Ning, D. Z.; Zhang, S. B.; Chen, L. F.; Liu, H.-W.; Teng, B. Nonlinear Bragg scattering of surface waves over a two-dimensional periodic structure. (English) Zbl 07568800 J. Fluid Mech. 946, Paper No. A25, 29 p. (2022). MSC: 76B15 76M15 76-05 PDF BibTeX XML Cite \textit{D. Z. Ning} et al., J. Fluid Mech. 946, Paper No. A25, 29 p. (2022; Zbl 07568800) Full Text: DOI OpenURL
Almusawa, Hassan; Jhangeer, Adil Nonlinear self-adjointness, conserved quantities and Lie symmetry of dust size distribution on a shock wave in quantum dusty plasma. (English) Zbl 07567384 Commun. Nonlinear Sci. Numer. Simul. 114, Article ID 106660, 15 p. (2022). MSC: 35Axx 35Bxx 82Dxx PDF BibTeX XML Cite \textit{H. Almusawa} and \textit{A. Jhangeer}, Commun. Nonlinear Sci. Numer. Simul. 114, Article ID 106660, 15 p. (2022; Zbl 07567384) Full Text: DOI OpenURL
Dong, Heping; Zhang, Deyue; Chi, Yingwei An iterative scheme for imaging acoustic obstacle from phaseless total-field data. (English) Zbl 07562721 Inverse Probl. Imaging 16, No. 4, 925-942 (2022). MSC: 65N21 65N20 76Q05 78A46 65K10 65F20 65F22 65R20 35J05 65J20 35R30 35R25 35Q35 PDF BibTeX XML Cite \textit{H. Dong} et al., Inverse Probl. Imaging 16, No. 4, 925--942 (2022; Zbl 07562721) Full Text: DOI OpenURL
Lai, Ning-An; Xiang, Wei; Zhou, Yi Global instability of multi-dimensional plane shocks for isothermal flow. (English) Zbl 07562285 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 3, 887-902 (2022). MSC: 35L60 35L65 76L05 PDF BibTeX XML Cite \textit{N.-A. Lai} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 3, 887--902 (2022; Zbl 07562285) Full Text: DOI OpenURL
Abels, Helmut; Ameismeier, Tobias Convergence of thin vibrating rods to a linear beam equation. (English) Zbl 07562182 Z. Angew. Math. Phys. 73, No. 4, Paper No. 166, 28 p. (2022). MSC: 74J30 74K10 74H10 74B20 35Q74 PDF BibTeX XML Cite \textit{H. Abels} and \textit{T. Ameismeier}, Z. Angew. Math. Phys. 73, No. 4, Paper No. 166, 28 p. (2022; Zbl 07562182) Full Text: DOI OpenURL
Ambrose, David M.; Camassa, Roberto; Marzuola, Jeremy L.; McLaughlin, Richard M.; Robinson, Quentin; Wilkening, Jon Numerical algorithms for water waves with background flow over obstacles and topography. (English) Zbl 07560221 Adv. Comput. Math. 48, No. 4, Paper No. 46, 62 p. (2022). MSC: 76M23 76B15 76B45 86A05 PDF BibTeX XML Cite \textit{D. M. Ambrose} et al., Adv. Comput. Math. 48, No. 4, Paper No. 46, 62 p. (2022; Zbl 07560221) Full Text: DOI OpenURL
Choi, Wooyoung High-order strongly nonlinear long wave approximation and solitary wave solution. (English) Zbl 07559829 J. Fluid Mech. 945, Paper No. A15, 38 p. (2022). MSC: 76B25 76B15 76M45 76M22 PDF BibTeX XML Cite \textit{W. Choi}, J. Fluid Mech. 945, Paper No. A15, 38 p. (2022; Zbl 07559829) Full Text: DOI OpenURL
Constantin, Olivia A complex-analytic approach to kinetic energy properties of irrotational traveling water waves. (English) Zbl 07555200 Math. Z. 301, No. 4, 4201-4215 (2022). MSC: 76B15 76M40 PDF BibTeX XML Cite \textit{O. Constantin}, Math. Z. 301, No. 4, 4201--4215 (2022; Zbl 07555200) Full Text: DOI OpenURL
Rushchyts’kyÄ, Ya. Ya. Elastic torsional wave and corresponding nonlinear wave equation. (Ukrainian. English summary) Zbl 07549658 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2022, No. 2, 41-47 (2022). MSC: 74J30 74B20 74E30 PDF BibTeX XML Cite \textit{Ya. Ya. Rushchyts'kyÄ}, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2022, No. 2, 41--47 (2022; Zbl 07549658) Full Text: DOI OpenURL
Savel’ieva, K. V.; Dashko, O. G. Plane elastic wave interaction. Considering of quadratically and cubically nonlinearity. (Ukrainian. English summary) Zbl 07549644 Visn., Ser. Fiz.-Mat. Nauky, KyĂŻv. Univ. Im. Tarasa Shevchenka 2022, No. 1, 50-53 (2022). MSC: 74J30 74B20 74E30 PDF BibTeX XML Cite \textit{K. V. Savel'ieva} and \textit{O. G. Dashko}, Visn., Ser. Fiz.-Mat. Nauky, KyĂŻv. Univ. Im. Tarasa Shevchenka 2022, No. 1, 50--53 (2022; Zbl 07549644) Full Text: DOI OpenURL
Kardhashi, Eva; Laforest, Marc; LeFloch, Philippe G. The mathematical theory of splitting-merging patterns in phase transition dynamics. (English) Zbl 07548837 Commun. Partial Differ. Equations 47, No. 7, 1339-1393 (2022). MSC: 35L65 35L67 76N10 76L05 PDF BibTeX XML Cite \textit{E. Kardhashi} et al., Commun. Partial Differ. Equations 47, No. 7, 1339--1393 (2022; Zbl 07548837) Full Text: DOI OpenURL
Nam, Bui Duc; Nhan, Nguyen Huu; Ngoc, Le Thi Phuong; Long, Nguyen Thanh On a system of nonlinear wave equations with the Kirchhoff-Carrier and Balakrishnan-Taylor terms. (English) Zbl 07547253 Math. Bohem. 147, No. 2, 237-270 (2022). Reviewer: Marie Kopáčková (Praha) MSC: 35L57 35Q74 35D30 35B40 35L20 35L70 37B25 PDF BibTeX XML Cite \textit{B. D. Nam} et al., Math. Bohem. 147, No. 2, 237--270 (2022; Zbl 07547253) Full Text: DOI OpenURL
Henry, David Energy considerations for nonlinear equatorial water waves. (English) Zbl 07545179 Commun. Pure Appl. Anal. 21, No. 7, 2337-2356 (2022). MSC: 35Q35 35Q86 35Q31 76B15 35C07 35B10 PDF BibTeX XML Cite \textit{D. Henry}, Commun. Pure Appl. Anal. 21, No. 7, 2337--2356 (2022; Zbl 07545179) Full Text: DOI OpenURL
Deike, Luc Mass transfer at the ocean-atmosphere interface: the role of wave breaking, droplets, and bubbles. (English) Zbl 07544325 Moin, Parviz (ed.) et al., Annual review of fluid mechanics. Vol. 54. Palo Alto, CA: Annual Reviews. Annu. Rev. Fluid Mech. 54, 191-224 (2022). MSC: 76U60 76T10 76B15 76F40 76-02 86A05 86A10 PDF BibTeX XML Cite \textit{L. Deike}, Annu. Rev. Fluid Mech. 54, 191--224 (2022; Zbl 07544325) Full Text: DOI OpenURL
Falcon, Eric; Mordant, Nicolas Experiments in surface gravity-capillary wave turbulence. (English) Zbl 07544318 Moin, Parviz (ed.) et al., Annual review of fluid mechanics. Vol. 54. Palo Alto, CA: Annual Reviews. Annu. Rev. Fluid Mech. 54, 1-25 (2022). MSC: 76B15 76F99 76-05 76-02 PDF BibTeX XML Cite \textit{E. Falcon} and \textit{N. Mordant}, Annu. Rev. Fluid Mech. 54, 1--25 (2022; Zbl 07544318) Full Text: DOI OpenURL
Secchi, Paolo; Yuan, Yuan Weakly nonlinear surface waves on the plasma-vacuum interface. (English. French summary) Zbl 07541865 J. Math. Pures Appl. (9) 163, 132-203 (2022). MSC: 76W05 76E25 35Q35 35Q60 78A40 PDF BibTeX XML Cite \textit{P. Secchi} and \textit{Y. Yuan}, J. Math. Pures Appl. (9) 163, 132--203 (2022; Zbl 07541865) Full Text: DOI OpenURL
Michel, Guillaume; Bonnefoy, Félicien; Ducrozet, Guillaume; Falcon, Eric Statistics of rogue waves in isotropic wave fields. (English) Zbl 07541580 J. Fluid Mech. 943, Paper No. A26, 18 p. (2022). MSC: 76B15 76F55 76M35 PDF BibTeX XML Cite \textit{G. Michel} et al., J. Fluid Mech. 943, Paper No. A26, 18 p. (2022; Zbl 07541580) Full Text: DOI OpenURL
Liu, Tingting; Li, Xinping; Zheng, Yun; Luo, Yi; Guo, Yunhua; Cheng, Guanwen; Zhang, Zhizhen Study on S-wave propagation through parallel rock joints under in situ stress. (English) Zbl 07538121 Waves Random Complex Media 32, No. 3, 1174-1197 (2022). MSC: 74L10 74J20 74B05 PDF BibTeX XML Cite \textit{T. Liu} et al., Waves Random Complex Media 32, No. 3, 1174--1197 (2022; Zbl 07538121) Full Text: DOI OpenURL
Huang, Feimin; Xu, Lingda; Yuan, Qian Asymptotic stability of planar rarefaction waves under periodic perturbations for 3-d Navier-Stokes equations. (English) Zbl 07537715 Adv. Math. 404, Part B, Article ID 108452, 27 p. (2022). MSC: 35Q30 76P05 35B40 35B35 35B20 PDF BibTeX XML Cite \textit{F. Huang} et al., Adv. Math. 404, Part B, Article ID 108452, 27 p. (2022; Zbl 07537715) Full Text: DOI OpenURL
Wang, Jiarui; Liu, Yang; Wen, Cao; Li, Hong Efficient numerical algorithm with the second-order time accuracy for a two-dimensional nonlinear fourth-order fractional wave equation. (English) Zbl 07534462 Results Appl. Math. 14, Article ID 100264, 13 p. (2022). MSC: 65-XX 76-XX 74-XX PDF BibTeX XML Cite \textit{J. Wang} et al., Results Appl. Math. 14, Article ID 100264, 13 p. (2022; Zbl 07534462) Full Text: DOI OpenURL
Kulikovskii, Andrey G.; Chugainova, Anna P. Structures of non-classical discontinuities in solutions of hyperbolic systems of equations. (English. Russian original) Zbl 07523546 Russ. Math. Surv. 77, No. 1, 47-79 (2022); translation from Usp. Mat. Nauk 77, No. 1, 55-90 (2022). MSC: 74J40 74J30 74K10 35Q74 35L67 PDF BibTeX XML Cite \textit{A. G. Kulikovskii} and \textit{A. P. Chugainova}, Russ. Math. Surv. 77, No. 1, 47--79 (2022; Zbl 07523546); translation from Usp. Mat. Nauk 77, No. 1, 55--90 (2022) Full Text: DOI OpenURL
Natali, Fábio; Le, Uyen; Pelinovsky, Dmitry E. Periodic waves in the fractional modified Korteweg-de Vries equation. (English) Zbl 1487.76018 J. Dyn. Differ. Equations 34, No. 2, 1601-1640 (2022); correction ibid. 34, No. 2, 1641-1642 (2022). MSC: 76B15 76M30 35Q35 35Q53 26A33 PDF BibTeX XML Cite \textit{F. Natali} et al., J. Dyn. Differ. Equations 34, No. 2, 1601--1640 (2022; Zbl 1487.76018) Full Text: DOI OpenURL
Khater, Mostafa M. A.; Alfalqi, S. H.; Alzaidi, J. F.; Salama, Samir A.; Wang, Fuzhang Plenty of wave solutions to the ill-posed Boussinesq dynamic wave equation under shallow water beneath gravity. (English) Zbl 1485.35115 AIMS Math. 7, No. 1, 54-81 (2022). MSC: 35C08 35R25 35Q35 76B25 49M05 PDF BibTeX XML Cite \textit{M. M. A. Khater} et al., AIMS Math. 7, No. 1, 54--81 (2022; Zbl 1485.35115) Full Text: DOI OpenURL
Chen, Robin Ming; Walsh, Samuel Orbital stability of internal waves. (English) Zbl 1486.76037 Commun. Math. Phys. 391, No. 3, 1091-1141 (2022). MSC: 76E17 74E30 76B55 76B45 35Q35 PDF BibTeX XML Cite \textit{R. M. Chen} and \textit{S. Walsh}, Commun. Math. Phys. 391, No. 3, 1091--1141 (2022; Zbl 1486.76037) Full Text: DOI OpenURL
Rosenau, Philip On essential nonlinearities emerging from linear systems. (English) Zbl 07508670 Wave Motion 110, Article ID 102881, 12 p. (2022). MSC: 74-XX 92-XX PDF BibTeX XML Cite \textit{P. Rosenau}, Wave Motion 110, Article ID 102881, 12 p. (2022; Zbl 07508670) Full Text: DOI OpenURL
Liu, Jiawang; Teng, Bin A modified approach to wavemaker modeling for high-order spectral numerical wave tanks. (English) Zbl 07508659 Wave Motion 109, Article ID 102850, 17 p. (2022). MSC: 76-XX 86-XX PDF BibTeX XML Cite \textit{J. Liu} and \textit{B. Teng}, Wave Motion 109, Article ID 102850, 17 p. (2022; Zbl 07508659) Full Text: DOI OpenURL
He, Jiayi; Yang, Chen-Jun; Noblesse, Francis Optimal Fourier-Kochin flow representations in ship and offshore hydrodynamics: theory. (English) Zbl 1486.76016 Eur. J. Mech., B, Fluids 93, 137-159 (2022). MSC: 76B20 76B15 76B07 76M99 PDF BibTeX XML Cite \textit{J. He} et al., Eur. J. Mech., B, Fluids 93, 137--159 (2022; Zbl 1486.76016) Full Text: DOI OpenURL
Zhang, Gengen Time splitting combined with exponential wave integrator Fourier pseudospectral method for quantum Zakharov system. (English) Zbl 07506983 Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2587-2606 (2022). MSC: 35Q55 35Q40 81Q50 35B44 35B36 35C08 65T50 65M06 65M70 65M12 PDF BibTeX XML Cite \textit{G. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2587--2606 (2022; Zbl 07506983) Full Text: DOI OpenURL
Liu, Hongyu On local and global structures of transmission eigenfunctions and beyond. (English) Zbl 1486.35320 J. Inverse Ill-Posed Probl. 30, No. 2, 287-305 (2022). MSC: 35P30 35P05 35P10 35P20 35P25 35R30 81V80 78A40 74J20 PDF BibTeX XML Cite \textit{H. Liu}, J. Inverse Ill-Posed Probl. 30, No. 2, 287--305 (2022; Zbl 1486.35320) Full Text: DOI OpenURL
Abouatia, Hiba; Guesmia, Amar; Zennir, Khaled Strict decay rate for system of three nonlinear wave equations depending on the relaxation functions. (English) Zbl 07502356 J. Appl. Nonlinear Dyn. 11, No. 2, 309-321 (2022). MSC: 76-XX 35-XX PDF BibTeX XML Cite \textit{H. Abouatia} et al., J. Appl. Nonlinear Dyn. 11, No. 2, 309--321 (2022; Zbl 07502356) Full Text: DOI OpenURL
Haziot, Susanna V.; Hur, Vera Mikyoung; Strauss, Walter A.; Toland, J. F.; WahlĂ©n, Erik; Walsh, Samuel; Wheeler, Miles H. Traveling water waves – the ebb and flow of two centuries. (English) Zbl 07502109 Q. Appl. Math. 80, No. 2, 317-401 (2022). MSC: 35Q35 35Q31 76-02 76B15 76B25 76B47 35C07 PDF BibTeX XML Cite \textit{S. V. Haziot} et al., Q. Appl. Math. 80, No. 2, 317--401 (2022; Zbl 07502109) Full Text: DOI OpenURL
Adamo, Tim; Mason, Lionel; Sharma, Atul Celestial \(w_{1+\infty}\) symmetries from twistor space. (English) Zbl 07501812 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 016, 23 p. (2022). MSC: 83C60 81U20 32L25 22E67 31C45 35J05 70G45 17B69 PDF BibTeX XML Cite \textit{T. Adamo} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 016, 23 p. (2022; Zbl 07501812) Full Text: DOI OpenURL
Lieu, Richard; Lackeos, Kristen; Zhang, Bing Damping of long wavelength gravitational waves by the intergalactic medium. (English) Zbl 1487.83021 Classical Quantum Gravity 39, No. 7, Article ID 075014, 23 p. (2022). MSC: 83C35 83C50 78A48 78A35 60J70 35A18 80A10 82D10 47A10 81R30 78A60 PDF BibTeX XML Cite \textit{R. Lieu} et al., Classical Quantum Gravity 39, No. 7, Article ID 075014, 23 p. (2022; Zbl 1487.83021) Full Text: DOI OpenURL
Danilov, E. A.; Uryupin, S. A. Generation of quasi-cylindrical waves during inhomogeneous heating of a metal by a focused laser pulse. (English) Zbl 1487.78022 Phys. Lett., A 433, Article ID 128026, 8 p. (2022). MSC: 78A60 78A40 82D35 80A21 PDF BibTeX XML Cite \textit{E. A. Danilov} and \textit{S. A. Uryupin}, Phys. Lett., A 433, Article ID 128026, 8 p. (2022; Zbl 1487.78022) Full Text: DOI OpenURL
Constantin, O.; Persson, A.-M. A complex-analytic approach to kinetic energy properties of irrotational flows. (English) Zbl 1485.76017 Proc. Am. Math. Soc. 150, No. 6, 2647-2653 (2022). MSC: 76B15 76B25 76M40 PDF BibTeX XML Cite \textit{O. Constantin} and \textit{A. M. Persson}, Proc. Am. Math. Soc. 150, No. 6, 2647--2653 (2022; Zbl 1485.76017) Full Text: DOI OpenURL
Zhang, Nangao; Zhu, Changjiang Convergence to nonlinear diffusion waves for solutions of \(M_1\) model. (English) Zbl 1487.85025 J. Differ. Equations 320, 1-48 (2022). MSC: 85A25 35L65 35B40 82B24 35J05 35P15 35P30 26B20 PDF BibTeX XML Cite \textit{N. Zhang} and \textit{C. Zhu}, J. Differ. Equations 320, 1--48 (2022; Zbl 1487.85025) Full Text: DOI OpenURL
Basu, Biswajit; Haziot, Susanna V.; Staino, Andrea Wave breaking for periodic solutions of a nonlinear shallow water equation. (English) Zbl 07495654 Appl. Anal. 101, No. 2, 519-526 (2022). MSC: 35Q35 76B15 35B10 PDF BibTeX XML Cite \textit{B. Basu} et al., Appl. Anal. 101, No. 2, 519--526 (2022; Zbl 07495654) Full Text: DOI OpenURL
Komech, Alexander I. On quantum jumps and attractors of the Maxwell-Schrödinger equations. (English. French summary) Zbl 07495621 Ann. Math. Qué. 46, No. 1, 139-159 (2022). MSC: 35Q40 35Q55 35Q41 35Q60 35L70 35P30 35B20 35B41 35C08 78A45 47J10 47J35 37K06 35R03 PDF BibTeX XML Cite \textit{A. I. Komech}, Ann. Math. Qué. 46, No. 1, 139--159 (2022; Zbl 07495621) Full Text: DOI OpenURL
Cai, Yongyong; Wang, Yan Uniformly accurate nested Picard iterative integrators for the nonlinear Dirac equation in the nonrelativistic regime. (English) Zbl 1482.35190 Multiscale Model. Simul. 20, No. 1, 164-187 (2022). MSC: 35Q41 65M70 65N35 81Q05 PDF BibTeX XML Cite \textit{Y. Cai} and \textit{Y. Wang}, Multiscale Model. Simul. 20, No. 1, 164--187 (2022; Zbl 1482.35190) Full Text: DOI OpenURL
Tesfahun, Achenef Time-decay estimates for the linearized water wave type equations. (English) Zbl 07490266 J. Evol. Equ. 22, No. 1, Paper No. 4, 12 p. (2022). MSC: 35Q35 76B15 76B03 35A01 42B25 26A33 35R11 PDF BibTeX XML Cite \textit{A. Tesfahun}, J. Evol. Equ. 22, No. 1, Paper No. 4, 12 p. (2022; Zbl 07490266) Full Text: DOI OpenURL
Khorbatly, Bashar; Lteif, Ralph; Israwi, Samer; Gerbi, Stéphane Mathematical modeling and numerical analysis for the higher order Boussinesq system. (English) Zbl 07488344 ESAIM, Math. Model. Numer. Anal. 56, No. 2, 593-615 (2022). MSC: 35Q35 35L45 35L60 76B25 76B45 76B55 35C07 35B40 35A01 35A02 65L99 PDF BibTeX XML Cite \textit{B. Khorbatly} et al., ESAIM, Math. Model. Numer. Anal. 56, No. 2, 593--615 (2022; Zbl 07488344) Full Text: DOI arXiv OpenURL
Rosenzweig, Matthew; Staffilani, Gigliola Uniqueness of solutions to the spectral hierarchy in kinetic wave turbulence theory. (English) Zbl 07487492 Physica D 433, Article ID 133148, 16 p. (2022). MSC: 82-XX 35-XX PDF BibTeX XML Cite \textit{M. Rosenzweig} and \textit{G. Staffilani}, Physica D 433, Article ID 133148, 16 p. (2022; Zbl 07487492) Full Text: DOI arXiv OpenURL
Robin, Rémi; Augier, Nicolas; Boscain, Ugo; Sigalotti, Mario Ensemble qubit controllability with a single control via adiabatic and rotating wave approximations. (English) Zbl 1486.81126 J. Differ. Equations 318, 414-442 (2022). MSC: 81Q93 34C29 81Q15 81V80 70H11 35B34 70K65 81R25 PDF BibTeX XML Cite \textit{R. Robin} et al., J. Differ. Equations 318, 414--442 (2022; Zbl 1486.81126) Full Text: DOI arXiv OpenURL
Gao, Xiao-Tian; Tian, Bo Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system. (English) Zbl 07479005 Appl. Math. Lett. 128, Article ID 107858, 6 p. (2022). MSC: 76B15 76M99 76M55 68W30 PDF BibTeX XML Cite \textit{X.-T. Gao} and \textit{B. Tian}, Appl. Math. Lett. 128, Article ID 107858, 6 p. (2022; Zbl 07479005) Full Text: DOI OpenURL
Jia, Heping; Yang, Rongcao; Guo, Qi; Christian, J. M. The effect of coherent coupling nonlinearity on modulation instability and rogue wave excitation. (English) Zbl 07474641 Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106246, 10 p. (2022). MSC: 76Bxx 35Qxx 76Lxx PDF BibTeX XML Cite \textit{H. Jia} et al., Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106246, 10 p. (2022; Zbl 07474641) Full Text: DOI OpenURL
Zhou, Yonghui; Ji, Shuguan Wave breaking phenomena and global existence for the weakly dissipative generalized Camassa-Holm equation. (English) Zbl 07474346 Commun. Pure Appl. Anal. 21, No. 2, 555-566 (2022). MSC: 35B44 35G25 35Q35 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{S. Ji}, Commun. Pure Appl. Anal. 21, No. 2, 555--566 (2022; Zbl 07474346) Full Text: DOI OpenURL
Ji, Shu Guan; Li, Xiao Wan Solitary wave solutions of delayed coupled Higgs field equation. (English) Zbl 1482.35173 Acta Math. Sin., Engl. Ser. 38, No. 1, 97-106 (2022). MSC: 35Q35 35L05 74J30 34D15 35C08 76B25 47A13 35B25 37C29 81V25 PDF BibTeX XML Cite \textit{S. G. Ji} and \textit{X. W. Li}, Acta Math. Sin., Engl. Ser. 38, No. 1, 97--106 (2022; Zbl 1482.35173) Full Text: DOI OpenURL
Kudryavtsev, A. G.; Myagkov, N. N. New solutions for the (3 + 1)-dimensional Charney-Obukhov equation. (English) Zbl 1485.81027 Phys. Lett., A 427, Article ID 127901, 4 p. (2022). MSC: 81Q05 35Q55 35C07 76M23 81V80 PDF BibTeX XML Cite \textit{A. G. Kudryavtsev} and \textit{N. N. Myagkov}, Phys. Lett., A 427, Article ID 127901, 4 p. (2022; Zbl 1485.81027) Full Text: DOI OpenURL
Geng, T.; Liu, H.; Wang, Q.; Dias, F. Wave scattering by a three-dimensional submerged horizontal rectangular plate in a channel: experiments and numerical computations. (English) Zbl 1482.76022 J. Fluid Mech. 935, Paper No. A23, 27 p. (2022). MSC: 76B15 76M15 76-05 PDF BibTeX XML Cite \textit{T. Geng} et al., J. Fluid Mech. 935, Paper No. A23, 27 p. (2022; Zbl 1482.76022) Full Text: DOI OpenURL
Flamarion, Marcelo V.; Ribeiro-Jr, Roberto Gravity-capillary wave interactions generated by moving disturbances: Euler equations framework. (English) Zbl 1482.76021 J. Eng. Math. 132, Paper No. 21, 10 p. (2022). MSC: 76B15 76B25 76B45 76M40 76M22 PDF BibTeX XML Cite \textit{M. V. Flamarion} and \textit{R. Ribeiro-Jr}, J. Eng. Math. 132, Paper No. 21, 10 p. (2022; Zbl 1482.76021) Full Text: DOI arXiv OpenURL
Chen, Zili; Chen, Jing; Zhang, Xianwen Global solutions of the Vlasov-Poisson system with a radiation damping term for general initial data. (English) Zbl 1482.35039 SIAM J. Math. Anal. 54, No. 1, 693-722 (2022). MSC: 35B40 35B45 35F25 35J05 35Q83 82C40 PDF BibTeX XML Cite \textit{Z. Chen} et al., SIAM J. Math. Anal. 54, No. 1, 693--722 (2022; Zbl 1482.35039) Full Text: DOI OpenURL
He, Cang; Lim, Kian Meng; Liang, Xiao; Zhang, Fang; Jiang, Jinhui Tunable band structures design for elastic wave transmission in tension metamaterial chain. (English) Zbl 1483.74053 Eur. J. Mech., A, Solids 92, Article ID 104481, 16 p. (2022). MSC: 74J20 74K05 PDF BibTeX XML Cite \textit{C. He} et al., Eur. J. Mech., A, Solids 92, Article ID 104481, 16 p. (2022; Zbl 1483.74053) Full Text: DOI OpenURL
Baldi, Pietro; Haus, Emanuele Longer lifespan for many solutions of the Kirchhoff equation. (English) Zbl 07453677 SIAM J. Math. Anal. 54, No. 1, 306-342 (2022). MSC: 35L72 35L20 35R09 35Q74 37K45 70K45 70K65 PDF BibTeX XML Cite \textit{P. Baldi} and \textit{E. Haus}, SIAM J. Math. Anal. 54, No. 1, 306--342 (2022; Zbl 07453677) Full Text: DOI arXiv OpenURL
Henry, David; Villari, Gabriele Flow underlying coupled surface and internal waves. (English) Zbl 1482.35170 J. Differ. Equations 310, 404-442 (2022). MSC: 35Q35 35Q86 76B15 76T06 86A05 37N10 35C07 74F10 PDF BibTeX XML Cite \textit{D. Henry} and \textit{G. Villari}, J. Differ. Equations 310, 404--442 (2022; Zbl 1482.35170) Full Text: DOI OpenURL
Edwards, Emma C.; Yue, Dick K.-P. Optimisation of the geometry of axisymmetric point-absorber wave energy converters. (English) Zbl 1479.76022 J. Fluid Mech. 933, Paper No. A1, 17 p. (2022). MSC: 76B75 76B15 76M99 PDF BibTeX XML Cite \textit{E. C. Edwards} and \textit{D. K. P. Yue}, J. Fluid Mech. 933, Paper No. A1, 17 p. (2022; Zbl 1479.76022) Full Text: DOI OpenURL
Gavrilyuk, Sergey; Shyue, Keh-Ming Singular solutions of the BBM equation: analytical and numerical study. (English) Zbl 1479.35194 Nonlinearity 35, No. 1, 388-410 (2022). MSC: 35C07 35L40 35Q35 35Q74 PDF BibTeX XML Cite \textit{S. Gavrilyuk} and \textit{K.-M. Shyue}, Nonlinearity 35, No. 1, 388--410 (2022; Zbl 1479.35194) Full Text: DOI OpenURL
Ji, Shuguan; Zhou, Yonghui Wave breaking and global solutions of the weakly dissipative periodic Camassa-Holm type equation. (English) Zbl 1479.35140 J. Differ. Equations 306, 439-455 (2022). Reviewer: Giuseppe Maria Coclite (Bari) MSC: 35B44 35A01 35Q35 35G31 PDF BibTeX XML Cite \textit{S. Ji} and \textit{Y. Zhou}, J. Differ. Equations 306, 439--455 (2022; Zbl 1479.35140) Full Text: DOI OpenURL
Li, Jinlu; Yu, Yanghai; Zhu, Weipeng Ill-posedness for the Camassa-Holm and related equations in Besov spaces. (English) Zbl 1477.35170 J. Differ. Equations 306, 403-417 (2022). MSC: 35Q35 35Q53 76B15 37K10 46E35 35R25 PDF BibTeX XML Cite \textit{J. Li} et al., J. Differ. Equations 306, 403--417 (2022; Zbl 1477.35170) Full Text: DOI arXiv OpenURL
Yin, Hui-Min; Tian, Bo; Zhao, Xin-Chao Inelastic interactions, numerical breathers and chaotic wave fields for a focusing Kundu-Eckhaus equation in a nonlinear optical fiber. (English) Zbl 07564748 Waves Random Complex Media 31, No. 5, 833-846 (2021). MSC: 74-XX 78-XX PDF BibTeX XML Cite \textit{H.-M. Yin} et al., Waves Random Complex Media 31, No. 5, 833--846 (2021; Zbl 07564748) Full Text: DOI OpenURL
Zheng, Xueyan Local existence of Chern-Simons gauged \(O(3)\) sigma equations. (English) Zbl 07546029 East Asian Math. J. 37, No. 5, 591-598 (2021). MSC: 35Q40 35L15 35L45 35F25 PDF BibTeX XML Cite \textit{X. Zheng}, East Asian Math. J. 37, No. 5, 591--598 (2021; Zbl 07546029) Full Text: DOI OpenURL
Li, Zhengliang; Li, Jianchun; Li, Haibo; Zhao, Jian Effects of a set of parallel joints with unequal close-open behavior on stress wave energy attenuation. (English) Zbl 07543636 Waves Random Complex Media 31, No. 6, 2427-2451 (2021). MSC: 74J30 74K30 PDF BibTeX XML Cite \textit{Z. Li} et al., Waves Random Complex Media 31, No. 6, 2427--2451 (2021; Zbl 07543636) Full Text: DOI OpenURL
Abdel-Gawad, H. I.; Tantawy, M. Coupled self-similar-traveling optical wave tunneling induced by an injected light beam. (English) Zbl 07543594 Waves Random Complex Media 31, No. 6, 1623-1632 (2021). MSC: 74-XX 78-XX PDF BibTeX XML Cite \textit{H. I. Abdel-Gawad} and \textit{M. Tantawy}, Waves Random Complex Media 31, No. 6, 1623--1632 (2021; Zbl 07543594) Full Text: DOI OpenURL
El-Nabulsi, Rami Ahmad Nonlinear wave equations from a non-local complex backward-forward derivative operator. (English) Zbl 07543583 Waves Random Complex Media 31, No. 6, 1433-1442 (2021). MSC: 74-XX 78-XX PDF BibTeX XML Cite \textit{R. A. El-Nabulsi}, Waves Random Complex Media 31, No. 6, 1433--1442 (2021; Zbl 07543583) Full Text: DOI OpenURL
Wang, Xiu-Bin; Han, Bo On the breathers and rogue waves to a \((2+1)\)-dimensional nonlinear Schrödinger equation with variable coefficients. (English) Zbl 07543563 Waves Random Complex Media 31, No. 6, 1072-1082 (2021). MSC: 74-XX 78-XX PDF BibTeX XML Cite \textit{X.-B. Wang} and \textit{B. Han}, Waves Random Complex Media 31, No. 6, 1072--1082 (2021; Zbl 07543563) Full Text: DOI OpenURL
Ionescu-Kruse, Delia Fronts, pulses, and periodic travelling waves in two-component shallow water models. (English) Zbl 07523917 Rev. Roum. Math. Pures Appl. 66, No. 3-4, 725-748 (2021). MSC: 35Q35 76F10 35C07 76B25 70K05 PDF BibTeX XML Cite \textit{D. Ionescu-Kruse}, Rev. Roum. Math. Pures Appl. 66, No. 3--4, 725--748 (2021; Zbl 07523917) OpenURL
Robaux, Fabien; Benoit, Michel Development and validation of a numerical wave tank based on the harmonic polynomial cell and immersed boundary methods to model nonlinear wave-structure interaction. (English) Zbl 07516446 J. Comput. Phys. 446, Article ID 110560, 31 p. (2021). MSC: 76Mxx 76Bxx 65Mxx PDF BibTeX XML Cite \textit{F. Robaux} and \textit{M. Benoit}, J. Comput. Phys. 446, Article ID 110560, 31 p. (2021; Zbl 07516446) Full Text: DOI OpenURL
Khater, Mostafa M. A.; Ahmed, A. El-Sayed Strong Langmuir turbulence dynamics through the trigonometric quintic and exponential B-spline schemes. (English) Zbl 1485.35288 AIMS Math. 6, No. 6, 5896-5908 (2021). MSC: 35L51 35C07 76B25 76X05 82D10 PDF BibTeX XML Cite \textit{M. M. A. Khater} and \textit{A. E. S. Ahmed}, AIMS Math. 6, No. 6, 5896--5908 (2021; Zbl 1485.35288) Full Text: DOI OpenURL
Hebhoub, Fahima; Zennir, Khaled; Miyasita, Tosiya; Biomy, Mohamed Blow up at well defined time for a coupled system of one spatial variable Emden-Fowler type in viscoelasticities with strong nonlinear sources. (English) Zbl 1484.35083 AIMS Math. 6, No. 1, 442-455 (2021). MSC: 35B44 35Q74 35D30 74D10 PDF BibTeX XML Cite \textit{F. Hebhoub} et al., AIMS Math. 6, No. 1, 442--455 (2021; Zbl 1484.35083) Full Text: DOI OpenURL
Wang, Huiqing; Alam, Md Nur; İlhan, Onur Alp; Singh, Gurpreet; Manafian, Jalil New complex wave structures to the complex Ginzburg-Landau model. (English) Zbl 1485.35019 AIMS Math. 6, No. 8, 8883-8894 (2021). MSC: 35B10 35A24 70K50 PDF BibTeX XML Cite \textit{H. Wang} et al., AIMS Math. 6, No. 8, 8883--8894 (2021; Zbl 1485.35019) Full Text: DOI OpenURL
Altayeb, Yousif New scenario of decay rate for system of three nonlinear wave equations with visco-elasticities. (English) Zbl 1484.35275 AIMS Math. 6, No. 7, 7251-7265 (2021). MSC: 35L05 35B35 35L70 35Q74 PDF BibTeX XML Cite \textit{Y. Altayeb}, AIMS Math. 6, No. 7, 7251--7265 (2021; Zbl 1484.35275) Full Text: DOI OpenURL
Gao, Xin-Yi; Guo, Yong-Jiang; Shan, Wen-Rui Oceanic studies via a variable-coefficient nonlinear dispersive-wave system in the solar system. (English) Zbl 07511296 Chaos Solitons Fractals 142, Article ID 110367, 5 p. (2021). MSC: 35-XX 76-XX PDF BibTeX XML Cite \textit{X.-Y. Gao} et al., Chaos Solitons Fractals 142, Article ID 110367, 5 p. (2021; Zbl 07511296) Full Text: DOI OpenURL
MacĂas-DĂaz, J. E. Nonlinear wave transmission in harmonically driven Hamiltonian sine-Gordon regimes with memory effects. (English) Zbl 07511294 Chaos Solitons Fractals 142, Article ID 110362, 12 p. (2021). MSC: 76-XX 65-XX PDF BibTeX XML Cite \textit{J. E. MacĂas-DĂaz}, Chaos Solitons Fractals 142, Article ID 110362, 12 p. (2021; Zbl 07511294) Full Text: DOI OpenURL
Pu, Juncai; Peng, Weiqi; Chen, Yong The data-driven localized wave solutions of the derivative nonlinear Schrödinger equation by using improved PINN approach. (English) Zbl 07508640 Wave Motion 107, Article ID 102823, 15 p. (2021). MSC: 35-XX 76-XX PDF BibTeX XML Cite \textit{J. Pu} et al., Wave Motion 107, Article ID 102823, 15 p. (2021; Zbl 07508640) Full Text: DOI OpenURL
Zafar, Asim; Raheel, Muhammad; Bekir, Ahmet; Fahad, Asfand; Qureshi, Muhammad Imran Analytical study of two nonlinear Schrödinger equations via optical soliton solutions. (English) Zbl 07507427 Int. J. Mod. Phys. B 35, No. 28, Article ID 2150288, 15 p. (2021). MSC: 81Q05 35Q55 35C08 82B20 82D40 76N30 76B15 76B25 PDF BibTeX XML Cite \textit{A. Zafar} et al., Int. J. Mod. Phys. B 35, No. 28, Article ID 2150288, 15 p. (2021; Zbl 07507427) Full Text: DOI OpenURL
Khater, Mostafa M. A. Analytical simulations of the Fokas system; extension \((2+1)\)-dimensional nonlinear Schrödinger equation. (English) Zbl 07507426 Int. J. Mod. Phys. B 35, No. 28, Article ID 2150286, 12 p. (2021). MSC: 81Q05 35Q55 35C08 35P30 35R30 78A50 70H09 PDF BibTeX XML Cite \textit{M. M. A. Khater}, Int. J. Mod. Phys. B 35, No. 28, Article ID 2150286, 12 p. (2021; Zbl 07507426) Full Text: DOI OpenURL
Rohim, Ar; Ueda, Kazushige; Yamamoto, Kazuhiro; Lin, Shih-Yuin Relativistic quantum bouncing particles in a homogeneous gravitational field. (English) Zbl 07503881 Int. J. Mod. Phys. D 30, No. 13, Article ID 2150098, 27 p. (2021). MSC: 83C40 81U05 81V35 81V45 81Q05 81R20 81P55 51B20 81Q20 47A10 PDF BibTeX XML Cite \textit{A. Rohim} et al., Int. J. Mod. Phys. D 30, No. 13, Article ID 2150098, 27 p. (2021; Zbl 07503881) Full Text: DOI OpenURL
Knyazeva, A. G.; Parfenova, E. S. Nonlinear coupled model of surface treatment by a particle beam taking into account the formation of a new phase. (English. Russian original) Zbl 07502482 J. Appl. Mech. Tech. Phys. 62, No. 4, 633-641 (2021); translation from Prikl. Mekh. Tekh. Fiz. 62, No. 5, 124-133 (2021). MSC: 74N20 74F05 74E40 74J30 PDF BibTeX XML Cite \textit{A. G. Knyazeva} and \textit{E. S. Parfenova}, J. Appl. Mech. Tech. Phys. 62, No. 4, 633--641 (2021; Zbl 07502482); translation from Prikl. Mekh. Tekh. Fiz. 62, No. 5, 124--133 (2021) Full Text: DOI OpenURL
Gomez, Ignacio S.; Santos, Esdras S.; Abla, Olavo Morse potential in relativistic contexts from generalized momentum operator: Schottky anomalies, Pekeris approximation and mapping. (English) Zbl 1487.81084 Mod. Phys. Lett. A 36, No. 20, Article ID 2150140, 20 p. (2021). MSC: 81Q05 81R20 14G12 34C15 53D20 58E05 81V55 81R25 80A10 34L40 PDF BibTeX XML Cite \textit{I. S. Gomez} et al., Mod. Phys. Lett. A 36, No. 20, Article ID 2150140, 20 p. (2021; Zbl 1487.81084) Full Text: DOI OpenURL
Kharchenko, D. S. The shape of wave-packets in a three-layer hydrodynamic system. (Ukrainian. English summary) Zbl 07498789 Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. 94, 77-90 (2021). MSC: 76A02 76B15 76M35 PDF BibTeX XML Cite \textit{D. S. Kharchenko}, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. 94, 77--90 (2021; Zbl 07498789) Full Text: DOI OpenURL
Choudhary, A.; Koley, S.; Martha, S. C. Coupled eigenfunction expansion-boundary element method for wave scattering by thick vertical barrier over an arbitrary seabed. (English) Zbl 1482.76020 Geophys. Astrophys. Fluid Dyn. 115, No. 1, 44-60 (2021). MSC: 76B15 76M15 PDF BibTeX XML Cite \textit{A. Choudhary} et al., Geophys. Astrophys. Fluid Dyn. 115, No. 1, 44--60 (2021; Zbl 1482.76020) Full Text: DOI OpenURL
Ngoc, Le Thi Phuong; Son, Le Huu Ky; Long, Nguyen Thanh Existence, blow-up and exponential decay estimates for the nonlinear Kirchhoff-Carrier wave equation in an annular with Robin-Dirichlet conditions. (English) Zbl 1485.35057 Kyungpook Math. J. 61, No. 4, 859-888 (2021). MSC: 35B40 35B44 35L20 35L72 35Q74 37B25 PDF BibTeX XML Cite \textit{L. T. P. Ngoc} et al., Kyungpook Math. J. 61, No. 4, 859--888 (2021; Zbl 1485.35057) Full Text: DOI OpenURL
Kharshiladze, Oleg; Belashov, Vasily; Belashova, Elena Solitons on a shallow fluid of variable depth. (English) Zbl 1487.76022 Trans. A. Razmadze Math. Inst. 175, No. 2, 215-224 (2021). MSC: 76B25 76B15 76B45 76M20 PDF BibTeX XML Cite \textit{O. Kharshiladze} et al., Trans. A. Razmadze Math. Inst. 175, No. 2, 215--224 (2021; Zbl 1487.76022) Full Text: Link OpenURL
Lou, Xiaoming; Sun, Mingwu; Yu, Jin Stress wave propagation in different number of fissured rock mass based on nonlinear analysis. (English) Zbl 07486833 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 7-8, 943-954 (2021). MSC: 74-XX 86-XX PDF BibTeX XML Cite \textit{X. Lou} et al., Int. J. Nonlinear Sci. Numer. Simul. 22, No. 7--8, 943--954 (2021; Zbl 07486833) Full Text: DOI OpenURL
Polnikov, V. G. Histograms, cumulants, and spectra of mechanical and wind waves in a wind-wave channel. (English. Russian original) Zbl 1485.76019 Fluid Dyn. 56, No. 6, 846-859 (2021); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2021, No. 6, 84-97 (2021). MSC: 76B15 76M35 76-05 PDF BibTeX XML Cite \textit{V. G. Polnikov}, Fluid Dyn. 56, No. 6, 846--859 (2021; Zbl 1485.76019); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2021, No. 6, 84--97 (2021) Full Text: DOI OpenURL
Bulatov, V. V.; Vladimirov, Yu. V.; Vladimirov, I. Yu. Uniform and nonuniform asymptotics of far surface fields from a flashed localized source. (English. Russian original) Zbl 1483.76014 Fluid Dyn. 56, No. 7, 975-980 (2021); translation from Prikl. Mat. Mekh. 85, No. 5, 626-634 (2021). MSC: 76B15 76M45 PDF BibTeX XML Cite \textit{V. V. Bulatov} et al., Fluid Dyn. 56, No. 7, 975--980 (2021; Zbl 1483.76014); translation from Prikl. Mat. Mekh. 85, No. 5, 626--634 (2021) Full Text: DOI OpenURL
Erbay, H. A.; Erbay, S.; Erkip, A. On the convergence of the nonlocal nonlinear model to the classical elasticity equation. (English) Zbl 07477805 Physica D 427, Article ID 133010, 8 p. (2021). MSC: 74J30 74A25 PDF BibTeX XML Cite \textit{H. A. Erbay} et al., Physica D 427, Article ID 133010, 8 p. (2021; Zbl 07477805) Full Text: DOI arXiv OpenURL
Crisan, Dan; Holm, Darryl D.; Street, Oliver D. Wave-current interaction on a free surface. (English) Zbl 1487.76016 Stud. Appl. Math. 147, No. 4, 1277-1338 (2021). MSC: 76B15 76B07 76M30 70H25 PDF BibTeX XML Cite \textit{D. Crisan} et al., Stud. Appl. Math. 147, No. 4, 1277--1338 (2021; Zbl 1487.76016) Full Text: DOI arXiv OpenURL
Yu, Yang F.; Fuller, Chase A.; McGuire, Margaret K.; Glaser, Rebecca; Smith, Nathaniel J.; Manz, Niklas; Lindner, John F. Disruption and recovery of reaction-diffusion wavefronts interacting with concave, fractal, and soft obstacles. (English) Zbl 07464373 Physica A 565, Article ID 125536, 15 p. (2021). MSC: 82-XX PDF BibTeX XML Cite \textit{Y. F. Yu} et al., Physica A 565, Article ID 125536, 15 p. (2021; Zbl 07464373) Full Text: DOI OpenURL
BoÄkov, D. S.; Ol’khovskaya, O. G.; Gasilov, V. A. Coupled simulation of gasdynamic and elastoplastic phenomena in a material under the action of an intensive energy flux. (Russian. English summary) Zbl 1483.74054 Mat. Model. 33, No. 12, 82-102 (2021). MSC: 74J30 74C05 74F05 74F10 74R20 74S20 76N15 PDF BibTeX XML Cite \textit{D. S. BoÄkov} et al., Mat. Model. 33, No. 12, 82--102 (2021; Zbl 1483.74054) Full Text: DOI MNR OpenURL
Akers, Benjamin; Nicholls, David P. Wilton ripples in weakly nonlinear models of water waves: existence and computation. (English) Zbl 07460552 Water Waves 3, No. 3, 491-511 (2021). MSC: 76B15 35Q35 35C07 76B45 76M22 PDF BibTeX XML Cite \textit{B. Akers} and \textit{D. P. Nicholls}, Water Waves 3, No. 3, 491--511 (2021; Zbl 07460552) Full Text: DOI OpenURL
Bjørnestad, Maria; Kalisch, Henrik; Abid, Malek; Kharif, Christian; Brun, Mats Wave breaking in undular bores with shear flows. (English) Zbl 07460551 Water Waves 3, No. 3, 473-490 (2021). MSC: 76B15 35Q53 76B25 86A05 35Q35 PDF BibTeX XML Cite \textit{M. Bjørnestad} et al., Water Waves 3, No. 3, 473--490 (2021; Zbl 07460551) Full Text: DOI OpenURL
Kuznetsov, Nikolay A tale of two Nekrasov’s integral equations. (English) Zbl 07460549 Water Waves 3, No. 3, 399-427 (2021). MSC: 76B15 35Q35 01A70 47J05 45G05 PDF BibTeX XML Cite \textit{N. Kuznetsov}, Water Waves 3, No. 3, 399--427 (2021; Zbl 07460549) Full Text: DOI arXiv OpenURL
Magdalena, Ikha; La’lang, Raynaldi; Mendoza, Renier Quantification of wave attenuation in mangroves in Manila Bay using nonlinear shallow water equations. (English) Zbl 07455158 Results Appl. Math. 12, Article ID 100191, 12 p. (2021). MSC: 76Mxx 65Mxx 76Bxx PDF BibTeX XML Cite \textit{I. Magdalena} et al., Results Appl. Math. 12, Article ID 100191, 12 p. (2021; Zbl 07455158) Full Text: DOI OpenURL
Chaturvedi, Rahul Kumar; Pradeep; Singh, L. P. The formation of shock wave in a two-dimensional supersonic planar and axisymmetric non-ideal gas flow with magnetic field. (English) Zbl 07453257 Comput. Appl. Math. 40, No. 8, Paper No. 307, 14 p. (2021). MSC: 35F20 35L40 76L05 76X05 PDF BibTeX XML Cite \textit{R. K. Chaturvedi} et al., Comput. Appl. Math. 40, No. 8, Paper No. 307, 14 p. (2021; Zbl 07453257) Full Text: DOI OpenURL
Lushnikov, P. M.; Zakharov, V. E. Poles and branch cuts in free surface hydrodynamics. (English) Zbl 1481.76029 Water Waves 3, No. 1, 251-266 (2021). MSC: 76B07 76B15 76M40 35Q51 PDF BibTeX XML Cite \textit{P. M. Lushnikov} and \textit{V. E. Zakharov}, Water Waves 3, No. 1, 251--266 (2021; Zbl 1481.76029) Full Text: DOI arXiv OpenURL
DuchĂŞne, Vincent; Iguchi, Tatsuo A Hamiltonian structure of the Isobe-Kakinuma model for water waves. (English) Zbl 1481.76044 Water Waves 3, No. 1, 193-211 (2021). MSC: 76B15 35Q35 70H05 PDF BibTeX XML Cite \textit{V. DuchĂŞne} and \textit{T. Iguchi}, Water Waves 3, No. 1, 193--211 (2021; Zbl 1481.76044) Full Text: DOI arXiv OpenURL
Craig, Walter; Guyenne, Philippe; Sulem, Catherine Normal form transformations and Dysthe’s equation for the nonlinear modulation of deep-water gravity waves. (English) Zbl 1481.76043 Water Waves 3, No. 1, 127-152 (2021). MSC: 76B15 76M22 35Q35 70H05 PDF BibTeX XML Cite \textit{W. Craig} et al., Water Waves 3, No. 1, 127--152 (2021; Zbl 1481.76043) Full Text: DOI OpenURL
Akers, Benjamin; Nicholls, David P. Wilton ripples in weakly nonlinear dispersive models of water waves: existence and analyticity of solution branches. (English) Zbl 1481.76041 Water Waves 3, No. 1, 25-47 (2021). MSC: 76B15 35Q35 PDF BibTeX XML Cite \textit{B. Akers} and \textit{D. P. Nicholls}, Water Waves 3, No. 1, 25--47 (2021; Zbl 1481.76041) Full Text: DOI OpenURL
Han, Fangyu; Tan, Zhong; Yang, Ganshan Stability of the Walker wall in two dimensions. (English) Zbl 1483.35236 SIAM J. Math. Anal. 53, No. 6, 7024-7061 (2021). MSC: 35Q60 35B35 35C07 35K55 78A30 74K35 74F15 PDF BibTeX XML Cite \textit{F. Han} et al., SIAM J. Math. Anal. 53, No. 6, 7024--7061 (2021; Zbl 1483.35236) Full Text: DOI OpenURL
Lienert, Matthias; Nöth, Markus Existence of relativistic dynamics for two directly interacting Dirac particles in \(1+3\) dimensions. (English) Zbl 1483.81078 Rev. Math. Phys. 33, No. 7, Article ID 2150023, 27 p. (2021). MSC: 81Q40 45E99 45P05 81V25 81R20 51B20 83F05 PDF BibTeX XML Cite \textit{M. Lienert} and \textit{M. Nöth}, Rev. Math. Phys. 33, No. 7, Article ID 2150023, 27 p. (2021; Zbl 1483.81078) Full Text: DOI arXiv OpenURL