potentials. (English) Zbl 07906826 Discrete Contin. Dyn. Syst. 45, No. 1, 160-188 (2025). MSC: 35R11 35B40 35B44 PDFBibTeX XMLCite \textit{Z. Li} et al., Discrete Contin. Dyn. Syst. 45, No. 1, 160--188 (2025; Zbl 07906826) Full Text: DOI
Hajjej, Zayd Existence and exponential stability of solutions for a Balakrishnan-Taylor quasilinear wave equation with strong damping and localized nonlinear damping. (English) Zbl 07912314 Georgian Math. J. 31, No. 4, 615-626 (2024). MSC: 35L72 37L65 35B40 PDFBibTeX XMLCite \textit{Z. Hajjej}, Georgian Math. J. 31, No. 4, 615--626 (2024; Zbl 07912314) Full Text: DOI
Yeşilova, Emel Bolat; Luo, Ting The rotational \(b\)-family of equations. (English) Zbl 07910518 J. Differ. Equations 407, 374-391 (2024). MSC: 35Q53 35B30 35G25 PDFBibTeX XMLCite \textit{E. B. Yeşilova} and \textit{T. Luo}, J. Differ. Equations 407, 374--391 (2024; Zbl 07910518) Full Text: DOI
Kiliç, S. Ş. Ş.; Çelik, E. Complex solutions to the higher-order nonlinear Boussinesq type wave equation transform. (English) Zbl 07909906 Ric. Mat. 73, No. 4, 1793-1800 (2024). MSC: 65Mxx PDFBibTeX XMLCite \textit{S. Ş. Ş. Kiliç} and \textit{E. Çelik}, Ric. Mat. 73, No. 4, 1793--1800 (2024; Zbl 07909906) Full Text: DOI
Guo, Chunxiao; Wang, Yuzhu; Xu, Mengtao; Guo, Yanfeng Low regularity for LS type equations on the half line. (English) Zbl 07909833 Bull. Malays. Math. Sci. Soc. (2) 47, No. 5, Paper No. 144, 36 p. (2024). MSC: 35M33 35Q55 PDFBibTeX XMLCite \textit{C. Guo} et al., Bull. Malays. Math. Sci. Soc. (2) 47, No. 5, Paper No. 144, 36 p. (2024; Zbl 07909833) Full Text: DOI
Ahmed, Karim K.; Ahmed, Hamdy; Badra, Niveen M.; Mirzazadeh, Mohammad; Rabie, Wafaa B.; Eslami, Mostafa Diverse exact solutions to Davey-Stewartson model using modified extended mapping method. (English) Zbl 07908548 Nonlinear Anal., Model. Control 29, No. 5, 983-1002 (2024). MSC: 35Q55 35C08 35C05 35Q60 78A60 PDFBibTeX XMLCite \textit{K. K. Ahmed} et al., Nonlinear Anal., Model. Control 29, No. 5, 983--1002 (2024; Zbl 07908548) Full Text: DOI
Zhang, Yu; Lü, Xing Data-driven solutions and parameter discovery of the extended higher-order nonlinear Schrödinger equation in optical fibers. (English) Zbl 07908457 Physica D 468, Article ID 134284, 12 p. (2024). MSC: 35Q55 35Q41 35Q60 35C08 78A60 68T07 37K15 PDFBibTeX XMLCite \textit{Y. Zhang} and \textit{X. Lü}, Physica D 468, Article ID 134284, 12 p. (2024; Zbl 07908457) Full Text: DOI
Ahrami, Mohammed; El Allali, Zakaria Optimizing the first eigenvalue of nonlinear quantum graphs. (English) Zbl 07907994 Gulf J. Math. 17, No. 1, 29-43 (2024). MSC: 34B45 34L15 35J05 81Q35 PDFBibTeX XMLCite \textit{M. Ahrami} and \textit{Z. El Allali}, Gulf J. Math. 17, No. 1, 29--43 (2024; Zbl 07907994) Full Text: DOI
Cai, Hong; Chen, Geng; Shen, Yannan Lipschitz optimal transport metric for a wave system modeling nematic liquid crystals. (English) Zbl 07906773 SIAM J. Math. Anal. 56, No. 4, 5144-5174 (2024). MSC: 35L70 35B30 35G25 PDFBibTeX XMLCite \textit{H. Cai} et al., SIAM J. Math. Anal. 56, No. 4, 5144--5174 (2024; Zbl 07906773) Full Text: DOI arXiv
Sprenger, Patrick; Hoefer, Mark A.; Ilan, Boaz Whitham modulation theory and two-phase instabilities for generalized nonlinear Schrödinger equations with full dispersion. (English) Zbl 07906750 SIAM J. Appl. Math. 84, No. 4, 1337-1361 (2024). MSC: 35Q55 35Q41 35Q35 35Q31 76B03 35C20 35C07 35B10 35R25 PDFBibTeX XMLCite \textit{P. Sprenger} et al., SIAM J. Appl. Math. 84, No. 4, 1337--1361 (2024; Zbl 07906750) Full Text: DOI arXiv
Li, Yongming Dispersive estimates for 1D matrix Schrödinger operators with threshold resonance. (English) Zbl 07906104 Calc. Var. Partial Differ. Equ. 63, No. 8, Paper No. 206, 54 p. (2024). MSC: 35Q55 35Q41 35J10 35C08 35B20 35B40 41A58 PDFBibTeX XMLCite \textit{Y. Li}, Calc. Var. Partial Differ. Equ. 63, No. 8, Paper No. 206, 54 p. (2024; Zbl 07906104) Full Text: DOI arXiv
Wang, Ming Global attractor for the damped BBM equation in the sharp low regularity space. (English) Zbl 07905868 Z. Angew. Math. Phys. 75, No. 4, Paper No. 142, 16 p. (2024). MSC: 35Q53 35B41 35B65 35B40 35C05 76B15 PDFBibTeX XMLCite \textit{M. Wang}, Z. Angew. Math. Phys. 75, No. 4, Paper No. 142, 16 p. (2024; Zbl 07905868) Full Text: DOI
Hussain, Safdar; Haq, Fazal; Shah, Abdullah; Abduvalieva, Dilsora; Shokri, Ali Comparison of approximate analytical and numerical solutions of the Allen Cahn equation. (English) Zbl 07905674 Int. J. Differ. Equ. 2024, Article ID 8835138, 9 p. (2024). MSC: 65M06 65M12 65M15 65M99 35C07 35K55 35A20 80A22 PDFBibTeX XMLCite \textit{S. Hussain} et al., Int. J. Differ. Equ. 2024, Article ID 8835138, 9 p. (2024; Zbl 07905674) Full Text: DOI OA License
Lamaizi, A.; Zerouali, A.; Chakrone, O.; Karim, B. Global existence and blow-up of solutions for a class of Steklov parabolic problems. (English) Zbl 07905328 Bol. Soc. Parana. Mat. (3) 42, Paper No. 49, 12 p. (2024). MSC: 35K55 35K61 35J05 PDFBibTeX XMLCite \textit{A. Lamaizi} et al., Bol. Soc. Parana. Mat. (3) 42, Paper No. 49, 12 p. (2024; Zbl 07905328) Full Text: DOI
Aslam, Muhammad Fahim; Hao, Jianghao Nonlinear logarithmic wave equations: blow-up phenomena and the influence of fractional damping, infinite memory, and strong dissipation. (English) Zbl 07903746 Evol. Equ. Control Theory 13, No. 5, 1423-1435 (2024). MSC: 93D15 35L70 PDFBibTeX XMLCite \textit{M. F. Aslam} and \textit{J. Hao}, Evol. Equ. Control Theory 13, No. 5, 1423--1435 (2024; Zbl 07903746) Full Text: DOI
Xu, Xuemei; Yang, Yunqing The localized excitation on the Jacobi elliptic function periodic background for the Gross-Pitaevskii equation. (English) Zbl 07903724 Appl. Math. Lett. 157, Article ID 109208, 7 p. (2024). MSC: 35Q55 37K35 35C08 33E05 PDFBibTeX XMLCite \textit{X. Xu} and \textit{Y. Yang}, Appl. Math. Lett. 157, Article ID 109208, 7 p. (2024; Zbl 07903724) Full Text: DOI
Shen, Jing; Liu, Huan; Li, Fang; Geng, Xianguo Localized waves on the periodic background for the Hermitian symmetric space derivative nonlinear Schrödinger equation. (English) Zbl 07903722 Appl. Math. Lett. 157, Article ID 109206, 6 p. (2024). MSC: 35Q55 35Q41 35C08 37K35 35B10 35B06 PDFBibTeX XMLCite \textit{J. Shen} et al., Appl. Math. Lett. 157, Article ID 109206, 6 p. (2024; Zbl 07903722) Full Text: DOI
Gimperlein, Heiko; Oberguggenberger, Michael Solutions to semilinear wave equations of very low regularity. (English) Zbl 07903638 J. Differ. Equations 406, 302-317 (2024). MSC: 35A21 35L15 35L71 PDFBibTeX XMLCite \textit{H. Gimperlein} and \textit{M. Oberguggenberger}, J. Differ. Equations 406, 302--317 (2024; Zbl 07903638) Full Text: DOI arXiv
García, Claudia; Vega, Luis Steady solutions for the Schrödinger map equation. (English) Zbl 07903426 Commun. Partial Differ. Equations 49, No. 5-6, 505-542 (2024). MSC: 35Q35 35Q55 76B47 76E30 76U05 76M45 35B32 35C07 35A21 35R10 PDFBibTeX XMLCite \textit{C. García} and \textit{L. Vega}, Commun. Partial Differ. Equations 49, No. 5--6, 505--542 (2024; Zbl 07903426) Full Text: DOI arXiv
Bulut, Aynur Probabilistic well-posedness for the nonlinear wave equation on \(B_2 \times\mathbb{T}\). (English) Zbl 07901516 Discrete Contin. Dyn. Syst. 44, No. 11, 3553-3571 (2024). MSC: 35L71 35L20 35A01 58J45 60H30 PDFBibTeX XMLCite \textit{A. Bulut}, Discrete Contin. Dyn. Syst. 44, No. 11, 3553--3571 (2024; Zbl 07901516) Full Text: DOI arXiv
Kudryashov, Nikolay A. Painlevé analysis of the resonant third-order nonlinear Schrödinger equation. (English) Zbl 07901114 Appl. Math. Lett. 158, Article ID 109232, 6 p. (2024). MSC: 35Q55 35Q41 35C08 35B10 35A20 37K15 37K10 PDFBibTeX XMLCite \textit{N. A. Kudryashov}, Appl. Math. Lett. 158, Article ID 109232, 6 p. (2024; Zbl 07901114) Full Text: DOI
Baker, Katherine; Banjai, Lehel; Ptashnyk, Mariya Numerical analysis of a time-stepping method for the Westervelt equation with time-fractional damping. (English) Zbl 07899595 Math. Comput. 93, No. 350, 2711-2743 (2024). MSC: 65-XX 35L77 65M06 65M15 35R11 PDFBibTeX XMLCite \textit{K. Baker} et al., Math. Comput. 93, No. 350, 2711--2743 (2024; Zbl 07899595) Full Text: DOI arXiv
Bao, Weizhu; Wang, Chushan An explicit and symmetric exponential wave integrator for the nonlinear Schrödinger equation with low regularity potential and nonlinearity. (English) Zbl 07899522 SIAM J. Numer. Anal. 62, No. 4, 1901-1928 (2024). MSC: 35Q55 35Q41 65M15 65M70 81Q05 35B65 PDFBibTeX XMLCite \textit{W. Bao} and \textit{C. Wang}, SIAM J. Numer. Anal. 62, No. 4, 1901--1928 (2024; Zbl 07899522) Full Text: DOI arXiv
Taranets, Roman M.; Ji, Hangjie; Chugunova, Marina On weak solutions of a control-volume model for liquid films flowing down a fibre. (English) Zbl 07896877 Discrete Contin. Dyn. Syst., Ser. B 29, No. 9, 3645-3676 (2024). MSC: 35D30 35C07 35K35 35K55 35K65 76A20 35Q35 PDFBibTeX XMLCite \textit{R. M. Taranets} et al., Discrete Contin. Dyn. Syst., Ser. B 29, No. 9, 3645--3676 (2024; Zbl 07896877) Full Text: DOI arXiv
Durdiev, Durdimurod K.; Suyarov, Tursunbek R. Inverse coefficient problem for the 2D wave equation with initial and nonlocal boundary conditions. (English) Zbl 07896370 Vladikavkaz. Mat. Zh. 26, No. 2, 5-25 (2024). MSC: 35P05 47F05 35A01 35A24 35J05 35P30 PDFBibTeX XMLCite \textit{D. K. Durdiev} and \textit{T. R. Suyarov}, Vladikavkaz. Mat. Zh. 26, No. 2, 5--25 (2024; Zbl 07896370) Full Text: DOI MNR
Menegaki, Angeliki \(L^2\)-stability near equilibrium for the 4 waves kinetic equation. (English) Zbl 07896348 Kinet. Relat. Models 17, No. 4, 514-532 (2024). MSC: 35B40 35R09 45G05 35Q20 35Q55 PDFBibTeX XMLCite \textit{A. Menegaki}, Kinet. Relat. Models 17, No. 4, 514--532 (2024; Zbl 07896348) Full Text: DOI arXiv
Amiranashvili, Shalva; Čiegis, Raimondas Stability of the higher-order splitting methods for the nonlinear Schrödinger equation with an arbitrary dispersion operator. (English) Zbl 07895297 Math. Model. Anal. 29, No. 3, 560-574 (2024). MSC: 65M22 35Q55 65M70 78A40 78A60 PDFBibTeX XMLCite \textit{S. Amiranashvili} and \textit{R. Čiegis}, Math. Model. Anal. 29, No. 3, 560--574 (2024; Zbl 07895297) Full Text: DOI
Flamarion, M. V.; Pelinovsky, E. Solitary wave interactions in the cubic Whitham equation. (English) Zbl 07895142 Russ. J. Math. Phys. 31, No. 2, 199-208 (2024). Reviewer: Denys Dutykh (Le Bourget-du-Lac) MSC: 76B20 35Q51 PDFBibTeX XMLCite \textit{M. V. Flamarion} and \textit{E. Pelinovsky}, Russ. J. Math. Phys. 31, No. 2, 199--208 (2024; Zbl 07895142) Full Text: DOI
Wang, Shuaikang; Ge, Yongbin; Liu, Sheng-en Numerical solutions of the nonlinear wave equations with energy-preserving sixth-order finite difference schemes. (English) Zbl 07894774 Comput. Math. Appl. 168, 100-119 (2024). MSC: 65-XX 39-XX PDFBibTeX XMLCite \textit{S. Wang} et al., Comput. Math. Appl. 168, 100--119 (2024; Zbl 07894774) Full Text: DOI
Chen, Rong; Yang, Zhichun; Zhou, Shouming On the Cauchy problem for a wave-structure interaction problem. (English) Zbl 07893923 Discrete Contin. Dyn. Syst., Ser. S 17, No. 8, 2640-2653 (2024). MSC: 35Q35 35Q31 76D03 74F10 35G25 35L05 35B44 35D35 35D30 35R35 35A01 35A02 PDFBibTeX XMLCite \textit{R. Chen} et al., Discrete Contin. Dyn. Syst., Ser. S 17, No. 8, 2640--2653 (2024; Zbl 07893923) Full Text: DOI
Zhang, Haixiang; Jiang, Xiaoxuan; Wang, Furong; Yang, Xuehua The time two-grid algorithm combined with difference scheme for 2D nonlocal nonlinear wave equation. (English) Zbl 07893811 J. Appl. Math. Comput. 70, No. 2, 1127-1151 (2024). MSC: 34B10 65N20 65N38 35M12 PDFBibTeX XMLCite \textit{H. Zhang} et al., J. Appl. Math. Comput. 70, No. 2, 1127--1151 (2024; Zbl 07893811) Full Text: DOI
Parker, Ross; Germain, Pierre; Cuevas-Maraver, Jesús; Aceves, Alejandro; Kevrekidis, P. G. Standing and traveling waves in a minimal nonlinearly dispersive lattice model. (English) Zbl 07893202 Physica D 467, Article ID 134273, 17 p. (2024). MSC: 35Q55 35Q41 37K60 35C05 35C07 PDFBibTeX XMLCite \textit{R. Parker} et al., Physica D 467, Article ID 134273, 17 p. (2024; Zbl 07893202) Full Text: DOI arXiv
Pu, Juncai; Chen, Yong Darboux transformation-based LPNN generating novel localized wave solutions. (English) Zbl 07893191 Physica D 467, Article ID 134262, 10 p. (2024). MSC: 35Q60 35Q51 68T07 78A60 37K10 37K35 35C08 PDFBibTeX XMLCite \textit{J. Pu} and \textit{Y. Chen}, Physica D 467, Article ID 134262, 10 p. (2024; Zbl 07893191) Full Text: DOI
Ahmad, Imran; Faridi, Waqas Ali; Iqbal, Mujahid; Majeed, Zain; Tchier, Fairouz Exploration of soliton solutions in nonlinear optics for the third order Klein-Fock-Gordon equation and nonlinear Maccari’s system. (English) Zbl 07893142 Int. J. Theor. Phys. 63, No. 6, Paper No. 157, 25 p. (2024). MSC: 35Q53 35Q60 35C08 35C07 78A60 35A20 35C05 37K40 PDFBibTeX XMLCite \textit{I. Ahmad} et al., Int. J. Theor. Phys. 63, No. 6, Paper No. 157, 25 p. (2024; Zbl 07893142) Full Text: DOI
Simpson, Matthew J.; Rahman, Nizhum; Tam, Alexander K. Y. Front stability of infinitely steep travelling waves in population biology. (English) Zbl 07891930 J. Phys. A, Math. Theor. 57, No. 31, Article ID 315601, 26 p. (2024). MSC: 92D25 35C07 35K57 PDFBibTeX XMLCite \textit{M. J. Simpson} et al., J. Phys. A, Math. Theor. 57, No. 31, Article ID 315601, 26 p. (2024; Zbl 07891930) Full Text: DOI arXiv OA License
Zaman, U. H. M.; Arefin, Mohammad Asif; Hossain, Md. Akram; Akbar, M. Ali; Uddin, M. Hafiz Nonlinear dynamic wave characteristics of optical soliton solutions in ion-acoustic wave. (English) Zbl 07890884 J. Comput. Appl. Math. 451, Article ID 116043, 15 p. (2024). MSC: 35Q60 35Q92 78A60 92D25 35C07 35C08 35C20 35A24 26A33 35R11 PDFBibTeX XMLCite \textit{U. H. M. Zaman} et al., J. Comput. Appl. Math. 451, Article ID 116043, 15 p. (2024; Zbl 07890884) Full Text: DOI
Liu, Yong; Wei, Juncheng; Yang, Wen Uniqueness of lump solution to the KP-I equation. (English) Zbl 07890762 Proc. Lond. Math. Soc. (3) 129, No. 1, Article ID e12619, 45 p. (2024). MSC: 35A02 35C07 35G25 35Q53 PDFBibTeX XMLCite \textit{Y. Liu} et al., Proc. Lond. Math. Soc. (3) 129, No. 1, Article ID e12619, 45 p. (2024; Zbl 07890762) Full Text: DOI arXiv
Dolgopolik, Maxim V.; Fradkov, Alexander L.; Andrievsky, Boris State estimation of the semilinear wave equation over the limited capacity communication channel. (English) Zbl 07889323 Nonlinear Anal., Hybrid Syst. 53, Article ID 101500, 18 p. (2024). MSC: 93E10 93C20 35L05 PDFBibTeX XMLCite \textit{M. V. Dolgopolik} et al., Nonlinear Anal., Hybrid Syst. 53, Article ID 101500, 18 p. (2024; Zbl 07889323) Full Text: DOI
Chen, Si-Jia; Lü, Xing Rogue wave solutions and rogue-breather solutions to the focusing nonlinear Schrödinger equation. (English) Zbl 07887622 Commun. Theor. Phys. 76, No. 3, Article ID 035003, 9 p. (2024). MSC: 35Q55 35C08 PDFBibTeX XMLCite \textit{S.-J. Chen} and \textit{X. Lü}, Commun. Theor. Phys. 76, No. 3, Article ID 035003, 9 p. (2024; Zbl 07887622) Full Text: DOI
Schippa, Robert Strichartz estimates for Maxwell equations in media: the partially anisotropic case. (English) Zbl 07887324 Commun. Partial Differ. Equations 49, No. 4, 279-332 (2024). MSC: 35Q61 78A60 35L45 35B65 35A01 35A02 PDFBibTeX XMLCite \textit{R. Schippa}, Commun. Partial Differ. Equations 49, No. 4, 279--332 (2024; Zbl 07887324) Full Text: DOI arXiv
Wang, Shuaikang; Ge, Yongbin Efficient sixth-order finite difference method for the two-dimensional nonlinear wave equation with variable coefficient. (English) Zbl 07886710 Math. Sci., Springer 18, No. 2, 257-273 (2024). MSC: 65M06 65N06 65B05 35Q53 PDFBibTeX XMLCite \textit{S. Wang} and \textit{Y. Ge}, Math. Sci., Springer 18, No. 2, 257--273 (2024; Zbl 07886710) Full Text: DOI
Aloraini, Najla M.; Achouri, Talha Compact difference scheme for the two-dimensional semilinear wave equation. (English) Zbl 07885865 Appl. Numer. Math. 202, 173-188 (2024). MSC: 65Mxx 35Lxx 35Bxx PDFBibTeX XMLCite \textit{N. M. Aloraini} and \textit{T. Achouri}, Appl. Numer. Math. 202, 173--188 (2024; Zbl 07885865) Full Text: DOI
Li, Yuejie; Li, Huanrong; Zeng, Yihui; Luo, Zhendong A preserving accuracy two-grid reduced-dimensional Crank-Nicolson mixed finite element method for nonlinear wave equation. (English) Zbl 07885855 Appl. Numer. Math. 202, 1-20 (2024). MSC: 65Mxx 65Nxx 35Kxx PDFBibTeX XMLCite \textit{Y. Li} et al., Appl. Numer. Math. 202, 1--20 (2024; Zbl 07885855) Full Text: DOI
Kalyakin, L. A. Stability of a traveling wave on a saddle-node trajectory. (English. Russian original) Zbl 07885093 Math. Notes 115, No. 6, 931-943 (2024); translation from Mat. Zametki 115, No. 6, 862-878 (2024). MSC: 35C07 35B35 35K58 35L71 PDFBibTeX XMLCite \textit{L. A. Kalyakin}, Math. Notes 115, No. 6, 931--943 (2024; Zbl 07885093); translation from Mat. Zametki 115, No. 6, 862--878 (2024) Full Text: DOI
Gao, Xin-Yi; Guo, Yong-Jiang; Shan, Wen-Rui Bilinear-form and similarity-reduction visit to a variable-coefficient generalized dispersive water-wave system concerning Acta Mech. 233, 2527 and 233, 2415. (English) Zbl 07884737 Acta Mech. 235, No. 7, 4915-4923 (2024). MSC: 35Q35 76B15 35A22 35A24 68W30 35C08 37K35 PDFBibTeX XMLCite \textit{X.-Y. Gao} et al., Acta Mech. 235, No. 7, 4915--4923 (2024; Zbl 07884737) Full Text: DOI
Lafortune, Stéphane Spectral and linear stability of peakons in the Novikov equation. (English) Zbl 07883992 Stud. Appl. Math. 152, No. 4, 1404-1424 (2024). MSC: 35B35 35C07 35Q51 PDFBibTeX XMLCite \textit{S. Lafortune}, Stud. Appl. Math. 152, No. 4, 1404--1424 (2024; Zbl 07883992) Full Text: DOI arXiv OA License
Hussain, Mudhir Abdul Lyapunov-Schmidt reduction in the study of bifurcation of periodic travelling wave solutions of a perturbed \((1+1)\)-dimensional dispersive long wave equation. (English) Zbl 07883538 Math. Appl. Sci. Eng. 5, No. 1, 77-84 (2024). MSC: 76-XX 35-XX PDFBibTeX XMLCite \textit{M. A. Hussain}, Math. Appl. Sci. Eng. 5, No. 1, 77--84 (2024; Zbl 07883538) Full Text: DOI
Hao, Jianghao; Zhang, Tong General energy decay estimates for a variable coefficient viscoelastic semilinear wave equation with logarithmic source term and acoustic boundary conditions. (English) Zbl 07883062 Math. Methods Appl. Sci. 47, No. 12, 9897-9917 (2024). MSC: 35B35 35L70 PDFBibTeX XMLCite \textit{J. Hao} and \textit{T. Zhang}, Math. Methods Appl. Sci. 47, No. 12, 9897--9917 (2024; Zbl 07883062) Full Text: DOI
Hirayama, Hiroyuki; Ikeda, Masahiro Variational problems for the system of nonlinear Schrödinger equations with derivative nonlinearities. (English) Zbl 07882873 Calc. Var. Partial Differ. Equ. 63, No. 7, Paper No. 170, 31 p. (2024). MSC: 35Q55 35Q41 35A01 35A02 35A15 35B35 35B40 35C07 78A60 PDFBibTeX XMLCite \textit{H. Hirayama} and \textit{M. Ikeda}, Calc. Var. Partial Differ. Equ. 63, No. 7, Paper No. 170, 31 p. (2024; Zbl 07882873) Full Text: DOI arXiv OA License
Zhang, Jian; Zhang, Ying An infinite sequence of localized semiclassical states for nonlinear Maxwell-Dirac system. (English) Zbl 07880821 J. Geom. Anal. 34, No. 9, Paper No. 277, 45 p. (2024). MSC: 35Q40 35Q60 35Q41 49J35 81R20 81Q10 78A35 35A15 PDFBibTeX XMLCite \textit{J. Zhang} and \textit{Y. Zhang}, J. Geom. Anal. 34, No. 9, Paper No. 277, 45 p. (2024; Zbl 07880821) Full Text: DOI
Nagoji, Hirotatsu Renormalization of stochastic nonlinear heat and wave equations driven by subordinate cylindrical Brownian noises. (English) Zbl 07880259 Stoch. Partial Differ. Equ., Anal. Comput. 12, No. 2, 932-967 (2024). MSC: 60H15 35K15 35L71 35R60 PDFBibTeX XMLCite \textit{H. Nagoji}, Stoch. Partial Differ. Equ., Anal. Comput. 12, No. 2, 932--967 (2024; Zbl 07880259) Full Text: DOI arXiv
Liu, Ruoyuan Global well-posedness of the two-dimensional stochastic viscous nonlinear wave equations. (English) Zbl 07880258 Stoch. Partial Differ. Equ., Anal. Comput. 12, No. 2, 898-931 (2024). MSC: 35R60 35L20 35L71 60H15 PDFBibTeX XMLCite \textit{R. Liu}, Stoch. Partial Differ. Equ., Anal. Comput. 12, No. 2, 898--931 (2024; Zbl 07880258) Full Text: DOI arXiv OA License
Saut, Jean-Claude; Sun, Shihan; Wang, Yuexun; Zhang, Yi Wave breaking for the generalized Fornberg-Whitham equation. (English) Zbl 07880201 SIAM J. Math. Anal. 56, No. 4, 4440-4465 (2024). MSC: 76B15 76B25 76B03 35Q35 35Q51 PDFBibTeX XMLCite \textit{J.-C. Saut} et al., SIAM J. Math. Anal. 56, No. 4, 4440--4465 (2024; Zbl 07880201) Full Text: DOI arXiv
Iqbal, Mujahid; Lu, Dianchen; Faridi, Waqas Ali; Murad, Muhammad Amin Sadiq; Seadawy, Aly R. A novel investigation on propagation of envelop optical soliton structure through a dispersive medium in the nonlinear Whitham-Broer-Kaup dynamical equation. (English) Zbl 07880125 Int. J. Theor. Phys. 63, No. 5, Paper No. 131, 19 p. (2024). MSC: 35Q55 35Q51 78A60 35C08 35C05 35A20 68W30 PDFBibTeX XMLCite \textit{M. Iqbal} et al., Int. J. Theor. Phys. 63, No. 5, Paper No. 131, 19 p. (2024; Zbl 07880125) Full Text: DOI
Zahran, Emad H. M.; Ahmad, Hijaz New perceptions for the soliton solutions to the complex wave patterns model against its numerical solutions. (English) Zbl 07880109 Int. J. Theor. Phys. 63, No. 5, Paper No. 115, 19 p. (2024). MSC: 35Q60 35Q51 78A60 35C08 35C07 35B36 35K40 PDFBibTeX XMLCite \textit{E. H. M. Zahran} and \textit{H. Ahmad}, Int. J. Theor. Phys. 63, No. 5, Paper No. 115, 19 p. (2024; Zbl 07880109) Full Text: DOI
Khater, Mostafa M. A. Nonlinearity, dispersion, and dissipation in water wave dynamics: the \(\mathbb{BL}\) equation unraveled. (English) Zbl 07880100 Int. J. Theor. Phys. 63, No. 5, Paper No. 106, 18 p. (2024). MSC: 35Q35 76B15 35C08 35C07 65D07 PDFBibTeX XMLCite \textit{M. M. A. Khater}, Int. J. Theor. Phys. 63, No. 5, Paper No. 106, 18 p. (2024; Zbl 07880100) Full Text: DOI
Collot, Charles; Duyckaerts, Thomas; Kenig, Carlos; Merle, Frank Soliton resolution for the radial quadratic wave equation in space dimension 6. (English) Zbl 07879435 Vietnam J. Math. 52, No. 3, 735-773 (2024). MSC: 35L71 35B40 35B44 35L15 PDFBibTeX XMLCite \textit{C. Collot} et al., Vietnam J. Math. 52, No. 3, 735--773 (2024; Zbl 07879435) Full Text: DOI arXiv
Inc, Mustafa; Iqbal, Muhammad Sajid; Ali, Ali Hasan; Manzoor, Zuha; Ashraf, Farrah Solitary wave effects of Woods-Saxon potential in Schrödinger equation with 3d cubic nonlinearity. (English) Zbl 07879222 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 17, No. 2, 68-82 (2024). MSC: 35Q51 35Q55 PDFBibTeX XMLCite \textit{M. Inc} et al., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 17, No. 2, 68--82 (2024; Zbl 07879222) Full Text: DOI MNR
Pal, Tanmoy; Dhar, Asoke Kumar Linear-shear-current modified nonlinear Schrödinger equation for gravity-capillary waves on deep water. (English) Zbl 07878173 Meccanica 59, No. 5, 743-759 (2024). MSC: 76B15 76B45 76E99 35Q55 PDFBibTeX XMLCite \textit{T. Pal} and \textit{A. K. Dhar}, Meccanica 59, No. 5, 743--759 (2024; Zbl 07878173) Full Text: DOI
Du, Yihong; Li, Wan-Tong; Ni, Wenjie; Zhao, Meng Finite or infinite spreading speed of an epidemic model with free boundary and double nonlocal effects. (English) Zbl 07876069 J. Dyn. Differ. Equations 36, No. 2, 1015-1063 (2024). MSC: 35K57 35C07 35R09 45G15 92D25 PDFBibTeX XMLCite \textit{Y. Du} et al., J. Dyn. Differ. Equations 36, No. 2, 1015--1063 (2024; Zbl 07876069) Full Text: DOI
Torvattanabun, Montri; Khansai, Nattawut; Sirisubtawee, Sekson; Koonprasert, Sanoe; Tuan, Nguyen Minh New exact traveling wave solutions of the (3+1)-dimensional chiral nonlinear Schrödinger equation using two reliable techniques. (English) Zbl 07874444 Thai J. Math. 22, No. 1, 145-163 (2024). MSC: 35C07 35A25 35Q55 PDFBibTeX XMLCite \textit{M. Torvattanabun} et al., Thai J. Math. 22, No. 1, 145--163 (2024; Zbl 07874444) Full Text: Link
Wang, Chanyuan; Altuijri, Reem; Abdel-Aty, Abdel-Haleem; Sooppy Nisar, Kottakkaran; Khater, Mostafa M. A. Plasma-infused solitary waves: unraveling novel dynamics with the Camassa-Holm equation. (English) Zbl 07874095 Int. J. Geom. Methods Mod. Phys. 21, No. 8, Article ID 2450146, 17 p. (2024). MSC: 35Q53 35C08 35B35 76B15 78A60 82D10 PDFBibTeX XMLCite \textit{C. Wang} et al., Int. J. Geom. Methods Mod. Phys. 21, No. 8, Article ID 2450146, 17 p. (2024; Zbl 07874095) Full Text: DOI
Badshah, Fazal; Tariq, Kalim U.; Liu, Jian-Guo; Kazmi, S. M. Raza Solitons and traveling waves structure for the Schrödinger-Hirota model in fluids. (English) Zbl 07874094 Int. J. Geom. Methods Mod. Phys. 21, No. 8, Article ID 2450145, 21 p. (2024). MSC: 35C08 35C07 35A20 35Q55 33F10 PDFBibTeX XMLCite \textit{F. Badshah} et al., Int. J. Geom. Methods Mod. Phys. 21, No. 8, Article ID 2450145, 21 p. (2024; Zbl 07874094) Full Text: DOI
Macca, E.; Russo, G. Boundary effects on wave trains in the Exner model of sedimental transport. (English) Zbl 07873920 Boll. Unione Mat. Ital. 17, No. 2, 417-433 (2024). MSC: 76M12 76B15 76T20 86A05 PDFBibTeX XMLCite \textit{E. Macca} and \textit{G. Russo}, Boll. Unione Mat. Ital. 17, No. 2, 417--433 (2024; Zbl 07873920) Full Text: DOI arXiv OA License
Katayama, Soichiro; Wakasa, Kyouhei; Yordanov, Borislav Decay property for nonlinear damped wave equations in one space dimension. (English) Zbl 07873555 J. Differ. Equations 404, 279-296 (2024). MSC: 35B40 35L15 35L71 PDFBibTeX XMLCite \textit{S. Katayama} et al., J. Differ. Equations 404, 279--296 (2024; Zbl 07873555) Full Text: DOI
Sahoo, Mrutyunjaya; Chakraverty, S. Dynamics of tsunami wave propagation in uncertain environment. (English) Zbl 07872432 Comput. Appl. Math. 43, No. 5, Paper No. 266, 27 p. (2024). MSC: 35Q35 76B15 86A15 PDFBibTeX XMLCite \textit{M. Sahoo} and \textit{S. Chakraverty}, Comput. Appl. Math. 43, No. 5, Paper No. 266, 27 p. (2024; Zbl 07872432) Full Text: DOI
Esfahani, Amin; Levandosky, Steven Traveling waves of a generalized sixth-order Boussinesq equation. (English) Zbl 07872024 Math. Methods Appl. Sci. 47, No. 11, 9180-9206 (2024). MSC: 35Q53 35B35 35C07 35B44 35J35 76B15 PDFBibTeX XMLCite \textit{A. Esfahani} and \textit{S. Levandosky}, Math. Methods Appl. Sci. 47, No. 11, 9180--9206 (2024; Zbl 07872024) Full Text: DOI
Wilson, Joshua P.; Ji, Cui-Cui; Dai, Weizhong A new variable-order fractional momentum operator for wave absorption when solving Schrödinger equations. (English) Zbl 07870122 J. Comput. Phys. 511, Article ID 113123, 17 p. (2024). MSC: 65Mxx 35Qxx 65Nxx PDFBibTeX XMLCite \textit{J. P. Wilson} et al., J. Comput. Phys. 511, Article ID 113123, 17 p. (2024; Zbl 07870122) Full Text: DOI
Alikhanov, Anatoly A.; Shahbazi Asl, Mohammad; Huang, Chengming; Apekov, Aslan M. Temporal second-order difference schemes for the nonlinear time-fractional mixed sub-diffusion and diffusion-wave equation with delay. (English) Zbl 07868590 Physica D 464, Article ID 134194, 13 p. (2024). MSC: 65Mxx 35Rxx 26Axx PDFBibTeX XMLCite \textit{A. A. Alikhanov} et al., Physica D 464, Article ID 134194, 13 p. (2024; Zbl 07868590) Full Text: DOI
Ding, Cui-Cui; Zhu, Lin-Wang; Triki, Houria; Zhou, Qin Four-wave mixing induced general localized waves for a coupled generalized nonlinear Schrödinger system. (English) Zbl 07868588 Physica D 464, Article ID 134191, 11 p. (2024). MSC: 35Q55 37K35 35C08 78A60 PDFBibTeX XMLCite \textit{C.-C. Ding} et al., Physica D 464, Article ID 134191, 11 p. (2024; Zbl 07868588) Full Text: DOI
Li, Jiyong Improved uniform error bounds of an exponential wave integrator method for the Klein-Gordon-Schrödinger equation with the small coupling constant. (English) Zbl 07868358 Commun. Math. Sci. 22, No. 3, 583-612 (2024). MSC: 65-XX 35L70 65M12 65M15 65M70 81-08 PDFBibTeX XMLCite \textit{J. Li}, Commun. Math. Sci. 22, No. 3, 583--612 (2024; Zbl 07868358) Full Text: DOI
Wang, Xiaomin; Bilige, Sudao Dynamical behaviors of various multi-solutions to the (2+1)-dimensional Ito equation. (English) Zbl 07867889 J. Math. Anal. Appl. 538, No. 2, Article ID 128423, 13 p. (2024). MSC: 35Q53 35C08 37K10 35G20 PDFBibTeX XMLCite \textit{X. Wang} and \textit{S. Bilige}, J. Math. Anal. Appl. 538, No. 2, Article ID 128423, 13 p. (2024; Zbl 07867889) Full Text: DOI
Cao, Yulei; He, Jingsong; Cheng, Yi Doubly localized two-dimensional rogue waves generated by resonant collision in Maccari system. (English) Zbl 07867793 Stud. Appl. Math. 152, No. 2, 648-672 (2024). MSC: 35Q55 35Q53 35C08 35B40 PDFBibTeX XMLCite \textit{Y. Cao} et al., Stud. Appl. Math. 152, No. 2, 648--672 (2024; Zbl 07867793) Full Text: DOI
Li, Guopeng Deep-water and shallow-water limits of the intermediate long wave equation. (English) Zbl 07867504 Nonlinearity 37, No. 7, Article ID 075001, 44 p. (2024). MSC: 35Q35 35Q53 76B15 76B55 35B65 35A01 35A02 PDFBibTeX XMLCite \textit{G. Li}, Nonlinearity 37, No. 7, Article ID 075001, 44 p. (2024; Zbl 07867504) Full Text: DOI arXiv
Bedrossian, Jacob A note on cascade flux laws for the stochastically-driven nonlinear Schrödinger equation. (English) Zbl 07867489 Nonlinearity 37, No. 6, Article ID 065007, 27 p. (2024). MSC: 35Q55 35Q41 76F02 76F55 60H15 PDFBibTeX XMLCite \textit{J. Bedrossian}, Nonlinearity 37, No. 6, Article ID 065007, 27 p. (2024; Zbl 07867489) Full Text: DOI arXiv
Pava, Jaime Angulo Stability theory for two-lobe states on the tadpole graph for the NLS equation. (English) Zbl 07867462 Nonlinearity 37, No. 4, Article ID 045015, 43 p. (2024). MSC: 35Q55 35Q41 81Q35 35R02 35B35 35C08 35B20 PDFBibTeX XMLCite \textit{J. A. Pava}, Nonlinearity 37, No. 4, Article ID 045015, 43 p. (2024; Zbl 07867462) Full Text: DOI
Hu, Dongdong Fully decoupled and high-order linearly implicit energy-preserving RK-GSAV methods for the coupled nonlinear wave equation. (English) Zbl 07866538 J. Comput. Appl. Math. 445, Article ID 115836, 17 p. (2024). MSC: 65M06 65L06 65M12 65T50 35R11 35Q53 PDFBibTeX XMLCite \textit{D. Hu}, J. Comput. Appl. Math. 445, Article ID 115836, 17 p. (2024; Zbl 07866538) Full Text: DOI
Liu, Hanze; Yusupu, Adilai Dynamical analysis and explicit traveling wave solutions to the higher-dimensional generalized nonlinear wave system. (English) Zbl 07866530 J. Comput. Appl. Math. 445, Article ID 115825, 16 p. (2024). MSC: 34C23 34C37 74J30 58Z05 PDFBibTeX XMLCite \textit{H. Liu} and \textit{A. Yusupu}, J. Comput. Appl. Math. 445, Article ID 115825, 16 p. (2024; Zbl 07866530) Full Text: DOI
Chernov, A. V. Existence of an optimal control for a semilinear evolution equation with unbounded operator. (English) Zbl 07865998 Comput. Math. Math. Phys. 64, No. 5, 967-988 (2024). MSC: 49J20 35J61 49J27 PDFBibTeX XMLCite \textit{A. V. Chernov}, Comput. Math. Math. Phys. 64, No. 5, 967--988 (2024; Zbl 07865998) Full Text: DOI
Schürmann, H. W.; Serov, V. S. On the existence of certain elliptic solutions of the cubically nonlinear Schrödinger equation. (English. Russian original) Zbl 07864573 Theor. Math. Phys. 219, No. 1, 557-566 (2024); translation from Teor. Mat. Fiz. 219, No. 1, 32-43 (2024); erratum Theor. Math. Phys. 219, No. 2, 1060 (2024). MSC: 35Q55 35Q41 35Q56 35C05 35C07 35B40 35A01 33E05 49M41 PDFBibTeX XMLCite \textit{H. W. Schürmann} and \textit{V. S. Serov}, Theor. Math. Phys. 219, No. 1, 557--566 (2024; Zbl 07864573); translation from Teor. Mat. Fiz. 219, No. 1, 32--43 (2024); erratum Theor. Math. Phys. 219, No. 2, 1060 (2024) Full Text: DOI
Volkov, Darko Stability properties for a class of inverse problems. (English) Zbl 07864540 J. Inverse Ill-Posed Probl. 32, No. 3, 333-350 (2024). MSC: 45Q05 47N20 74G75 74J20 PDFBibTeX XMLCite \textit{D. Volkov}, J. Inverse Ill-Posed Probl. 32, No. 3, 333--350 (2024; Zbl 07864540) Full Text: DOI arXiv
Coclite, Giuseppe Maria; di Ruvo, Lorenzo On a regularized porous medium equation. (English) Zbl 07862934 Discrete Contin. Dyn. Syst., Ser. S 17, No. 5-6, 1876-1888 (2024). MSC: 35K30 35K55 PDFBibTeX XMLCite \textit{G. M. Coclite} and \textit{L. di Ruvo}, Discrete Contin. Dyn. Syst., Ser. S 17, No. 5--6, 1876--1888 (2024; Zbl 07862934) Full Text: DOI
Wu, Weixin; Zhang, Wenhui Traveling wave solutions in a nonlocal dispersal SIR epidemic model with nonlocal time-delay and general nonlinear incidences. (English) Zbl 07862251 Int. J. Biomath. 17, No. 5, Article ID 2350045, 32 p. (2024). MSC: 35C07 35B40 35K57 92D30 PDFBibTeX XMLCite \textit{W. Wu} and \textit{W. Zhang}, Int. J. Biomath. 17, No. 5, Article ID 2350045, 32 p. (2024; Zbl 07862251) Full Text: DOI
Badshah, Fazal; Tariq, Kalim U.; Henaish, Ahmed; Akhtar, Junaid On some soliton structures for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity in mathematical physics. (English) Zbl 07861271 Math. Methods Appl. Sci. 47, No. 6, 4756-4772 (2024). MSC: 35C07 35C08 35Q41 35Q55 PDFBibTeX XMLCite \textit{F. Badshah} et al., Math. Methods Appl. Sci. 47, No. 6, 4756--4772 (2024; Zbl 07861271) Full Text: DOI
Anco, Stephen C.; Márquez, Almudena P.; Garrido, Tamara M.; Gandarias, Maria L. Conservation laws and variational structure of damped nonlinear wave equations. (English) Zbl 07861234 Math. Methods Appl. Sci. 47, No. 6, 3974-3996 (2024). MSC: 22E70 35G20 35Q99 PDFBibTeX XMLCite \textit{S. C. Anco} et al., Math. Methods Appl. Sci. 47, No. 6, 3974--3996 (2024; Zbl 07861234) Full Text: DOI arXiv OA License
Yan, Li; Mehmet Baskonus, Haci; Cattani, Carlo; Gao, Wei Extraction of the gravitational potential and high-frequency wave perturbation properties of nonlinear \((3 + 1)\)-dimensional Vakhnenko-Parkes equation via novel approach. (English) Zbl 07861209 Math. Methods Appl. Sci. 47, No. 5, 3480-3489 (2024). MSC: 35Q74 35Q51 35B20 PDFBibTeX XMLCite \textit{L. Yan} et al., Math. Methods Appl. Sci. 47, No. 5, 3480--3489 (2024; Zbl 07861209) Full Text: DOI
Zhao, Zhihong; Li, Liting; Feng, Zhaosheng Traveling wavefronts for density-dependent diffusion reaction convection equation with time delay. (English) Zbl 07861186 Math. Methods Appl. Sci. 47, No. 5, 3101-3114 (2024). MSC: 35K57 35A15 35C07 PDFBibTeX XMLCite \textit{Z. Zhao} et al., Math. Methods Appl. Sci. 47, No. 5, 3101--3114 (2024; Zbl 07861186) Full Text: DOI
Tianpei, Guo Multivortex traveling waves for the Schrödinger map equation. (English) Zbl 07860697 J. Math. Phys. 65, No. 5, Article ID 051503, 24 p. (2024). MSC: 35C07 35Q55 PDFBibTeX XMLCite \textit{G. Tianpei}, J. Math. Phys. 65, No. 5, Article ID 051503, 24 p. (2024; Zbl 07860697) Full Text: DOI
Hou, Baohui; Liu, Huan Two linear energy-preserving compact finite difference schemes for coupled nonlinear wave equations. (English) Zbl 07859319 Appl. Numer. Math. 201, 531-549 (2024). MSC: 65Mxx 35Qxx 35Kxx PDFBibTeX XMLCite \textit{B. Hou} and \textit{H. Liu}, Appl. Numer. Math. 201, 531--549 (2024; Zbl 07859319) Full Text: DOI
Li, Jiyong; Chen, Qianyu Improved uniform error bounds on an exponential wave integrator method for the nonlinear Schrödinger equation with wave operator and weak nonlinearity. (English) Zbl 07859317 Appl. Numer. Math. 201, 488-513 (2024). MSC: 65Mxx 35Qxx 81-XX PDFBibTeX XMLCite \textit{J. Li} and \textit{Q. Chen}, Appl. Numer. Math. 201, 488--513 (2024; Zbl 07859317) Full Text: DOI
Liang, Conggang; Shi, Dongyang; Guo, Longfei Superconvergence analysis of a two-grid BDF2-FEM for nonlinear dispersive wave equation. (English) Zbl 07859313 Appl. Numer. Math. 201, 419-430 (2024). MSC: 65Mxx 65Nxx 35Kxx PDFBibTeX XMLCite \textit{C. Liang} et al., Appl. Numer. Math. 201, 419--430 (2024; Zbl 07859313) Full Text: DOI
Zhang, Yan; Hao, Hui-Qin Dispersive shock wave structure analysis for the defocusing Lakshmanan-Porsezian-Daniel equation. (English) Zbl 07858933 Appl. Math. Lett. 153, Article ID 109044, 6 p. (2024). MSC: 35Q55 35C08 35B10 35L67 37K10 37K35 PDFBibTeX XMLCite \textit{Y. Zhang} and \textit{H.-Q. Hao}, Appl. Math. Lett. 153, Article ID 109044, 6 p. (2024; Zbl 07858933) Full Text: DOI
Borich, M. A.; Shagalov, A. G. Multi-phase autoresonant excitation of dark solitons. (English) Zbl 07858857 Chin. J. Phys., Taipei 88, 332-338 (2024). MSC: 70K30 70K40 35Q55 PDFBibTeX XMLCite \textit{M. A. Borich} and \textit{A. G. Shagalov}, Chin. J. Phys., Taipei 88, 332--338 (2024; Zbl 07858857) Full Text: DOI
Deng, Yu Recent progress on the mathematical theory of wave turbulence. (English) Zbl 07857654 Cardona, Duván (ed.) et al., Extended abstracts 2021/2022. Methusalem lectures, Ghent, Belgium. Cham: Birkhäuser. Trends Math., Res. Perspect. Ghent Anal. PDE Cent. 3, 95-104 (2024). MSC: 76Fxx PDFBibTeX XMLCite \textit{Y. Deng}, Trends Math., Res. Perspect. Ghent Anal. PDE Cent. 3, 95--104 (2024; Zbl 07857654) Full Text: DOI
Wang, Xingchang; Xu, Runzhang; Yang, Yanbing Long-time behavior for fourth order nonlinear wave equations with dissipative and dispersive terms. (English) Zbl 07856334 Appl. Numer. Math. 199, 248-265 (2024). MSC: 35B40 35B41 35L35 35L76 PDFBibTeX XMLCite \textit{X. Wang} et al., Appl. Numer. Math. 199, 248--265 (2024; Zbl 07856334) Full Text: DOI
Li, Jingyu; Wang, Lina; Wu, Yaping Stability of large-amplitude traveling fronts for a traffic flow model with moving barriers. (English) Zbl 07856193 Discrete Contin. Dyn. Syst., Ser. S 17, No. 2, 720-741 (2024). MSC: 35C07 35B35 35L40 35L60 35P05 76A30 90B20 PDFBibTeX XMLCite \textit{J. Li} et al., Discrete Contin. Dyn. Syst., Ser. S 17, No. 2, 720--741 (2024; Zbl 07856193) Full Text: DOI
Kopçasız, Bahadır; Yaşar, Emrullah Exploration of interactional phenomena and multi-wave solutions of the fractional-order dual-mode nonlinear Schrödinger equation. (English) Zbl 1539.35287 Math. Methods Appl. Sci. 47, No. 4, 2516-2534 (2024). MSC: 35R11 35Q35 35Q55 35Q51 35C07 PDFBibTeX XMLCite \textit{B. Kopçasız} and \textit{E. Yaşar}, Math. Methods Appl. Sci. 47, No. 4, 2516--2534 (2024; Zbl 1539.35287) Full Text: DOI OA License
Chugainova, A. P. Riemann problem for longitudinal-torsional waves in nonlinear elastic rods. (English) Zbl 07850949 Z. Angew. Math. Phys. 75, No. 3, Paper No. 106, 16 p. (2024). MSC: 35L67 35C07 35L45 35L65 35Q74 PDFBibTeX XMLCite \textit{A. P. Chugainova}, Z. Angew. Math. Phys. 75, No. 3, Paper No. 106, 16 p. (2024; Zbl 07850949) Full Text: DOI
Zhou, Feng; Sun, Ziying; Zhu, Kaixuan; Mei, Xinyu Exponential attractors for the sup-cubic wave equation with nonlocal damping. (English) Zbl 07850945 Bull. Malays. Math. Sci. Soc. (2) 47, No. 4, Paper No. 104, 35 p. (2024). MSC: 37L30 37L05 47H20 PDFBibTeX XMLCite \textit{F. Zhou} et al., Bull. Malays. Math. Sci. Soc. (2) 47, No. 4, Paper No. 104, 35 p. (2024; Zbl 07850945) Full Text: DOI
Bhardwaj, Arun Kumar; Kumar, Vishvesh; Mondal, Shyam Swarup Estimates for the nonlinear viscoelastic damped wave equation on compact Lie groups. (English) Zbl 07850894 Proc. R. Soc. Edinb., Sect. A, Math. 154, No. 3, 810-829 (2024). MSC: 35R03 35L15 35L71 PDFBibTeX XMLCite \textit{A. K. Bhardwaj} et al., Proc. R. Soc. Edinb., Sect. A, Math. 154, No. 3, 810--829 (2024; Zbl 07850894) Full Text: DOI arXiv