Zaouche, Elmehdi Nontrivial weak solutions for nonlocal nonhomogeneous elliptic problems. (English) Zbl 07510758 Appl. Anal. 101, No. 4, 1261-1270 (2022). MSC: 35Jxx 35A05 35J60 35J25 PDF BibTeX XML Cite \textit{E. Zaouche}, Appl. Anal. 101, No. 4, 1261--1270 (2022; Zbl 07510758) Full Text: DOI OpenURL
Aziz, Imran; Nisar, Muhammad; Siraj-ul-Islam On the numerical solution of some differential equations with nonlocal integral boundary conditions via Haar wavelet. (English) Zbl 07507906 Proc. Est. Acad. Sci. 71, No. 1, 30-54 (2022). MSC: 65T60 65R20 65M70 65M06 PDF BibTeX XML Cite \textit{I. Aziz} et al., Proc. Est. Acad. Sci. 71, No. 1, 30--54 (2022; Zbl 07507906) Full Text: DOI OpenURL
Pang, Huihui; Zhu, Yuke; Cui, Mengyan The method of upper and lower solutions to impulsive differential equation with Sturm-Liouville integral boundary conditions. (English) Zbl 07502787 Differ. Equ. Dyn. Syst. 30, No. 2, 335-351 (2022). MSC: 34B10 34B37 34A45 47N20 PDF BibTeX XML Cite \textit{H. Pang} et al., Differ. Equ. Dyn. Syst. 30, No. 2, 335--351 (2022; Zbl 07502787) Full Text: DOI OpenURL
Lu, Heqian; Hu, Bei; Zhang, Zhengce Blowup time estimates for the heat equation with a nonlocal boundary condition. (English) Zbl 07491067 Z. Angew. Math. Phys. 73, No. 2, Paper No. 60, 15 p. (2022). MSC: 35B44 35C15 35K05 35K60 PDF BibTeX XML Cite \textit{H. Lu} et al., Z. Angew. Math. Phys. 73, No. 2, Paper No. 60, 15 p. (2022; Zbl 07491067) Full Text: DOI OpenURL
Nguyen Van Loi; Mai Quoc Vu Uniqueness and Hyers-Ulam stability results for differential variational inequalities with nonlocal conditions. (English) Zbl 07491023 Differ. Equ. Dyn. Syst. 30, No. 1, 113-130 (2022). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 34G20 47J20 34B10 34D10 PDF BibTeX XML Cite \textit{Nguyen Van Loi} and \textit{Mai Quoc Vu}, Differ. Equ. Dyn. Syst. 30, No. 1, 113--130 (2022; Zbl 07491023) Full Text: DOI OpenURL
Shcheglov, A. Yu. Uniqueness of the solution of the inverse problem for a model of the dynamics of an age-structured population. (English. Russian original) Zbl 07488487 Math. Notes 111, No. 1, 139-146 (2022); translation from Mat. Zametki 111, No. 1, 125-133 (2022). MSC: 35R30 35A02 35L04 65M32 92D25 PDF BibTeX XML Cite \textit{A. Yu. Shcheglov}, Math. Notes 111, No. 1, 139--146 (2022; Zbl 07488487); translation from Mat. Zametki 111, No. 1, 125--133 (2022) Full Text: DOI OpenURL
Aida-zade, Kamil; Rahimov, Anar On recovering space or time-dependent source functions for a parabolic equation with nonlocal conditions. (English) Zbl 07483682 Appl. Math. Comput. 419, Article ID 126849, 17 p. (2022). MSC: 35R30 35K20 65N40 65N21 65L09 34A55 PDF BibTeX XML Cite \textit{K. Aida-zade} and \textit{A. Rahimov}, Appl. Math. Comput. 419, Article ID 126849, 17 p. (2022; Zbl 07483682) Full Text: DOI OpenURL
Feng, Chunxi; Lewis, Mark A.; Wang, Chuncheng; Wang, Hao A Fisher-KPP model with a nonlocal weighted free boundary: analysis of how habitat boundaries expand, balance or shrink. (English) Zbl 07482319 Bull. Math. Biol. 84, No. 3, Paper No. 34, 27 p. (2022). MSC: 92D40 35R35 35K57 PDF BibTeX XML Cite \textit{C. Feng} et al., Bull. Math. Biol. 84, No. 3, Paper No. 34, 27 p. (2022; Zbl 07482319) Full Text: DOI arXiv OpenURL
Cao, Nan; Fu, Xianlong Existence results of solutions for a neutral evolution equation with nonlocal conditions on infinite interval. (English) Zbl 07472970 J. Math. Anal. Appl. 510, No. 1, Article ID 126008, 21 p. (2022). MSC: 34K30 34K40 34K10 PDF BibTeX XML Cite \textit{N. Cao} and \textit{X. Fu}, J. Math. Anal. Appl. 510, No. 1, Article ID 126008, 21 p. (2022; Zbl 07472970) Full Text: DOI OpenURL
Ali, Muhammad; Aziz, Sara; Malik, Salman A. Inverse problem for a multi-parameters space-time fractional diffusion equation with nonlocal boundary conditions: operational calculus approach. (English) Zbl 1481.35391 J. Pseudo-Differ. Oper. Appl. 13, No. 1, Paper No. 3, 16 p. (2022). MSC: 35R30 35R11 26A33 34A08 34A25 PDF BibTeX XML Cite \textit{M. Ali} et al., J. Pseudo-Differ. Oper. Appl. 13, No. 1, Paper No. 3, 16 p. (2022; Zbl 1481.35391) Full Text: DOI OpenURL
Azizbayov, Elvin I. The unique solvability of a nonlocal inverse boundary-value problem for the pseudo-hyperbolic equation of fourth order. (English) Zbl 07527519 Adv. Differ. Equ. Control Process. 24, No. 1, 79-100 (2021). MSC: 34B10 35R30 35K70 35A01 35A02 35A09 PDF BibTeX XML Cite \textit{E. I. Azizbayov}, Adv. Differ. Equ. Control Process. 24, No. 1, 79--100 (2021; Zbl 07527519) Full Text: DOI OpenURL
Thaiprayoon, Chatthai; Sudsutad, Weerawat; Ntouyas, Sotiris K. Mixed nonlocal boundary value problem for implicit fractional integro-differential equations via \(\psi\)-Hilfer fractional derivative. (English) Zbl 07526149 Adv. Difference Equ. 2021, Paper No. 50, 24 p. (2021). MSC: 26A33 34A08 34A12 34A34 34B10 34D20 PDF BibTeX XML Cite \textit{C. Thaiprayoon} et al., Adv. Difference Equ. 2021, Paper No. 50, 24 p. (2021; Zbl 07526149) Full Text: DOI OpenURL
Infante, Gennaro; Matucci, Serena Positive solutions of BVPs on the half-line involving functional BCs. (English) Zbl 07516002 AIMS Math. 6, No. 5, 4860-4872 (2021). MSC: 34B18 34B40 34B10 PDF BibTeX XML Cite \textit{G. Infante} and \textit{S. Matucci}, AIMS Math. 6, No. 5, 4860--4872 (2021; Zbl 07516002) Full Text: DOI OpenURL
Ji, Songsong; Pang, Gang; Antoine, Xavier; Zhang, Jiwei Artificial boundary conditions for the semi-discretized one-dimensional nonlocal Schrödinger equation. (English) Zbl 07515465 J. Comput. Phys. 444, Article ID 110575, 17 p. (2021). MSC: 65Mxx 35Qxx 35Rxx PDF BibTeX XML Cite \textit{S. Ji} et al., J. Comput. Phys. 444, Article ID 110575, 17 p. (2021; Zbl 07515465) Full Text: DOI OpenURL
Dzhamalov, S. Z.; Ashurov, R. R.; Turakulov, Kh. Sh. The linear inverse problem for the three-dimensional Tricomi equation in a prismatic unbounded domain. (English) Zbl 07503342 Lobachevskii J. Math. 42, No. 15, 3606-3615 (2021). MSC: 35R30 35M12 PDF BibTeX XML Cite \textit{S. Z. Dzhamalov} et al., Lobachevskii J. Math. 42, No. 15, 3606--3615 (2021; Zbl 07503342) Full Text: DOI OpenURL
Bazán, Fermín S. V.; Ismailov, Mansur I.; Bedin, Luciano Time-dependent lowest term estimation in a 2D bioheat transfer problem with nonlocal and convective boundary conditions. (English) Zbl 07479284 Inverse Probl. Sci. Eng. 29, No. 9, 1282-1307 (2021). MSC: 31A25 PDF BibTeX XML Cite \textit{F. S. V. Bazán} et al., Inverse Probl. Sci. Eng. 29, No. 9, 1282--1307 (2021; Zbl 07479284) Full Text: DOI OpenURL
Štikonas, Artūras; Şen, Erdoğan Asymptotic analysis of Sturm-Liouville problem with nonlocal integral-type boundary condition. (English) Zbl 07473964 Nonlinear Anal., Model. Control 26, No. 5, 969-991 (2021). MSC: 34B24 34B10 34L20 PDF BibTeX XML Cite \textit{A. Štikonas} and \textit{E. Şen}, Nonlinear Anal., Model. Control 26, No. 5, 969--991 (2021; Zbl 07473964) Full Text: DOI OpenURL
Yu, Yang-Yang; Wang, Rong-Nian; Vrabie, Ioan I. Nonlinear Volterra delay evolution inclusions subjected to nonlocal initial conditions. (English) Zbl 07473905 Topol. Methods Nonlinear Anal. 58, No. 1, 135-160 (2021). Reviewer: Marko Kostić (Novi Sad) MSC: 34G25 34B10 47H20 45D05 45K05 PDF BibTeX XML Cite \textit{Y.-Y. Yu} et al., Topol. Methods Nonlinear Anal. 58, No. 1, 135--160 (2021; Zbl 07473905) Full Text: DOI OpenURL
Temar, Bahia; Saif, Ouiza; Djebali, Smaïl A system of nonlinear fractional BVPs with \(\varphi\)-Laplacian operators and nonlocal conditions. (English) Zbl 1478.34012 Proyecciones 40, No. 2, 447-479 (2021). MSC: 34A08 34B10 34B18 PDF BibTeX XML Cite \textit{B. Temar} et al., Proyecciones 40, No. 2, 447--479 (2021; Zbl 1478.34012) Full Text: DOI OpenURL
Boulaaras, Salah Solvability of the Moore-Gibson-Thompson equation with viscoelastic memory term and integral condition via Galerkin method. (English) Zbl 1482.35238 Fractals 29, No. 5, Article ID 2140021, 18 p. (2021). MSC: 35R09 35G16 35Q74 65M60 PDF BibTeX XML Cite \textit{S. Boulaaras}, Fractals 29, No. 5, Article ID 2140021, 18 p. (2021; Zbl 1482.35238) Full Text: DOI OpenURL
Hu, Lei; Zhang, Shuqin Positive solutions of higher order nonlinear fractional differential equations with nonlocal initial conditions at resonance. (English) Zbl 07458951 J. Fract. Calc. Appl. 12, No. 1, 25-34 (2021). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{L. Hu} and \textit{S. Zhang}, J. Fract. Calc. Appl. 12, No. 1, 25--34 (2021; Zbl 07458951) Full Text: Link OpenURL
Samadi, Ayub; Ntouyas, Sotiris K. Coupled systems of Caputo-Hadamard differential equations with coupled Hadamard fractional integral boundary conditions. (English) Zbl 07456125 Acta Math. Univ. Comen., New Ser. 90, No. 4, 457-474 (2021). Reviewer: Alberto Cabada (Santiago de Compostela) MSC: 34A08 34B10 47H08 47H10 47H09 PDF BibTeX XML Cite \textit{A. Samadi} and \textit{S. K. Ntouyas}, Acta Math. Univ. Comen., New Ser. 90, No. 4, 457--474 (2021; Zbl 07456125) Full Text: Link OpenURL
Khaminsou, Bounmy; Thaiprayoon, Chatthai; Sudsutad, Weerawat; Jose, Sayooj Aby Qualitative analysis of a proportional Caputo fractional pantograph differential equation with mixed nonlocal conditions. (English) Zbl 07450976 Nonlinear Funct. Anal. Appl. 26, No. 1, 197-223 (2021). MSC: 34K37 34K27 34K10 47N20 PDF BibTeX XML Cite \textit{B. Khaminsou} et al., Nonlinear Funct. Anal. Appl. 26, No. 1, 197--223 (2021; Zbl 07450976) Full Text: Link OpenURL
Bouaouid, Mohamed; Hilal, Khalid; Hannabou, Mohamed Integral solutions of nondense impulsive conformable-fractional differential equations with nonlocal condition. (English) Zbl 07442627 J. Appl. Anal. 27, No. 2, 187-197 (2021). Reviewer: Zhenbin Fan (Jiangsu) MSC: 34A08 34G20 34B10 34A37 47D03 PDF BibTeX XML Cite \textit{M. Bouaouid} et al., J. Appl. Anal. 27, No. 2, 187--197 (2021; Zbl 07442627) Full Text: DOI OpenURL
Debela, Habtamu Garoma Exponential fitted operator method for singularly perturbed convection-diffusion type problems with nonlocal boundary condition. (English) Zbl 1482.65118 Abstr. Appl. Anal. 2021, Article ID 5559486, 9 p. (2021). MSC: 65L10 34E15 65L12 34B05 65L20 PDF BibTeX XML Cite \textit{H. G. Debela}, Abstr. Appl. Anal. 2021, Article ID 5559486, 9 p. (2021; Zbl 1482.65118) Full Text: DOI OpenURL
Pleumpreedaporn, Songkran; Sudsutad, Weerawat; Thaiprayoon, Chatthai; Jose, Sayooj Aby Qualitative analysis of generalized proportional fractional functional integro-differential Langevin equation with variable coefficient and nonlocal integral conditions. (English) Zbl 1473.34005 Mem. Differ. Equ. Math. Phys. 83, 99-120 (2021). MSC: 34A08 34B10 34B15 34D20 PDF BibTeX XML Cite \textit{S. Pleumpreedaporn} et al., Mem. Differ. Equ. Math. Phys. 83, 99--120 (2021; Zbl 1473.34005) Full Text: Link OpenURL
Iyase, S. A.; Imaga, O. F. Higher order \(\mathrm{p}\)-Laplacian boundary value problems with integral boundary conditions on the half-line. (English) Zbl 07419037 Bull. Malays. Math. Sci. Soc. (2) 44, No. 6, 4127-4141 (2021). Reviewer: Minghe Pei (Jilin) MSC: 34B10 34B15 47H11 PDF BibTeX XML Cite \textit{S. A. Iyase} and \textit{O. F. Imaga}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 6, 4127--4141 (2021; Zbl 07419037) Full Text: DOI OpenURL
Zhang, Wei; Ni, Jinbo New multiple positive solutions for Hadamard-type fractional differential equations with nonlocal conditions on an infinite interval. (English) Zbl 1483.34044 Appl. Math. Lett. 118, Article ID 107165, 10 p. (2021). Reviewer: Wengui Yang (Sanmenxia) MSC: 34B18 34A08 34B10 34B40 47N20 PDF BibTeX XML Cite \textit{W. Zhang} and \textit{J. Ni}, Appl. Math. Lett. 118, Article ID 107165, 10 p. (2021; Zbl 1483.34044) Full Text: DOI OpenURL
Azroul, Elhoussine; Benkirane, Abdelmoujib; Shimi, Mohammed On a nonlocal problem involving the fractional \(p(x,.)\)-Laplacian satisfying Cerami condition. (English) Zbl 1473.35621 Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3479-3495 (2021). MSC: 35R11 35A15 35J25 35J92 47G30 35S15 PDF BibTeX XML Cite \textit{E. Azroul} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3479--3495 (2021; Zbl 1473.35621) Full Text: DOI OpenURL
You, Huaiqian; Lu, Xin Yang; Trask, Nathaniel; Yu, Yue An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems. (English) Zbl 07395690 ESAIM, Math. Model. Numer. Anal. 55, Suppl., 811-851 (2021). Reviewer: Pierluigi Maponi (Camerino) MSC: 45K05 76R50 65R20 PDF BibTeX XML Cite \textit{H. You} et al., ESAIM, Math. Model. Numer. Anal. 55, 811--851 (2021; Zbl 07395690) Full Text: DOI OpenURL
Assanova, Anar T. On the solvability of a nonlocal problem for the system of Sobolev-type differential equations with integral condition. (English) Zbl 1472.35099 Georgian Math. J. 28, No. 1, 49-57 (2021). MSC: 35G46 35K70 PDF BibTeX XML Cite \textit{A. T. Assanova}, Georgian Math. J. 28, No. 1, 49--57 (2021; Zbl 1472.35099) Full Text: DOI OpenURL
Khairullin, R. S. Nonlocal Dezin problem for a mixed type equation of the second kind. (English. Russian original) Zbl 1472.35248 Differ. Equ. 57, No. 8, 1063-1069 (2021); translation from Differ. Uravn. 57, No. 8, 1091-1097 (2021). MSC: 35M12 35A02 35C10 PDF BibTeX XML Cite \textit{R. S. Khairullin}, Differ. Equ. 57, No. 8, 1063--1069 (2021; Zbl 1472.35248); translation from Differ. Uravn. 57, No. 8, 1091--1097 (2021) Full Text: DOI OpenURL
Karthikeyan, P.; Arul, R. Integral boundary value problems for implicit fractional differential equations involving Hadamard and Caputo-Hadamard fractional derivatives. (English) Zbl 07386851 Kragujevac J. Math. 45, No. 3, 331-341 (2021). MSC: 34A09 34A08 26A33 34B10 47N20 PDF BibTeX XML Cite \textit{P. Karthikeyan} and \textit{R. Arul}, Kragujevac J. Math. 45, No. 3, 331--341 (2021; Zbl 07386851) Full Text: Link OpenURL
Djourdem, Habib A class of nonlinear third-order boundary value problem with integral condition at resonance. (English) Zbl 07381437 Differ. Equ. Appl. 13, No. 1, 51-61 (2021). MSC: 34B10 34B15 47N20 PDF BibTeX XML Cite \textit{H. Djourdem}, Differ. Equ. Appl. 13, No. 1, 51--61 (2021; Zbl 07381437) Full Text: DOI OpenURL
Zaitseva, N. V. Uniqueness of the solution of a nonlocal problem for an elliptic-hyperbolic equation with singular coefficients. (English. Russian original) Zbl 1468.35005 Math. Notes 109, No. 4, 563-569 (2021); translation from Mat. Zametki 109, No. 4, 544-551 (2021). MSC: 35A02 35M12 PDF BibTeX XML Cite \textit{N. V. Zaitseva}, Math. Notes 109, No. 4, 563--569 (2021; Zbl 1468.35005); translation from Mat. Zametki 109, No. 4, 544--551 (2021) Full Text: DOI OpenURL
Bahrouni, Sabri; Salort, Ariel M. Neumann and Robin type boundary conditions in fractional Orlicz-Sobolev spaces. (English) Zbl 1470.35387 ESAIM, Control Optim. Calc. Var. 27, Suppl., Paper No. S15, 23 p. (2021). MSC: 35R11 35J25 35J61 35P30 45G05 46E30 PDF BibTeX XML Cite \textit{S. Bahrouni} and \textit{A. M. Salort}, ESAIM, Control Optim. Calc. Var. 27, Paper No. S15, 23 p. (2021; Zbl 1470.35387) Full Text: DOI arXiv OpenURL
Jeffers, Benjamin L.; Lyons, Jeffrey W. Solutions of the variational equation for an \(n\)-th order boundary value problem with an integral boundary condition. (English) Zbl 1471.34047 Involve 14, No. 1, 155-166 (2021). MSC: 34B10 34B15 PDF BibTeX XML Cite \textit{B. L. Jeffers} and \textit{J. W. Lyons}, Involve 14, No. 1, 155--166 (2021; Zbl 1471.34047) Full Text: DOI OpenURL
Chen, Pengyu; Zhang, Xuping Non-autonomous stochastic evolution equations of parabolic type with nonlocal initial conditions. (English) Zbl 1471.34119 Discrete Contin. Dyn. Syst., Ser. B 26, No. 9, 4681-4695 (2021). MSC: 34G20 37C60 34B10 34F05 60H15 47N20 PDF BibTeX XML Cite \textit{P. Chen} and \textit{X. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 9, 4681--4695 (2021; Zbl 1471.34119) Full Text: DOI OpenURL
Bazzaev, Alexander K.; Gutnova, Dzerassa K. About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition. (English) Zbl 1473.65266 Sib. Èlektron. Mat. Izv. 18, 548-560 (2021). MSC: 65N12 65N06 65N15 PDF BibTeX XML Cite \textit{A. K. Bazzaev} and \textit{D. K. Gutnova}, Sib. Èlektron. Mat. Izv. 18, 548--560 (2021; Zbl 1473.65266) Full Text: DOI OpenURL
Jiang, Yirong; Song, Qiqing; Zhang, Qiongfen Uniqueness and Hyers-Ulam stability of random differential variational inequalities with nonlocal boundary conditions. (English) Zbl 07359217 J. Optim. Theory Appl. 189, No. 2, 646-665 (2021). MSC: 47J20 60H25 PDF BibTeX XML Cite \textit{Y. Jiang} et al., J. Optim. Theory Appl. 189, No. 2, 646--665 (2021; Zbl 07359217) Full Text: DOI OpenURL
Zhou, Mingjun; Yin, Jingxue Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. (English) Zbl 1470.35274 Electron Res. Arch. 29, No. 3, 2417-2444 (2021). MSC: 35Q31 76N10 76N15 76G25 35B44 35J70 35R25 PDF BibTeX XML Cite \textit{M. Zhou} and \textit{J. Yin}, Electron Res. Arch. 29, No. 3, 2417--2444 (2021; Zbl 1470.35274) Full Text: DOI OpenURL
Hou, Qianqian; Lin, Tai-Chia; Wang, Zhi-An On a singularly perturbed semi-linear problem with Robin boundary conditions. (English) Zbl 1465.35031 Discrete Contin. Dyn. Syst., Ser. B 26, No. 1, 401-414 (2021). MSC: 35B25 35J25 35J61 92C17 PDF BibTeX XML Cite \textit{Q. Hou} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 1, 401--414 (2021; Zbl 1465.35031) Full Text: DOI OpenURL
Yu, Yue; You, Huaiqian; Trask, Nathaniel An asymptotically compatible treatment of traction loading in linearly elastic peridynamic fracture. (English) Zbl 07340387 Comput. Methods Appl. Mech. Eng. 377, Article ID 113691, 36 p. (2021). MSC: 74-XX 65-XX PDF BibTeX XML Cite \textit{Y. Yu} et al., Comput. Methods Appl. Mech. Eng. 377, Article ID 113691, 36 p. (2021; Zbl 07340387) Full Text: DOI arXiv OpenURL
Zaitseva, N. V. Nonlocal boundary value problem with an integral condition for a mixed type equation with a singular coefficient. (English. Russian original) Zbl 1461.35162 Differ. Equ. 57, No. 2, 210-220 (2021); translation from Differ. Uravn. 57, No. 2, 224-234 (2021). MSC: 35M12 35C10 PDF BibTeX XML Cite \textit{N. V. Zaitseva}, Differ. Equ. 57, No. 2, 210--220 (2021; Zbl 1461.35162); translation from Differ. Uravn. 57, No. 2, 224--234 (2021) Full Text: DOI OpenURL
Ren, Huilong; Zhuang, Xiaoying; Trung, Nguyen-Thoi; Rabczuk, Timon Nonlocal operator method for the Cahn-Hilliard phase field model. (English) Zbl 1459.35011 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105687, 26 p. (2021). MSC: 35A35 35K35 35K58 65M12 PDF BibTeX XML Cite \textit{H. Ren} et al., Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105687, 26 p. (2021; Zbl 1459.35011) Full Text: DOI OpenURL
Xu, Xiao-Jian; Meng, Jun-Miao A size-dependent elastic theory for magneto-electro-elastic materials. (English) Zbl 07312441 Eur. J. Mech., A, Solids 86, Article ID 104198, 18 p. (2021). Reviewer: Ahmed Ghaleb (Giza) MSC: 74F15 74A15 74K10 PDF BibTeX XML Cite \textit{X.-J. Xu} and \textit{J.-M. Meng}, Eur. J. Mech., A, Solids 86, Article ID 104198, 18 p. (2021; Zbl 07312441) Full Text: DOI OpenURL
Jin, Zhucheng; Yuan, Rong Hopf bifurcation in a reaction-diffusion-advection equation with nonlocal delay effect. (English) Zbl 1461.35033 J. Differ. Equations 271, 533-562 (2021). Reviewer: Alois Steindl (Wien) MSC: 35B32 35K57 37N25 35K20 PDF BibTeX XML Cite \textit{Z. Jin} and \textit{R. Yuan}, J. Differ. Equations 271, 533--562 (2021; Zbl 1461.35033) Full Text: DOI OpenURL
Leonori, Tommaso; Molino, Alexis; Segura de León, Sergio Parabolic equations with natural growth approximated by nonlocal equations. (English) Zbl 1450.35064 Commun. Contemp. Math. 23, No. 1, Article ID 1950088, 32 p. (2021). MSC: 35B40 35B51 35K58 35R09 47G20 PDF BibTeX XML Cite \textit{T. Leonori} et al., Commun. Contemp. Math. 23, No. 1, Article ID 1950088, 32 p. (2021; Zbl 1450.35064) Full Text: DOI arXiv OpenURL
Liu, Xiping; Jia, Mei; Bai, Zhanbing Nonlocal problems of fractional systems involving left and right fractional derivatives at resonance. (English) Zbl 07513047 AIMS Math. 5, No. 4, 3331-3345 (2020). MSC: 34A08 34B10 PDF BibTeX XML Cite \textit{X. Liu} et al., AIMS Math. 5, No. 4, 3331--3345 (2020; Zbl 07513047) Full Text: DOI OpenURL
Ouyang, Baiping; Lin, Yiwu; Liu, Yan; Cai, Zihan Lower bound for the blow-up time for a general nonlinear nonlocal porous medium equation under nonlinear boundary condition. (English) Zbl 07509711 Bound. Value Probl. 2020, Paper No. 76, 12 p. (2020). MSC: 35B44 35B40 35K59 35K61 35K65 35R09 PDF BibTeX XML Cite \textit{B. Ouyang} et al., Bound. Value Probl. 2020, Paper No. 76, 12 p. (2020; Zbl 07509711) Full Text: DOI OpenURL
Berkane, Abdelhak; Zekri, Abdelkrim On approximation of abstract first order differential equation with an integral condition. (English) Zbl 07508865 Bull. Math. Anal. Appl. 12, No. 3, 19-33 (2020). MSC: 65R20 34B10 45B05 47D06 47N20 PDF BibTeX XML Cite \textit{A. Berkane} and \textit{A. Zekri}, Bull. Math. Anal. Appl. 12, No. 3, 19--33 (2020; Zbl 07508865) Full Text: Link OpenURL
Barikbin, Z. A new method for exact product form and approximation solutions of a parabolic equation with nonlocal initial condition using Ritz method. (English) Zbl 1482.65179 Iran. J. Numer. Anal. Optim. 10, No. 1, 121-138 (2020). MSC: 65M60 35K20 PDF BibTeX XML Cite \textit{Z. Barikbin}, Iran. J. Numer. Anal. Optim. 10, No. 1, 121--138 (2020; Zbl 1482.65179) Full Text: DOI OpenURL
Liu, Weiwei; Liu, Lishan; Wu, Yonghong Existence of solutions for integral boundary value problems of singular Hadamard-type fractional differential equations on infinite interval. (English) Zbl 1482.34029 Adv. Difference Equ. 2020, Paper No. 274, 22 p. (2020). MSC: 34A08 34B10 34B18 47N20 34B16 PDF BibTeX XML Cite \textit{W. Liu} et al., Adv. Difference Equ. 2020, Paper No. 274, 22 p. (2020; Zbl 1482.34029) Full Text: DOI OpenURL
O, KyuNam; Jong, KumSong; Pak, SunAe; Choi, HuiChol A new approach to approximate solutions for a class of nonlinear multi-term fractional differential equations with integral boundary conditions. (English) Zbl 1482.34032 Adv. Difference Equ. 2020, Paper No. 271, 16 p. (2020). MSC: 34A08 26A33 34B15 34B10 65L05 PDF BibTeX XML Cite \textit{K. O} et al., Adv. Difference Equ. 2020, Paper No. 271, 16 p. (2020; Zbl 1482.34032) Full Text: DOI OpenURL
Ahmed, Idris; Kumam, Poom; Jarad, Fahd; Borisut, Piyachat; Sitthithakerngkiet, Kanokwan; Ibrahim, Alhassan Stability analysis for boundary value problems with generalized nonlocal condition via Hilfer-Katugampola fractional derivative. (English) Zbl 1482.34013 Adv. Difference Equ. 2020, Paper No. 225, 18 p. (2020). MSC: 34A08 26A33 34B10 47N20 PDF BibTeX XML Cite \textit{I. Ahmed} et al., Adv. Difference Equ. 2020, Paper No. 225, 18 p. (2020; Zbl 1482.34013) Full Text: DOI OpenURL
Aydogan, S. M.; Aguilar, J. F. Gómez; Baleanu, D.; Rezapour, Sh.; Samei, M. E. Approximate endpoint solutions for a class of fractional \(q\)-differential inclusions by computational results. (English) Zbl 07468611 Fractals 28, No. 8, Article ID 2040029, 18 p. (2020). MSC: 65-XX 34A08 34B10 PDF BibTeX XML Cite \textit{S. M. Aydogan} et al., Fractals 28, No. 8, Article ID 2040029, 18 p. (2020; Zbl 07468611) Full Text: DOI OpenURL
Arslan, Derya A new second-order difference approximation for nonlocal boundary value problem with boundary layers. (English) Zbl 1476.65140 Math. Model. Anal. 25, No. 2, 257-270 (2020). MSC: 65L10 65L11 65L12 65L15 65L20 65L70 34B10 PDF BibTeX XML Cite \textit{D. Arslan}, Math. Model. Anal. 25, No. 2, 257--270 (2020; Zbl 1476.65140) Full Text: DOI OpenURL
Čiupaila, Regimantas; Sapagovas, Mifodijus; Pupalaigė, Kristina M-matrices and convergence of finite difference scheme for parabolic equation with integral boundary condition. (English) Zbl 1476.65168 Math. Model. Anal. 25, No. 2, 167-183 (2020). MSC: 65M06 65M12 65N25 PDF BibTeX XML Cite \textit{R. Čiupaila} et al., Math. Model. Anal. 25, No. 2, 167--183 (2020; Zbl 1476.65168) Full Text: DOI OpenURL
Bingelė, Kristina; Bankauskienė, Agnė; Štikonas, Artūras Investigation of spectrum curves for a Sturm-Liouville problem with two-point nonlocal boundary conditions. (English) Zbl 1476.34079 Math. Model. Anal. 25, No. 1, 53-70 (2020). MSC: 34B24 34B10 PDF BibTeX XML Cite \textit{K. Bingelė} et al., Math. Model. Anal. 25, No. 1, 53--70 (2020; Zbl 1476.34079) Full Text: DOI OpenURL
Li, Min; Sun, Jian-Ping; Zhao, Ya-Hong Existence of positive solution for BVP of nonlinear fractional differential equation with integral boundary conditions. (English) Zbl 1482.34027 Adv. Difference Equ. 2020, Paper No. 177, 13 p. (2020). MSC: 34A08 34B15 47N20 34B18 34B10 PDF BibTeX XML Cite \textit{M. Li} et al., Adv. Difference Equ. 2020, Paper No. 177, 13 p. (2020; Zbl 1482.34027) Full Text: DOI OpenURL
Liu, Zhonghua; Ding, Youzheng; Liu, Chengwei; Zhao, Caiyi Existence and uniqueness of solutions for singular fractional differential equation boundary value problem with \(p\)-Laplacian. (English) Zbl 1482.34030 Adv. Difference Equ. 2020, Paper No. 83, 12 p. (2020). MSC: 34A08 34B15 26A33 47N20 34B10 PDF BibTeX XML Cite \textit{Z. Liu} et al., Adv. Difference Equ. 2020, Paper No. 83, 12 p. (2020; Zbl 1482.34030) Full Text: DOI OpenURL
Kumar, Devendra; Kumari, Parvin A parameter-uniform collocation scheme for singularly perturbed delay problems with integral boundary condition. (English) Zbl 07435120 J. Appl. Math. Comput. 63, No. 1-2, 813-828 (2020). MSC: 65-XX 35K20 65L10 65L11 65L70 65M12 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{P. Kumari}, J. Appl. Math. Comput. 63, No. 1--2, 813--828 (2020; Zbl 07435120) Full Text: DOI OpenURL
Salem, Ahmed Existence results of solutions for anti-periodic fractional Langevin equation. (English) Zbl 07427160 J. Appl. Anal. Comput. 10, No. 6, 2557-2574 (2020). Reviewer: Thanin Sitthiwirattham (Bangkok) MSC: 34A08 26A33 34B10 PDF BibTeX XML Cite \textit{A. Salem}, J. Appl. Anal. Comput. 10, No. 6, 2557--2574 (2020; Zbl 07427160) Full Text: DOI OpenURL
Kadirbayeva, Zhazira M.; Karakenova, Sayakhat G. Numerical solution of multi-point boundary value problems for essentially loaded ordinary differential equations. (English) Zbl 07406177 Mat. Zh. 20, No. 4, 47-57 (2020). MSC: 65L10 34B10 PDF BibTeX XML Cite \textit{Z. M. Kadirbayeva} and \textit{S. G. Karakenova}, Mat. Zh. 20, No. 4, 47--57 (2020; Zbl 07406177) OpenURL
Hajishafieiha, J.; Abbasbandy, S. A new method based on polynomials equipped with a parameter to solve two parabolic inverse problems with a nonlocal boundary condition. (English) Zbl 1475.65105 Inverse Probl. Sci. Eng. 28, No. 5, 739-753 (2020). MSC: 65M32 65M06 65M60 65D05 65K10 35C11 35K55 35R30 PDF BibTeX XML Cite \textit{J. Hajishafieiha} and \textit{S. Abbasbandy}, Inverse Probl. Sci. Eng. 28, No. 5, 739--753 (2020; Zbl 1475.65105) Full Text: DOI OpenURL
Assanova, A. T.; Tokmurzin, Zh. S. Boundary value problem for system of pseudo-hyperbolic equations of the fourth order with nonlocal condition. (English. Russian original) Zbl 1465.35309 Russ. Math. 64, No. 9, 1-11 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 9, 3-14 (2020). MSC: 35L82 35L57 35R09 PDF BibTeX XML Cite \textit{A. T. Assanova} and \textit{Zh. S. Tokmurzin}, Russ. Math. 64, No. 9, 1--11 (2020; Zbl 1465.35309); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 9, 3--14 (2020) Full Text: DOI OpenURL
Ji, Lei Positive solution for a class of second-order problem under Stieltjes integral boundary condition. (Chinese. English summary) Zbl 1474.34172 Math. Pract. Theory 50, No. 17, 239-246 (2020). MSC: 34B18 34B10 47N20 PDF BibTeX XML Cite \textit{L. Ji}, Math. Pract. Theory 50, No. 17, 239--246 (2020; Zbl 1474.34172) OpenURL
Liang, Xingyue; Zhou, Zongfu Positive solutions for a class of fractional differential equations with Stieltjes integral boundary conditions. (Chinese. English summary) Zbl 1474.34174 Math. Appl. 33, No. 4, 826-835 (2020). MSC: 34B18 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{X. Liang} and \textit{Z. Zhou}, Math. Appl. 33, No. 4, 826--835 (2020; Zbl 1474.34174) OpenURL
Kosmatov, Nickolai A coincidence problem for a second-order semi-linear differential equation. (English) Zbl 1474.34145 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 82, 12 p. (2020). MSC: 34B15 34B10 PDF BibTeX XML Cite \textit{N. Kosmatov}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 82, 12 p. (2020; Zbl 1474.34145) Full Text: DOI OpenURL
Yao, Nan; Liu, Xiping; Jia, Mei Solvability for Riemann-Stieltjes integral boundary value problems of Bagley-Torvik equations at resonance. (English) Zbl 1457.34018 J. Appl. Anal. Comput. 10, No. 5, 1937-1953 (2020). MSC: 34A08 34B10 26A33 PDF BibTeX XML Cite \textit{N. Yao} et al., J. Appl. Anal. Comput. 10, No. 5, 1937--1953 (2020; Zbl 1457.34018) Full Text: DOI OpenURL
Özen, Kemal Construction of Green’s functional for a third order ordinary differential equation with general nonlocal conditions and variable principal coefficient. (English) Zbl 1472.34049 Georgian Math. J. 27, No. 4, 593-603 (2020). Reviewer: José Angel Cid Araujo (Ourense) MSC: 34B27 34B05 34B10 PDF BibTeX XML Cite \textit{K. Özen}, Georgian Math. J. 27, No. 4, 593--603 (2020; Zbl 1472.34049) Full Text: DOI OpenURL
Wahash, Hanan A.; Panchal, Satish K.; Abdo, Mohammed S. Positive solutions for generalized Caputo fractional differential equations with integral boundary conditions. (English) Zbl 1474.34183 J. Math. Model. 8, No. 4, 393-414 (2020). MSC: 34B18 34A08 34B15 34B10 47N20 PDF BibTeX XML Cite \textit{H. A. Wahash} et al., J. Math. Model. 8, No. 4, 393--414 (2020; Zbl 1474.34183) Full Text: DOI OpenURL
Lyons, Jeffrey W. Differentiation with respect to parameters of solutions of nonlocal boundary value problems for higher-order differential equations. (English) Zbl 1454.34043 Int. J. Difference Equ. 15, No. 2, 473-481 (2020). MSC: 34B10 34B15 PDF BibTeX XML Cite \textit{J. W. Lyons}, Int. J. Difference Equ. 15, No. 2, 473--481 (2020; Zbl 1454.34043) Full Text: Link OpenURL
Boucherif, Abdelkader Nonlocal conditions for two-endpoint problems. (English) Zbl 1454.34042 Int. J. Difference Equ. 15, No. 2, 321-334 (2020). MSC: 34B10 34B15 34B27 PDF BibTeX XML Cite \textit{A. Boucherif}, Int. J. Difference Equ. 15, No. 2, 321--334 (2020; Zbl 1454.34042) Full Text: Link OpenURL
Henderson, Johnny; Neugebauer, Jeffrey T. Errata to “Comparison of smallest eigenvalues for fractional-order nonlocal boundary value problems”. (English) Zbl 07312889 Adv. Dyn. Syst. Appl. 15, No. 1, 27-28 (2020). MSC: 34A08 34B05 34B09 34B10 PDF BibTeX XML Cite \textit{J. Henderson} and \textit{J. T. Neugebauer}, Adv. Dyn. Syst. Appl. 15, No. 1, 27--28 (2020; Zbl 07312889) Full Text: Link OpenURL
Kopytko, B. I.; Novosyadlo, A. F. On a nonclassical problem for the heat equation and the Feller semigroup generated by it. (English) Zbl 1454.60123 Carpathian Math. Publ. 12, No. 2, 297-310 (2020). MSC: 60J60 35K20 PDF BibTeX XML Cite \textit{B. I. Kopytko} and \textit{A. F. Novosyadlo}, Carpathian Math. Publ. 12, No. 2, 297--310 (2020; Zbl 1454.60123) Full Text: DOI OpenURL
Arslan, Derya Stability and convergence analysis on Shishkin mesh for a nonlinear singularly perturbed problem with three-point boundary condition. (English) Zbl 1459.65114 Quaest. Math. 43, No. 11, 1527-1540 (2020). MSC: 65L10 65L11 65L12 65L15 65L20 65L70 34B10 PDF BibTeX XML Cite \textit{D. Arslan}, Quaest. Math. 43, No. 11, 1527--1540 (2020; Zbl 1459.65114) Full Text: DOI OpenURL
Xu, Xiaoyong; Zhou, Fengying; Xu, Zhigang Chebyshev wavelet method for numerical solutions of wave equations under nonlocal conservation conditions. (Chinese. English summary) Zbl 1463.65443 Math. Pract. Theory 50, No. 9, 201-209 (2020). MSC: 65M70 65T60 PDF BibTeX XML Cite \textit{X. Xu} et al., Math. Pract. Theory 50, No. 9, 201--209 (2020; Zbl 1463.65443) OpenURL
Shen, Kaiyue; Zhou, Zongfu Positive solutions for fractional differential equations with integral and infinite-point boundary conditions. (English) Zbl 1463.34101 Math. Appl. 33, No. 3, 563-571 (2020). MSC: 34B18 34A08 34B10 34B27 47N20 PDF BibTeX XML Cite \textit{K. Shen} and \textit{Z. Zhou}, Math. Appl. 33, No. 3, 563--571 (2020; Zbl 1463.34101) OpenURL
He, Yanqin; Han, Xiaoling The existence and uniqueness of positive solutions for a class of third-order boundary value problems with integral boundary conditions. (Chinese. English summary) Zbl 1463.34096 J. Sichuan Univ., Nat. Sci. Ed. 57, No. 5, 852-856 (2020). MSC: 34B18 34B10 34A45 PDF BibTeX XML Cite \textit{Y. He} and \textit{X. Han}, J. Sichuan Univ., Nat. Sci. Ed. 57, No. 5, 852--856 (2020; Zbl 1463.34096) Full Text: DOI OpenURL
Yang, He; Zhang, Yong Approximate controllability for a class of fractional evolution equations with nonlocal integral boundary conditions. (English) Zbl 1463.93020 J. Northwest Norm. Univ., Nat. Sci. 56, No. 4, 1-7 (2020). MSC: 93B05 37L05 26A33 PDF BibTeX XML Cite \textit{H. Yang} and \textit{Y. Zhang}, J. Northwest Norm. Univ., Nat. Sci. 56, No. 4, 1--7 (2020; Zbl 1463.93020) Full Text: DOI OpenURL
Figueiredo, Giovany; Suarez, Antonio Existence of positive solutions for prescribed mean curvature problems with nonlocal term via sub- and supersolution method. (English) Zbl 1458.35187 Math. Methods Appl. Sci. 43, No. 15, 8496-8505 (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35J62 35J25 35A01 PDF BibTeX XML Cite \textit{G. Figueiredo} and \textit{A. Suarez}, Math. Methods Appl. Sci. 43, No. 15, 8496--8505 (2020; Zbl 1458.35187) Full Text: DOI OpenURL
Boulaaras, Salah Mahmoud; Guefaifia, Rafik; Mezouar, Nadia; Alghamdi, Ahmad Mohammed Global existence and decay for a system of two singular nonlinear viscoelastic equations with general source and localized frictional damping terms. (English) Zbl 1450.35168 J. Funct. Spaces 2020, Article ID 5085101, 15 p. (2020). MSC: 35L53 35L71 35R09 74D10 35B40 PDF BibTeX XML Cite \textit{S. M. Boulaaras} et al., J. Funct. Spaces 2020, Article ID 5085101, 15 p. (2020; Zbl 1450.35168) Full Text: DOI OpenURL
Bousselsal, Mahmoud; Zaouche, Elmehdi Existence of solution for nonlocal heterogeneous elliptic problems. (English) Zbl 1448.35185 Mediterr. J. Math. 17, No. 4, Paper No. 129, 10 p. (2020). MSC: 35J60 35J67 35A01 PDF BibTeX XML Cite \textit{M. Bousselsal} and \textit{E. Zaouche}, Mediterr. J. Math. 17, No. 4, Paper No. 129, 10 p. (2020; Zbl 1448.35185) Full Text: DOI OpenURL
Zikirov, O. S.; Kholikov, D. K. Solvability of a mixed problem with an integral condition for a third-order hyperbolic equation. (English. Russian original) Zbl 1448.35327 J. Math. Sci., New York 245, No. 3, 323-331 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 144, 30-38 (2018). MSC: 35L35 35M12 PDF BibTeX XML Cite \textit{O. S. Zikirov} and \textit{D. K. Kholikov}, J. Math. Sci., New York 245, No. 3, 323--331 (2020; Zbl 1448.35327); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 144, 30--38 (2018) Full Text: DOI OpenURL
Zhang, Wei; Liu, Wenbin Existence, uniqueness, and multiplicity results on positive solutions for a class of Hadamard-type fractional boundary value problem on an infinite interval. (English) Zbl 1452.34017 Math. Methods Appl. Sci. 43, No. 5, 2251-2275 (2020). MSC: 34A08 34B10 34B18 34B40 34A45 47N20 PDF BibTeX XML Cite \textit{W. Zhang} and \textit{W. Liu}, Math. Methods Appl. Sci. 43, No. 5, 2251--2275 (2020; Zbl 1452.34017) Full Text: DOI OpenURL
Luo, Yan Existence for semilinear impulsive differential inclusions without compactness. (English) Zbl 1454.34090 J. Dyn. Control Syst. 26, No. 4, 663-672 (2020). Reviewer: Daniel C. Biles (Nashville) MSC: 34G25 34A37 34A60 34B10 47N20 PDF BibTeX XML Cite \textit{Y. Luo}, J. Dyn. Control Syst. 26, No. 4, 663--672 (2020; Zbl 1454.34090) Full Text: DOI OpenURL
Liu, Bingchen; Zhang, Changcheng; Wei, Yu Blow-up profile of solutions in parabolic equations with nonlocal Dirichlet conditions. (English) Zbl 1447.35075 Bull. Iran. Math. Soc. 46, No. 5, 1437-1453 (2020). MSC: 35B44 35K51 35K58 35R09 35B33 35B40 PDF BibTeX XML Cite \textit{B. Liu} et al., Bull. Iran. Math. Soc. 46, No. 5, 1437--1453 (2020; Zbl 1447.35075) Full Text: DOI OpenURL
Alsarori, Nawal A.; Ghadle, Kirtiwant P. Differential inclusions of fractional order with impulse effects in Banach spaces. (English) Zbl 1452.34068 Nonlinear Funct. Anal. Appl. 25, No. 1, 101-116 (2020). Reviewer: Daniel C. Biles (Nashville) MSC: 34G25 34A08 34B10 47N20 34A37 PDF BibTeX XML Cite \textit{N. A. Alsarori} and \textit{K. P. Ghadle}, Nonlinear Funct. Anal. Appl. 25, No. 1, 101--116 (2020; Zbl 1452.34068) Full Text: Link OpenURL
You, Huaiqian; Lu, Xinyang; Task, Nathaniel; Yu, Yue An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems. (English) Zbl 1474.45069 ESAIM, Math. Model. Numer. Anal. 54, No. 4, 1373-1413 (2020). MSC: 45K05 76R50 65R20 PDF BibTeX XML Cite \textit{H. You} et al., ESAIM, Math. Model. Numer. Anal. 54, No. 4, 1373--1413 (2020; Zbl 1474.45069) Full Text: DOI arXiv OpenURL
Gladkov, Alexander; Kavitova, Tatiana Global existence of solutions of initial boundary value problem for nonlocal parabolic equation with nonlocal boundary condition. (English) Zbl 1445.35084 Math. Methods Appl. Sci. 43, No. 8, 5464-5479 (2020). MSC: 35B44 35K20 35K61 PDF BibTeX XML Cite \textit{A. Gladkov} and \textit{T. Kavitova}, Math. Methods Appl. Sci. 43, No. 8, 5464--5479 (2020; Zbl 1445.35084) Full Text: DOI arXiv OpenURL
Bouaouid, Mohamed; Hilal, Khalid; Melliani, Said Existence of mild solutions for conformable fractional differential equations with nonlocal conditions. (English) Zbl 1479.34009 Rocky Mt. J. Math. 50, No. 3, 871-879 (2020). MSC: 34A08 34G20 34B10 47D03 47N20 PDF BibTeX XML Cite \textit{M. Bouaouid} et al., Rocky Mt. J. Math. 50, No. 3, 871--879 (2020; Zbl 1479.34009) Full Text: DOI Euclid OpenURL
He, Xingyue; Gao, Chenghua Existence of positive solutions of fractional differential equations with integral boundary conditions. (Chinese. English summary) Zbl 1449.34073 J. Jilin Univ., Sci. 58, No. 1, 9-14 (2020). MSC: 34B18 34A08 34B10 47N20 34B27 34B08 PDF BibTeX XML Cite \textit{X. He} and \textit{C. Gao}, J. Jilin Univ., Sci. 58, No. 1, 9--14 (2020; Zbl 1449.34073) Full Text: DOI OpenURL
Kunze, Markus C. Diffusion with nonlocal Dirichlet boundary conditions on domains. (English) Zbl 07220470 Stud. Math. 253, No. 1, 1-38 (2020). Reviewer: Heinrich Hering (Rockenberg) MSC: 47D07 60J35 35B40 PDF BibTeX XML Cite \textit{M. C. Kunze}, Stud. Math. 253, No. 1, 1--38 (2020; Zbl 07220470) Full Text: DOI arXiv OpenURL
Cakir, Musa; Cimen, Erkan; Amiraliyev, Gabil M. The difference schemes for solving singularly perturbed three-point boundary value problem. (English) Zbl 1458.65094 Lith. Math. J. 60, No. 2, 147-160 (2020). MSC: 65L11 65L10 65L12 65L20 65L70 PDF BibTeX XML Cite \textit{M. Cakir} et al., Lith. Math. J. 60, No. 2, 147--160 (2020; Zbl 1458.65094) Full Text: DOI OpenURL
Zaitseva, Natalya Vladimirovna Boundary value problem with integral condition for the mixed type equation with a singular coefficient. (English) Zbl 1442.35273 Kravchenko, Vladislav V. (ed.) et al., Transmutation operators and applications. Cham: Birkhäuser. Trends Math., 671-686 (2020). MSC: 35M12 35A01 35A02 35C10 PDF BibTeX XML Cite \textit{N. V. Zaitseva}, in: Transmutation operators and applications. Cham: Birkhäuser. 671--686 (2020; Zbl 1442.35273) Full Text: DOI OpenURL
Mirsaburova, Gulnora M. Problem with nonlocal conditions, specified on parts of the boundary characteristics and on the degeneracy segment, for the Gellerstedt equation with singular coefficient. (English. Russian original) Zbl 1441.35178 Russ. Math. 64, No. 1, 58-77 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 1, 64-83 (2020). MSC: 35M12 PDF BibTeX XML Cite \textit{G. M. Mirsaburova}, Russ. Math. 64, No. 1, 58--77 (2020; Zbl 1441.35178); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 1, 64--83 (2020) Full Text: DOI OpenURL
Wang, Fang; Liu, Lishan; Wu, Yonghong A numerical algorithm for a class of fractional BVPs with \(p\)-Laplacian operator and singularity-the convergence and dependence analysis. (English) Zbl 1445.34026 Appl. Math. Comput. 382, Article ID 125339, 12 p. (2020). MSC: 34A08 34A45 34B10 34B16 PDF BibTeX XML Cite \textit{F. Wang} et al., Appl. Math. Comput. 382, Article ID 125339, 12 p. (2020; Zbl 1445.34026) Full Text: DOI OpenURL
Miyagaki, O. H.; Motreanu, D.; Pereira, F. R. Multiple solutions for a fractional elliptic problem with critical growth. (English) Zbl 1453.35181 J. Differ. Equations 269, No. 6, 5542-5572 (2020). MSC: 35R11 35J20 35J25 35J61 PDF BibTeX XML Cite \textit{O. H. Miyagaki} et al., J. Differ. Equations 269, No. 6, 5542--5572 (2020; Zbl 1453.35181) Full Text: DOI OpenURL
You, Huaiqian; Yu, Yue; Kamensky, David An asymptotically compatible formulation for local-to-nonlocal coupling problems without overlapping regions. (English) Zbl 1442.74244 Comput. Methods Appl. Mech. Eng. 366, Article ID 113038, 36 p. (2020). MSC: 74S05 45K05 35R09 65N30 74A15 PDF BibTeX XML Cite \textit{H. You} et al., Comput. Methods Appl. Mech. Eng. 366, Article ID 113038, 36 p. (2020; Zbl 1442.74244) Full Text: DOI arXiv OpenURL