Yi, Su-Cheol; Fang, Zhong Bo Blow-up phenomena for a reaction-diffusion equation with nonlocal gradient terms. (English) Zbl 07734110 Taiwanese J. Math. 27, No. 4, 737-757 (2023). MSC: 35B40 35B44 35K20 35K58 PDF BibTeX XML Cite \textit{S.-C. Yi} and \textit{Z. B. Fang}, Taiwanese J. Math. 27, No. 4, 737--757 (2023; Zbl 07734110) Full Text: DOI Link
Zerki, A.; Bachouche, K.; Ait-Mahiout, K. Existence of solutions for higher order \(\phi\)-Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions. (English) Zbl 07733396 Cubo 25, No. 2, 173-193 (2023). MSC: 34B10 34B15 34B40 PDF BibTeX XML Cite \textit{A. Zerki} et al., Cubo 25, No. 2, 173--193 (2023; Zbl 07733396) Full Text: DOI
Baranetskij, Ya. O.; Demkiv, I. I.; Solomko, A. V. Inverse problems of determining an unknown depending on time coefficient for a parabolic equation with involution and periodicity conditions. (English) Zbl 07723408 Carpathian Math. Publ. 15, No. 1, 5-19 (2023). MSC: 35R30 34K10 34K29 35K20 45D05 PDF BibTeX XML Cite \textit{Ya. O. Baranetskij} et al., Carpathian Math. Publ. 15, No. 1, 5--19 (2023; Zbl 07723408) Full Text: DOI
Boulaaras, Salah; Choucha, Abdelbaki; Ouchenane, Djamel; Abdalla, Mohamed; Muñoz Vazquez, Aldo Jonathan Solvability of the Moore-Gibson-Thompson equation with viscoelastic memory type II and integral condition. (English) Zbl 07716454 Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1216-1241 (2023). MSC: 35G16 35A01 35A02 35R09 PDF BibTeX XML Cite \textit{S. Boulaaras} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1216--1241 (2023; Zbl 07716454) Full Text: DOI
Kozhanov, A. I. Nonlocal problems with generalized Samarskii-Ionkin condition for some classes of nonstationary differential equations. (English. Russian original) Zbl 07709499 Dokl. Math. 107, No. 1, 40-43 (2023); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 509, 50-53 (2023). MSC: 35K20 35K70 PDF BibTeX XML Cite \textit{A. I. Kozhanov}, Dokl. Math. 107, No. 1, 40--43 (2023; Zbl 07709499); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 509, 50--53 (2023) Full Text: DOI
Cho, You-Young; Jin, Jinhee; Lee, Eun Kyoung Existence of positive solution for the second order differential systems with integral boundary conditions. (English) Zbl 1514.34046 East Asian Math. J. 39, No. 1, 43-50 (2023). MSC: 34B10 34B15 34B18 35J25 PDF BibTeX XML Cite \textit{Y.-Y. Cho} et al., East Asian Math. J. 39, No. 1, 43--50 (2023; Zbl 1514.34046) Full Text: DOI
Chems Eddine, Nabil; Repovš, Dušan D. The Neumann problem for a class of generalized Kirchhoff-type potential systems. (English) Zbl 07700670 Bound. Value Probl. 2023, Paper No. 19, 33 p. (2023). MSC: 35J57 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{N. Chems Eddine} and \textit{D. D. Repovš}, Bound. Value Probl. 2023, Paper No. 19, 33 p. (2023; Zbl 07700670) Full Text: DOI arXiv
Hu, Yu; Zhang, Guohong; Wang, Xiaoli Spatio-temporal dynamics of a reaction-diffusion-advection food-limited system with nonlocal delayed competition and Dirichlet boundary condition. (English) Zbl 07698244 Nonlinear Anal., Real World Appl. 71, Article ID 103833, 27 p. (2023). MSC: 92D25 92D40 35K57 34C23 PDF BibTeX XML Cite \textit{Y. Hu} et al., Nonlinear Anal., Real World Appl. 71, Article ID 103833, 27 p. (2023; Zbl 07698244) Full Text: DOI
Du, Yu; Zhang, Jiwei Numerical solutions for nonlocal wave equations by perfectly matched layers. II: The two-dimensional case. (English) Zbl 07696974 J. Comput. Phys. 488, Article ID 112209, 20 p. (2023). MSC: 65Nxx 65Mxx 35Qxx PDF BibTeX XML Cite \textit{Y. Du} and \textit{J. Zhang}, J. Comput. Phys. 488, Article ID 112209, 20 p. (2023; Zbl 07696974) Full Text: DOI
Zhu, Shouguo; Dai, Peipei; Qu, Yinchun; Li, Gang Subordination principle and approximation of fractional resolvents and applications to fractional evolution equations. (English) Zbl 1511.34084 Fract. Calc. Appl. Anal. 26, No. 2, 781-799 (2023). MSC: 34K37 34B10 26A33 47N20 PDF BibTeX XML Cite \textit{S. Zhu} et al., Fract. Calc. Appl. Anal. 26, No. 2, 781--799 (2023; Zbl 1511.34084) Full Text: DOI
Wu, Xin; Tian, Shou-Fu On long-time asymptotics to the nonlocal short pulse equation with the Schwartz-type initial data: without solitons. (English) Zbl 1514.35057 Physica D 448, Article ID 133733, 20 p. (2023). MSC: 35B40 35R09 35Q15 35Q55 PDF BibTeX XML Cite \textit{X. Wu} and \textit{S.-F. Tian}, Physica D 448, Article ID 133733, 20 p. (2023; Zbl 1514.35057) Full Text: DOI
Salim, Abdelkrim; Krim, Salim; Lazreg, Jamal Eddine; Benchohra, Mouffak On Caputo tempered implicit fractional differential equations in \(b\)-metric spaces. (English) Zbl 1517.34009 Analysis, München 43, No. 2, 129-139 (2023). MSC: 34A08 34A09 34G20 34B10 47N20 PDF BibTeX XML Cite \textit{A. Salim} et al., Analysis, München 43, No. 2, 129--139 (2023; Zbl 1517.34009) Full Text: DOI
Halder, Joydev; Tumuluri, Suman Kumar A numerical scheme for a diffusion equation with nonlocal nonlinear boundary condition. (English) Zbl 07671198 Comput. Appl. Math. 42, No. 2, Paper No. 84, 21 p. (2023). MSC: 65M12 92D25 PDF BibTeX XML Cite \textit{J. Halder} and \textit{S. K. Tumuluri}, Comput. Appl. Math. 42, No. 2, Paper No. 84, 21 p. (2023; Zbl 07671198) Full Text: DOI arXiv
Abbatiello, Anna; Feireisl, Eduard The Oberbeck-Boussinesq system with non-local boundary conditions. (English) Zbl 1515.35179 Q. Appl. Math. 81, No. 2, 297-306 (2023). Reviewer: Pierre-Étienne Druet (Darmstadt) MSC: 35Q30 35Q35 45K05 35K61 35D30 35D35 35B65 35A01 35Q79 PDF BibTeX XML Cite \textit{A. Abbatiello} and \textit{E. Feireisl}, Q. Appl. Math. 81, No. 2, 297--306 (2023; Zbl 1515.35179) Full Text: DOI arXiv
Çakmak, Yaşar; Keskin, Baki Inverse nodal problem for the quadratic pencil of the Sturm-Liouville equations with parameter-dependent nonlocal boundary condition. (English) Zbl 1506.34034 Turk. J. Math. 47, No. 1, 397-404 (2023). MSC: 34A55 34B10 34L05 34B24 PDF BibTeX XML Cite \textit{Y. Çakmak} and \textit{B. Keskin}, Turk. J. Math. 47, No. 1, 397--404 (2023; Zbl 1506.34034) Full Text: DOI
Halder, Joydev; Tumuluri, Suman Kumar Numerical solution to a nonlinear McKendrick-von Foerster equation with diffusion. (English) Zbl 1507.65140 Numer. Algorithms 92, No. 2, 1007-1039 (2023). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65N06 35B40 35B50 35A01 35A02 35R09 92D25 35Q92 PDF BibTeX XML Cite \textit{J. Halder} and \textit{S. K. Tumuluri}, Numer. Algorithms 92, No. 2, 1007--1039 (2023; Zbl 1507.65140) Full Text: DOI
Ozkan, A. Sinan; Adalar, İbrahim Inverse nodal problems for Sturm-Liouville equation with nonlocal boundary conditions. (English) Zbl 1516.34040 J. Math. Anal. Appl. 520, No. 1, Article ID 126904, 12 p. (2023). Reviewer: Ozge Akcay (Tunceli) MSC: 34A55 34B24 34B10 34L05 PDF BibTeX XML Cite \textit{A. S. Ozkan} and \textit{İ. Adalar}, J. Math. Anal. Appl. 520, No. 1, Article ID 126904, 12 p. (2023; Zbl 1516.34040) Full Text: DOI arXiv
Zhu, Jianbo; Fu, Xianlong Existence and differentiability of solutions for nondensely defined neutral integro-differential evolution equations. (English) Zbl 1509.37109 Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 30, 24 p. (2023). MSC: 37L05 45K05 34B10 35B65 47N20 PDF BibTeX XML Cite \textit{J. Zhu} and \textit{X. Fu}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 30, 24 p. (2023; Zbl 1509.37109) Full Text: DOI
Shi, Kehan; Wen, Ying Nonlocal biharmonic evolution equations with Dirichlet and Navier boundary conditions. (English) Zbl 1504.45010 Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 560-579 (2023). Reviewer: Anar Assanova (Almaty) MSC: 45K05 45M05 35G16 PDF BibTeX XML Cite \textit{K. Shi} and \textit{Y. Wen}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 560--579 (2023; Zbl 1504.45010) Full Text: DOI
Elango, Sekar Second order singularly perturbed delay differential equations with non-local boundary condition. (English) Zbl 1502.65040 J. Comput. Appl. Math. 417, Article ID 114498, 13 p. (2023). MSC: 65L03 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{S. Elango}, J. Comput. Appl. Math. 417, Article ID 114498, 13 p. (2023; Zbl 1502.65040) Full Text: DOI
Štikonas, Artūras; Şen, Erdoğan Asymptotic analysis of Sturm-Liouville problem with Neumann and nonlocal two-point boundary conditions. (English) Zbl 07666334 Lith. Math. J. 62, No. 4, 519-541 (2022). Reviewer: Ekin Uğurlu (Ankara) MSC: 34B24 34L20 34B10 34L10 PDF BibTeX XML Cite \textit{A. Štikonas} and \textit{E. Şen}, Lith. Math. J. 62, No. 4, 519--541 (2022; Zbl 07666334) Full Text: DOI
Smirnov, Sergey Green’s function and existence of solutions for a third-order boundary value problem involving integral condition. (English) Zbl 07666333 Lith. Math. J. 62, No. 4, 509-518 (2022). Reviewer: Alberto Boscaggin (Collegno) MSC: 34B10 34B15 34B27 34C11 47H10 PDF BibTeX XML Cite \textit{S. Smirnov}, Lith. Math. J. 62, No. 4, 509--518 (2022; Zbl 07666333) Full Text: DOI
Shah, Kamal; Abdeljawad, Thabet; Ali, Arshad; Alqudah, Manar A. Investigation of integral boundary value problem with impulsive behavior involving non-singular derivative. (English) Zbl 1515.34035 Fractals 30, No. 8, Article ID 2240204, 15 p. (2022). MSC: 34B37 34A08 26A33 34B10 34A37 34D10 47N20 PDF BibTeX XML Cite \textit{K. Shah} et al., Fractals 30, No. 8, Article ID 2240204, 15 p. (2022; Zbl 1515.34035) Full Text: DOI
Kozhanov, Aleksandr Ivanovich; Tarasova, Galina Ivanovna The Samarsky-Ionkin problem with integral perturbation for a pseudoparabolic equation. (Russian. English summary) Zbl 1509.35145 Izv. Irkutsk. Gos. Univ., Ser. Mat. 42, 59-74 (2022). MSC: 35K70 35K35 PDF BibTeX XML Cite \textit{A. I. Kozhanov} and \textit{G. I. Tarasova}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 42, 59--74 (2022; Zbl 1509.35145) Full Text: DOI Link
Fadai, Nabil T.; Billingham, John Non-local effects on travelling waves arising in a moving-boundary reaction-diffusion model. (English) Zbl 1511.35071 J. Phys. A, Math. Theor. 55, No. 40, Article ID 405701, 10 p. (2022). MSC: 35C07 35K58 35R09 PDF BibTeX XML Cite \textit{N. T. Fadai} and \textit{J. Billingham}, J. Phys. A, Math. Theor. 55, No. 40, Article ID 405701, 10 p. (2022; Zbl 1511.35071) Full Text: DOI
Shivanian, Elyas Error estimate and stability analysis on the study of a high-order nonlinear fractional differential equation with Caputo-derivative and integral boundary condition. (English) Zbl 1513.34036 Comput. Appl. Math. 41, No. 8, Paper No. 395, 20 p. (2022). MSC: 34A08 34B15 34B10 47N20 65L10 PDF BibTeX XML Cite \textit{E. Shivanian}, Comput. Appl. Math. 41, No. 8, Paper No. 395, 20 p. (2022; Zbl 1513.34036) Full Text: DOI
Kadirbayeva, Zhazira M.; Kabdrakhova, Symbat S. A numerical solution of problem for essentially loaded differential equations with an integro-multipoint condition. (English) Zbl 1503.34061 Open Math. 20, 1173-1183 (2022). MSC: 34B10 45J05 65L06 PDF BibTeX XML Cite \textit{Z. M. Kadirbayeva} and \textit{S. S. Kabdrakhova}, Open Math. 20, 1173--1183 (2022; Zbl 1503.34061) Full Text: DOI
Lomov, I. S. Construction of a generalized solution of a mixed problem for the telegraph equation: sequential and axiomatic approaches. (English. Russian original) Zbl 1506.35038 Differ. Equ. 58, No. 11, 1468-1481 (2022); translation from Differ. Uravn. 58, No. 11, 1471-1483 (2022). MSC: 35C10 35L20 PDF BibTeX XML Cite \textit{I. S. Lomov}, Differ. Equ. 58, No. 11, 1468--1481 (2022; Zbl 1506.35038); translation from Differ. Uravn. 58, No. 11, 1471--1483 (2022) Full Text: DOI
Memou, Ameur; Latrous, Chahla; Berkane, Abdelhak; Denche, Mohamed On the solvability of a semilinear second order parabolic equation with integral condition. (English) Zbl 1504.35160 Bull. Math. Anal. Appl. 14, No. 1, 46-63 (2022). MSC: 35K20 35K58 35K67 PDF BibTeX XML Cite \textit{A. Memou} et al., Bull. Math. Anal. Appl. 14, No. 1, 46--63 (2022; Zbl 1504.35160) Full Text: Link
Lee, Hwi; Du, Qiang Second-order accurate Dirichlet boundary conditions for linear nonlocal diffusion problems. (English) Zbl 1499.34142 Commun. Math. Sci. 20, No. 7, 1815-1837 (2022). MSC: 34B10 35A01 35B40 45A05 60K50 65N12 74A70 PDF BibTeX XML Cite \textit{H. Lee} and \textit{Q. Du}, Commun. Math. Sci. 20, No. 7, 1815--1837 (2022; Zbl 1499.34142) Full Text: DOI arXiv
Yuldashev, Tursun Kamaldinovich; Èrgashev, Tukhtasin Gulamzhanovich; Abduvahobov, Tokhirzhon Akbarali ogli Nonlinear system of impulsive integro-differential equations with hilfer fractional operator and mixed maxima. (English) Zbl 1503.45007 Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 3, 312-325 (2022). MSC: 45J05 26A33 45G15 PDF BibTeX XML Cite \textit{T. K. Yuldashev} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 3, 312--325 (2022; Zbl 1503.45007) Full Text: DOI MNR
Yuldashev, T. K.; Fayziyev, A. K. Integral condition with nonlinear kernel for an impulsive system of differential equations with maxima and redefinition vector. (English) Zbl 1509.34027 Lobachevskii J. Math. 43, No. 8, 2332-2340 (2022). MSC: 34B37 34B10 34A45 PDF BibTeX XML Cite \textit{T. K. Yuldashev} and \textit{A. K. Fayziyev}, Lobachevskii J. Math. 43, No. 8, 2332--2340 (2022; Zbl 1509.34027) Full Text: DOI
Pupalaigė, Kristina; Sapagovas, Mifodijus; Čiupaila, Regimantas Nonlinear elliptic equation with nonlocal integral boundary condition depending on two parameters. (English) Zbl 1498.65138 Math. Model. Anal. 27, No. 4, 610-628 (2022). MSC: 65M06 65M12 65N25 PDF BibTeX XML Cite \textit{K. Pupalaigė} et al., Math. Model. Anal. 27, No. 4, 610--628 (2022; Zbl 1498.65138) Full Text: DOI
Benzian, Mohammed Abdelhakim; Derhab, Mohammed; Messirdi, Bachir Existence results for a class of first-order fractional differential equations with advanced arguments and nonlocal initial conditions. (English) Zbl 1513.34299 Jordan J. Math. Stat. 15, No. 3B, 591-613 (2022). MSC: 34K37 34K10 34K07 47N20 PDF BibTeX XML Cite \textit{M. A. Benzian} et al., Jordan J. Math. Stat. 15, No. 3B, 591--613 (2022; Zbl 1513.34299)
Wei, Yongfang; Bai, Zhanbing Superlinear damped vibration problems on time scales with nonlocal boundary conditions. (English) Zbl 1507.34108 Nonlinear Anal., Model. Control 27, No. 6, 1009-1029 (2022). MSC: 34N05 34K42 34K10 47J30 PDF BibTeX XML Cite \textit{Y. Wei} and \textit{Z. Bai}, Nonlinear Anal., Model. Control 27, No. 6, 1009--1029 (2022; Zbl 1507.34108) Full Text: DOI
Jo, Yong-Hyok; Ri, Myong-Hwan Application of Rothe’s method to a parabolic inverse problem with nonlocal boundary condition. (English) Zbl 07613013 Appl. Math., Praha 67, No. 5, 573-592 (2022). MSC: 65M20 35K58 35R30 PDF BibTeX XML Cite \textit{Y.-H. Jo} and \textit{M.-H. Ri}, Appl. Math., Praha 67, No. 5, 573--592 (2022; Zbl 07613013) Full Text: DOI
Zerki, A.; Bachouche, K.; Ait-Mahiout, K. Existence of solutions for third-order \(\phi\)-Laplacian BVPs on the half-line. (English) Zbl 1497.34037 Mediterr. J. Math. 19, No. 6, Paper No. 261, 17 p. (2022). MSC: 34B10 34B15 34B40 PDF BibTeX XML Cite \textit{A. Zerki} et al., Mediterr. J. Math. 19, No. 6, Paper No. 261, 17 p. (2022; Zbl 1497.34037) Full Text: DOI
Asaduzzaman, Md.; Ali, Md. Zulfikar Existence of multiple positive solutions to the Caputo-type nonlinear fractional differential equation with integral boundary value conditions. (English) Zbl 07606918 Fixed Point Theory 23, No. 1, 127-142 (2022). Reviewer: Alberto Cabada (Santiago de Compostela) MSC: 34B18 34A08 34B10 47N20 34B27 PDF BibTeX XML Cite \textit{Md. Asaduzzaman} and \textit{Md. Z. Ali}, Fixed Point Theory 23, No. 1, 127--142 (2022; Zbl 07606918) Full Text: Link
Beshtokova, Z. V. Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form. (Russian. English summary) Zbl 1500.65038 Dal’nevost. Mat. Zh. 22, No. 1, 3-27 (2022). MSC: 65M06 65M12 35B45 35A01 35A02 35K05 35K10 PDF BibTeX XML Cite \textit{Z. V. Beshtokova}, Dal'nevost. Mat. Zh. 22, No. 1, 3--27 (2022; Zbl 1500.65038) Full Text: DOI MNR
Sadybekov, Makhmud; Dildabek, Gulnar; Ivanova, Marina Direct and inverse problems for nonlocal heat equation with boundary conditions of periodic type. (English) Zbl 1498.35625 Bound. Value Probl. 2022, Paper No. 53, 24 p. (2022). MSC: 35R30 35K05 35K15 35R09 PDF BibTeX XML Cite \textit{M. Sadybekov} et al., Bound. Value Probl. 2022, Paper No. 53, 24 p. (2022; Zbl 1498.35625) Full Text: DOI
Yuldashev, Tursan Kamaldinovich On a nonlocal problem for impulsive differential equations with mixed maxima. (English) Zbl 07590726 Vestn. KRAUNTS, Fiz.-Mat. Nauki 38, No. 1, 40-53 (2022). MSC: 45-XX PDF BibTeX XML Cite \textit{T. K. Yuldashev}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 38, No. 1, 40--53 (2022; Zbl 07590726) Full Text: DOI MNR
Azizbayov, Elvin I. Inverse coefficient identification problem for a hyperbolic equation with nonlocal integral condition. (English) Zbl 1496.35445 Turk. J. Math. 46, No. 4, 1243-1255 (2022). MSC: 35R30 35A09 35L20 35A01 35A02 PDF BibTeX XML Cite \textit{E. I. Azizbayov}, Turk. J. Math. 46, No. 4, 1243--1255 (2022; Zbl 1496.35445) Full Text: DOI
Razani, Abdolrahman; Figueiredo, Giovany M. Weak solution by the sub-supersolution method for a nonlocal system involving Lebesgue generalized spaces. (English) Zbl 1497.35190 Electron. J. Differ. Equ. 2022, Paper No. 36, 18 p. (2022). MSC: 35J57 35J92 35A01 PDF BibTeX XML Cite \textit{A. Razani} and \textit{G. M. Figueiredo}, Electron. J. Differ. Equ. 2022, Paper No. 36, 18 p. (2022; Zbl 1497.35190) Full Text: Link
Xu, Chi; Li, Yang; Lu, Mingyue; Dai, Zhendong Buckling analysis of functionally graded nanobeams under non-uniform temperature using stress-driven nonlocal elasticity. (English) Zbl 1496.74060 AMM, Appl. Math. Mech., Engl. Ed. 43, No. 3, 355-370 (2022). MSC: 74G60 74K10 74F05 74E05 PDF BibTeX XML Cite \textit{C. Xu} et al., AMM, Appl. Math. Mech., Engl. Ed. 43, No. 3, 355--370 (2022; Zbl 1496.74060) Full Text: DOI
Wei, Yongfang; Shang, Suiming; Bai, Zhanbing Solutions for a class of Hamiltonian systems on time scales with non-local boundary conditions. (English) Zbl 1492.34024 AMM, Appl. Math. Mech., Engl. Ed. 43, No. 4, 587-602 (2022). MSC: 34B15 34B10 34N05 58E50 PDF BibTeX XML Cite \textit{Y. Wei} et al., AMM, Appl. Math. Mech., Engl. Ed. 43, No. 4, 587--602 (2022; Zbl 1492.34024) Full Text: DOI
Bochicchio, I.; Giannetti, F.; Sellitto, A. Heat transfer at nanoscale and boundary conditions. (English) Zbl 1498.74012 Z. Angew. Math. Phys. 73, No. 4, Paper No. 147, 21 p. (2022). Reviewer: Ramón Quintanilla De Latorre (Barcelona) MSC: 74F05 74H25 74H20 35Q74 PDF BibTeX XML Cite \textit{I. Bochicchio} et al., Z. Angew. Math. Phys. 73, No. 4, Paper No. 147, 21 p. (2022; Zbl 1498.74012) Full Text: DOI
Yuldashev, Tursun Kamaldinovich; Saburov, Khikmat Khazhibaevich; Abduvahobov, Tokhirzhon Akbarali ogli Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equations with maxima. (English) Zbl 1493.45009 Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 113-122 (2022). MSC: 45J05 34A37 47N20 PDF BibTeX XML Cite \textit{T. K. Yuldashev} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 113--122 (2022; Zbl 1493.45009) Full Text: DOI MNR
Yan, Debao Solutions for a category of singular nonlinear fractional differential equations subject to integral boundary conditions. (English) Zbl 1490.34015 Bound. Value Probl. 2022, Paper No. 3, 16 p. (2022). MSC: 34A08 34B10 34B16 PDF BibTeX XML Cite \textit{D. Yan}, Bound. Value Probl. 2022, Paper No. 3, 16 p. (2022; Zbl 1490.34015) Full Text: DOI
Turmetov, Batirkhan Khudaĭbergenovich; Karachik, Valeriĭ Valentinovich Neumann boundary condition for a nonlocal biharmonic equation. (Russian. English summary) Zbl 1496.31003 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 14, No. 2, 51-58 (2022). MSC: 31B30 34B10 PDF BibTeX XML Cite \textit{B. K. Turmetov} and \textit{V. V. Karachik}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 14, No. 2, 51--58 (2022; Zbl 1496.31003) Full Text: DOI MNR
Labadla, A.; Chaoui, A. Discretization scheme of fractional parabolic equation with nonlocal coefficient and unknown flux on the Dirichlet boundary. (English) Zbl 07553749 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 29, No. 1, 63-76 (2022). MSC: 65-XX 35D30 35R11 65M20 65M22 PDF BibTeX XML Cite \textit{A. Labadla} and \textit{A. Chaoui}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 29, No. 1, 63--76 (2022; Zbl 07553749) Full Text: Link Link
Du, Yu; Zhang, Jiwei Perfectly matched layers for nonlocal Helmholtz equations. II: Multi-dimensional cases. (English) Zbl 07540346 J. Comput. Phys. 464, Article ID 111192, 20 p. (2022). MSC: 65Nxx 78Axx 65Mxx PDF BibTeX XML Cite \textit{Y. Du} and \textit{J. Zhang}, J. Comput. Phys. 464, Article ID 111192, 20 p. (2022; Zbl 07540346) Full Text: DOI arXiv
Hu, Bing; Xu, Minbo; Wang, Zhizhi; Lin, Jiahui; Zhu, Luyao; Wang, Dingjiang Existence of solutions of an impulsive integro-differential equation with a general boundary value condition. (English) Zbl 1489.45006 Math. Biosci. Eng. 19, No. 4, 4166-4177 (2022). MSC: 45J05 34B10 34K10 PDF BibTeX XML Cite \textit{B. Hu} et al., Math. Biosci. Eng. 19, No. 4, 4166--4177 (2022; Zbl 1489.45006) Full Text: DOI
Zaouche, Elmehdi Nontrivial weak solutions for nonlocal nonhomogeneous elliptic problems. (English) Zbl 1489.35091 Appl. Anal. 101, No. 4, 1261-1270 (2022). MSC: 35J60 35J25 35A01 47H10 PDF BibTeX XML Cite \textit{E. Zaouche}, Appl. Anal. 101, No. 4, 1261--1270 (2022; Zbl 1489.35091) Full Text: DOI
Aziz, Imran; Nisar, Muhammad; Siraj-ul-Islam On the numerical solution of some differential equations with nonlocal integral boundary conditions via Haar wavelet. (English) Zbl 1491.65109 Proc. Est. Acad. Sci. 71, No. 1, 30-54 (2022). MSC: 65M70 65M06 65T60 PDF BibTeX XML Cite \textit{I. Aziz} et al., Proc. Est. Acad. Sci. 71, No. 1, 30--54 (2022; Zbl 1491.65109) Full Text: DOI
Pang, Huihui; Zhu, Yuke; Cui, Mengyan The method of upper and lower solutions to impulsive differential equation with Sturm-Liouville integral boundary conditions. (English) Zbl 1497.34050 Differ. Equ. Dyn. Syst. 30, No. 2, 335-351 (2022). Reviewer: Hanying Feng (Shijiazhuang) MSC: 34B37 34B10 34A45 47N20 PDF BibTeX XML Cite \textit{H. Pang} et al., Differ. Equ. Dyn. Syst. 30, No. 2, 335--351 (2022; Zbl 1497.34050) Full Text: DOI
Lu, Heqian; Hu, Bei; Zhang, Zhengce Blowup time estimates for the heat equation with a nonlocal boundary condition. (English) Zbl 1485.35074 Z. Angew. Math. Phys. 73, No. 2, Paper No. 60, 15 p. (2022). MSC: 35B44 35C15 35K05 35K60 PDF BibTeX XML Cite \textit{H. Lu} et al., Z. Angew. Math. Phys. 73, No. 2, Paper No. 60, 15 p. (2022; Zbl 1485.35074) Full Text: DOI
Nguyen Van Loi; Mai Quoc Vu Uniqueness and Hyers-Ulam stability results for differential variational inequalities with nonlocal conditions. (English) Zbl 1495.34085 Differ. Equ. Dyn. Syst. 30, No. 1, 113-130 (2022). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 34G20 47J20 34B10 34D10 PDF BibTeX XML Cite \textit{Nguyen Van Loi} and \textit{Mai Quoc Vu}, Differ. Equ. Dyn. Syst. 30, No. 1, 113--130 (2022; Zbl 1495.34085) Full Text: DOI
Shcheglov, A. Yu. Uniqueness of the solution of the inverse problem for a model of the dynamics of an age-structured population. (English. Russian original) Zbl 1485.35427 Math. Notes 111, No. 1, 139-146 (2022); translation from Mat. Zametki 111, No. 1, 125-133 (2022). MSC: 35R30 35A02 35L04 65M32 92D25 PDF BibTeX XML Cite \textit{A. Yu. Shcheglov}, Math. Notes 111, No. 1, 139--146 (2022; Zbl 1485.35427); translation from Mat. Zametki 111, No. 1, 125--133 (2022) Full Text: DOI
Raslan, K. R.; Ali, Khalid K.; Ahmed, Reda Gamal; Al-Jeaid, Hind K.; Abd-Elall Ibrahim, Amira Study of nonlocal boundary value problem for the Fredholm-Volterra integro-differential equation. (English) Zbl 1485.45011 J. Funct. Spaces 2022, Article ID 4773005, 16 p. (2022). MSC: 45J05 34K10 65R20 PDF BibTeX XML Cite \textit{K. R. Raslan} et al., J. Funct. Spaces 2022, Article ID 4773005, 16 p. (2022; Zbl 1485.45011) Full Text: DOI
Aida-zade, Kamil; Rahimov, Anar On recovering space or time-dependent source functions for a parabolic equation with nonlocal conditions. (English) Zbl 1510.35391 Appl. Math. Comput. 419, Article ID 126849, 17 p. (2022). MSC: 35R30 35K20 65L09 65M32 PDF BibTeX XML Cite \textit{K. Aida-zade} and \textit{A. Rahimov}, Appl. Math. Comput. 419, Article ID 126849, 17 p. (2022; Zbl 1510.35391) Full Text: DOI
Feng, Chunxi; Lewis, Mark A.; Wang, Chuncheng; Wang, Hao A Fisher-KPP model with a nonlocal weighted free boundary: analysis of how habitat boundaries expand, balance or shrink. (English) Zbl 1485.92175 Bull. Math. Biol. 84, No. 3, Paper No. 34, 27 p. (2022). MSC: 92D40 35R35 35K57 PDF BibTeX XML Cite \textit{C. Feng} et al., Bull. Math. Biol. 84, No. 3, Paper No. 34, 27 p. (2022; Zbl 1485.92175) Full Text: DOI arXiv
Cao, Nan; Fu, Xianlong Existence results of solutions for a neutral evolution equation with nonlocal conditions on infinite interval. (English) Zbl 07472970 J. Math. Anal. Appl. 510, No. 1, Article ID 126008, 21 p. (2022). MSC: 34K30 34K40 34K10 PDF BibTeX XML Cite \textit{N. Cao} and \textit{X. Fu}, J. Math. Anal. Appl. 510, No. 1, Article ID 126008, 21 p. (2022; Zbl 07472970) Full Text: DOI
Ali, Muhammad; Aziz, Sara; Malik, Salman A. Inverse problem for a multi-parameters space-time fractional diffusion equation with nonlocal boundary conditions: operational calculus approach. (English) Zbl 1481.35391 J. Pseudo-Differ. Oper. Appl. 13, No. 1, Paper No. 3, 16 p. (2022). MSC: 35R30 35R11 26A33 34A08 34A25 PDF BibTeX XML Cite \textit{M. Ali} et al., J. Pseudo-Differ. Oper. Appl. 13, No. 1, Paper No. 3, 16 p. (2022; Zbl 1481.35391) Full Text: DOI
Sun, Bingzhi; Jiang, Weihua; Zhang, Shuqin Solvability of fractional differential equations with \(p\)-Laplacian and functional boundary value conditions at resonance. (English) Zbl 07435772 Mediterr. J. Math. 19, No. 1, Paper No. 1, 18 p. (2022). Reviewer: Hanying Feng (Shijiazhuang) MSC: 34A08 34B10 34B15 47N20 PDF BibTeX XML Cite \textit{B. Sun} et al., Mediterr. J. Math. 19, No. 1, Paper No. 1, 18 p. (2022; Zbl 07435772) Full Text: DOI
Işık, H\"seyin On new existence results of fractional differential inclusions via set-valued JS-contractions. (English) Zbl 1498.54071 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 83, No. 2, 13-24 (2021). MSC: 54H25 54E40 54E50 34A08 34A60 PDF BibTeX XML Cite \textit{H. Işık}, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 83, No. 2, 13--24 (2021; Zbl 1498.54071) Full Text: Link
Dmitriev, Viktor Borisovich Boundary value problem with a nonlocal boundary condition of integral form for a multidimensional equation of IV order. (Russian. English summary) Zbl 1494.35110 Vestn. Samar. Univ., Estestvennonauchn. Ser. 27, No. 1, 15-28 (2021). MSC: 35L35 35A01 35A02 35B45 35L82 PDF BibTeX XML Cite \textit{V. B. Dmitriev}, Vestn. Samar. Univ., Estestvennonauchn. Ser. 27, No. 1, 15--28 (2021; Zbl 1494.35110) Full Text: DOI MNR
Sudsutad, Weerawat; Thaiprayoon, Chatthai; Ntouyas, Sotiris K. Existence and stability results for \(\psi\)-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. (English) Zbl 07543318 AIMS Math. 6, No. 4, 4119-4141 (2021). MSC: 26A33 34A08 34A12 34B15 PDF BibTeX XML Cite \textit{W. Sudsutad} et al., AIMS Math. 6, No. 4, 4119--4141 (2021; Zbl 07543318) Full Text: DOI
Thaiprayoon, Chatthai; Sudsutad, Weerawat; Ntouyas, Sotiris K. Mixed nonlocal boundary value problem for implicit fractional integro-differential equations via \(\psi\)-Hilfer fractional derivative. (English) Zbl 1487.34043 Adv. Difference Equ. 2021, Paper No. 50, 24 p. (2021). MSC: 34A08 45J05 26A33 34K37 34K20 PDF BibTeX XML Cite \textit{C. Thaiprayoon} et al., Adv. Difference Equ. 2021, Paper No. 50, 24 p. (2021; Zbl 1487.34043) Full Text: DOI
Infante, Gennaro; Matucci, Serena Positive solutions of BVPs on the half-line involving functional BCs. (English) Zbl 1484.34085 AIMS Math. 6, No. 5, 4860-4872 (2021). MSC: 34B18 34B40 34B10 PDF BibTeX XML Cite \textit{G. Infante} and \textit{S. Matucci}, AIMS Math. 6, No. 5, 4860--4872 (2021; Zbl 1484.34085) Full Text: DOI arXiv
Ji, Songsong; Pang, Gang; Antoine, Xavier; Zhang, Jiwei Artificial boundary conditions for the semi-discretized one-dimensional nonlocal Schrödinger equation. (English) Zbl 07515465 J. Comput. Phys. 444, Article ID 110575, 17 p. (2021). MSC: 65Mxx 35Qxx 35Rxx PDF BibTeX XML Cite \textit{S. Ji} et al., J. Comput. Phys. 444, Article ID 110575, 17 p. (2021; Zbl 07515465) Full Text: DOI HAL
Dzhamalov, S. Z.; Ashurov, R. R.; Turakulov, Kh. Sh. The linear inverse problem for the three-dimensional Tricomi equation in a prismatic unbounded domain. (English) Zbl 1486.35464 Lobachevskii J. Math. 42, No. 15, 3606-3615 (2021). MSC: 35R30 35M12 PDF BibTeX XML Cite \textit{S. Z. Dzhamalov} et al., Lobachevskii J. Math. 42, No. 15, 3606--3615 (2021; Zbl 1486.35464) Full Text: DOI
Ahmed, Idris; Kumam, Poom; Tariboon, Jessada; Ibrahim, Alhassan; Borisut, Piyachat; Demba, Musa Ahmed Generalized nonlocal boundary condition for fractional pantograph differential equation via Hilfer fractional derivative. (English) Zbl 1513.34295 J. Nonlinear Anal. Optim. 12, No. 2, 45-60 (2021). MSC: 34K37 34K10 34K27 47N20 PDF BibTeX XML Cite \textit{I. Ahmed} et al., J. Nonlinear Anal. Optim. 12, No. 2, 45--60 (2021; Zbl 1513.34295)
Bazán, Fermín S. V.; Ismailov, Mansur I.; Bedin, Luciano Time-dependent lowest term estimation in a 2D bioheat transfer problem with nonlocal and convective boundary conditions. (English) Zbl 07479284 Inverse Probl. Sci. Eng. 29, No. 9, 1282-1307 (2021). MSC: 31A25 PDF BibTeX XML Cite \textit{F. S. V. Bazán} et al., Inverse Probl. Sci. Eng. 29, No. 9, 1282--1307 (2021; Zbl 07479284) Full Text: DOI
Herzallah, Mohamed A. E.; Radwan, Ashraf H. A. Existence and uniqueness of the mild solution of an abstract semilinear fractional differential equation with state dependent nonlocal condition. (English) Zbl 1513.34231 Kragujevac J. Math. 45, No. 6, 909-923 (2021). MSC: 34G20 26A33 34A08 34B10 PDF BibTeX XML Cite \textit{M. A. E. Herzallah} and \textit{A. H. A. Radwan}, Kragujevac J. Math. 45, No. 6, 909--923 (2021; Zbl 1513.34231) Full Text: DOI Link
Borisut, Piyachat; Auipa-arch, Chaiwat Positive solution of boundary value problem involving fractional pantograph differential equation. (English) Zbl 1515.34011 Thai J. Math. 19, No. 3, 1056-1067 (2021). MSC: 34A08 34B10 34B18 47H10 PDF BibTeX XML Cite \textit{P. Borisut} and \textit{C. Auipa-arch}, Thai J. Math. 19, No. 3, 1056--1067 (2021; Zbl 1515.34011) Full Text: Link
Štikonas, Artūras; Şen, Erdoğan Asymptotic analysis of Sturm-Liouville problem with nonlocal integral-type boundary condition. (English) Zbl 1498.34085 Nonlinear Anal., Model. Control 26, No. 5, 969-991 (2021). Reviewer: Fatma Hıra (Atakum) MSC: 34B24 34B10 34L15 34L20 PDF BibTeX XML Cite \textit{A. Štikonas} and \textit{E. Şen}, Nonlinear Anal., Model. Control 26, No. 5, 969--991 (2021; Zbl 1498.34085) Full Text: DOI
Temar, Bahia; Saif, Ouiza; Djebali, Smaïl A system of nonlinear fractional BVPs with \(\varphi\)-Laplacian operators and nonlocal conditions. (English) Zbl 1478.34012 Proyecciones 40, No. 2, 447-479 (2021). MSC: 34A08 34B10 34B18 PDF BibTeX XML Cite \textit{B. Temar} et al., Proyecciones 40, No. 2, 447--479 (2021; Zbl 1478.34012) Full Text: DOI
Boulaaras, Salah Solvability of the Moore-Gibson-Thompson equation with viscoelastic memory term and integral condition via Galerkin method. (English) Zbl 1482.35238 Fractals 29, No. 5, Article ID 2140021, 18 p. (2021). MSC: 35R09 35G16 35Q74 65M60 PDF BibTeX XML Cite \textit{S. Boulaaras}, Fractals 29, No. 5, Article ID 2140021, 18 p. (2021; Zbl 1482.35238) Full Text: DOI
Raheem, A.; Kumar, M. Approximate solutions of nonlinear nonlocal fractional impulsive differential equations via Faedo-Galerkin method. (English) Zbl 1499.34327 J. Fract. Calc. Appl. 12, No. 2, 172-187 (2021). MSC: 34G20 34A08 47D06 47J35 34A37 34B37 34A45 PDF BibTeX XML Cite \textit{A. Raheem} and \textit{M. Kumar}, J. Fract. Calc. Appl. 12, No. 2, 172--187 (2021; Zbl 1499.34327) Full Text: Link
Hu, Lei; Zhang, Shuqin Positive solutions of higher order nonlinear fractional differential equations with nonlocal initial conditions at resonance. (English) Zbl 1499.34056 J. Fract. Calc. Appl. 12, No. 1, 25-34 (2021). MSC: 34A08 34B10 47N20 34B18 PDF BibTeX XML Cite \textit{L. Hu} and \textit{S. Zhang}, J. Fract. Calc. Appl. 12, No. 1, 25--34 (2021; Zbl 1499.34056) Full Text: Link
Samadi, Ayub; Ntouyas, Sotiris K. Coupled systems of Caputo-Hadamard differential equations with coupled Hadamard fractional integral boundary conditions. (English) Zbl 1492.34013 Acta Math. Univ. Comen., New Ser. 90, No. 4, 457-474 (2021). Reviewer: Alberto Cabada (Santiago de Compostela) MSC: 34A08 34B10 47H08 47H10 47H09 PDF BibTeX XML Cite \textit{A. Samadi} and \textit{S. K. Ntouyas}, Acta Math. Univ. Comen., New Ser. 90, No. 4, 457--474 (2021; Zbl 1492.34013) Full Text: Link
Khaminsou, Bounmy; Thaiprayoon, Chatthai; Sudsutad, Weerawat; Jose, Sayooj Aby Qualitative analysis of a proportional Caputo fractional pantograph differential equation with mixed nonlocal conditions. (English) Zbl 1492.34082 Nonlinear Funct. Anal. Appl. 26, No. 1, 197-223 (2021). MSC: 34K37 34K27 34K10 47N20 PDF BibTeX XML Cite \textit{B. Khaminsou} et al., Nonlinear Funct. Anal. Appl. 26, No. 1, 197--223 (2021; Zbl 1492.34082) Full Text: Link
Wang, Jiao; Dai, Qun Ulam-Hyers stability for fractional differential equation with integral boundary condition. (Chinese. English summary) Zbl 1488.34142 Math. Pract. Theory 51, No. 15, 250-255 (2021). MSC: 34B10 34A08 47N20 34D10 PDF BibTeX XML Cite \textit{J. Wang} and \textit{Q. Dai}, Math. Pract. Theory 51, No. 15, 250--255 (2021; Zbl 1488.34142)
Bouaouid, Mohamed; Hilal, Khalid; Hannabou, Mohamed Integral solutions of nondense impulsive conformable-fractional differential equations with nonlocal condition. (English) Zbl 1493.34019 J. Appl. Anal. 27, No. 2, 187-197 (2021). Reviewer: Zhenbin Fan (Jiangsu) MSC: 34A08 34G20 34B10 34A37 47D03 PDF BibTeX XML Cite \textit{M. Bouaouid} et al., J. Appl. Anal. 27, No. 2, 187--197 (2021; Zbl 1493.34019) Full Text: DOI
Debela, Habtamu Garoma Exponential fitted operator method for singularly perturbed convection-diffusion type problems with nonlocal boundary condition. (English) Zbl 1482.65118 Abstr. Appl. Anal. 2021, Article ID 5559486, 9 p. (2021). MSC: 65L10 34E15 65L12 34B05 65L20 PDF BibTeX XML Cite \textit{H. G. Debela}, Abstr. Appl. Anal. 2021, Article ID 5559486, 9 p. (2021; Zbl 1482.65118) Full Text: DOI
Heidarkhani, Shapour; Salari, Amjad Existence of three solutions for Kirchhoff-type three-point boundary value problems. (English) Zbl 1488.34132 Hacet. J. Math. Stat. 50, No. 2, 304-317 (2021). MSC: 34B10 34B18 35J20 PDF BibTeX XML Cite \textit{S. Heidarkhani} and \textit{A. Salari}, Hacet. J. Math. Stat. 50, No. 2, 304--317 (2021; Zbl 1488.34132) Full Text: DOI
Pleumpreedaporn, Songkran; Sudsutad, Weerawat; Thaiprayoon, Chatthai; Jose, Sayooj Aby Qualitative analysis of generalized proportional fractional functional integro-differential Langevin equation with variable coefficient and nonlocal integral conditions. (English) Zbl 1473.34005 Mem. Differ. Equ. Math. Phys. 83, 99-120 (2021). MSC: 34A08 34B10 34B15 34D20 PDF BibTeX XML Cite \textit{S. Pleumpreedaporn} et al., Mem. Differ. Equ. Math. Phys. 83, 99--120 (2021; Zbl 1473.34005) Full Text: Link
Iyase, S. A.; Imaga, O. F. Higher order \(\mathrm{p}\)-Laplacian boundary value problems with integral boundary conditions on the half-line. (English) Zbl 1487.34067 Bull. Malays. Math. Sci. Soc. (2) 44, No. 6, 4127-4141 (2021). Reviewer: Minghe Pei (Jilin) MSC: 34B10 34B15 47H11 34B40 PDF BibTeX XML Cite \textit{S. A. Iyase} and \textit{O. F. Imaga}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 6, 4127--4141 (2021; Zbl 1487.34067) Full Text: DOI
Zhang, Wei; Ni, Jinbo New multiple positive solutions for Hadamard-type fractional differential equations with nonlocal conditions on an infinite interval. (English) Zbl 1483.34044 Appl. Math. Lett. 118, Article ID 107165, 10 p. (2021). Reviewer: Wengui Yang (Sanmenxia) MSC: 34B18 34A08 34B10 34B40 47N20 PDF BibTeX XML Cite \textit{W. Zhang} and \textit{J. Ni}, Appl. Math. Lett. 118, Article ID 107165, 10 p. (2021; Zbl 1483.34044) Full Text: DOI
Azroul, Elhoussine; Benkirane, Abdelmoujib; Shimi, Mohammed On a nonlocal problem involving the fractional \(p(x,.)\)-Laplacian satisfying Cerami condition. (English) Zbl 1473.35621 Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3479-3495 (2021). MSC: 35R11 35A15 35J25 35J92 47G30 35S15 PDF BibTeX XML Cite \textit{E. Azroul} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3479--3495 (2021; Zbl 1473.35621) Full Text: DOI
You, Huaiqian; Lu, Xin Yang; Trask, Nathaniel; Yu, Yue An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems. (English) Zbl 1484.45010 ESAIM, Math. Model. Numer. Anal. 55, Suppl., 811-851 (2021). Reviewer: Pierluigi Maponi (Camerino) MSC: 45K05 76R50 65R20 PDF BibTeX XML Cite \textit{H. You} et al., ESAIM, Math. Model. Numer. Anal. 55, 811--851 (2021; Zbl 1484.45010) Full Text: DOI
Assanova, Anar T. On the solvability of a nonlocal problem for the system of Sobolev-type differential equations with integral condition. (English) Zbl 1472.35099 Georgian Math. J. 28, No. 1, 49-57 (2021). MSC: 35G46 35K70 PDF BibTeX XML Cite \textit{A. T. Assanova}, Georgian Math. J. 28, No. 1, 49--57 (2021; Zbl 1472.35099) Full Text: DOI
Khairullin, R. S. Nonlocal Dezin problem for a mixed type equation of the second kind. (English. Russian original) Zbl 1472.35248 Differ. Equ. 57, No. 8, 1063-1069 (2021); translation from Differ. Uravn. 57, No. 8, 1091-1097 (2021). MSC: 35M12 35A02 35C10 PDF BibTeX XML Cite \textit{R. S. Khairullin}, Differ. Equ. 57, No. 8, 1063--1069 (2021; Zbl 1472.35248); translation from Differ. Uravn. 57, No. 8, 1091--1097 (2021) Full Text: DOI
Karthikeyan, P.; Arul, R. Integral boundary value problems for implicit fractional differential equations involving Hadamard and Caputo-Hadamard fractional derivatives. (English) Zbl 1488.34076 Kragujevac J. Math. 45, No. 3, 331-341 (2021). MSC: 34A09 34A08 26A33 34B10 47N20 PDF BibTeX XML Cite \textit{P. Karthikeyan} and \textit{R. Arul}, Kragujevac J. Math. 45, No. 3, 331--341 (2021; Zbl 1488.34076) Full Text: Link
Djourdem, Habib A class of nonlinear third-order boundary value problem with integral condition at resonance. (English) Zbl 1488.34130 Differ. Equ. Appl. 13, No. 1, 51-61 (2021). MSC: 34B10 34B15 47N20 PDF BibTeX XML Cite \textit{H. Djourdem}, Differ. Equ. Appl. 13, No. 1, 51--61 (2021; Zbl 1488.34130) Full Text: DOI
Zaitseva, N. V. Uniqueness of the solution of a nonlocal problem for an elliptic-hyperbolic equation with singular coefficients. (English. Russian original) Zbl 1468.35005 Math. Notes 109, No. 4, 563-569 (2021); translation from Mat. Zametki 109, No. 4, 544-551 (2021). MSC: 35A02 35M12 PDF BibTeX XML Cite \textit{N. V. Zaitseva}, Math. Notes 109, No. 4, 563--569 (2021; Zbl 1468.35005); translation from Mat. Zametki 109, No. 4, 544--551 (2021) Full Text: DOI
Bahrouni, Sabri; Salort, Ariel M. Neumann and Robin type boundary conditions in fractional Orlicz-Sobolev spaces. (English) Zbl 1470.35387 ESAIM, Control Optim. Calc. Var. 27, Suppl., Paper No. S15, 23 p. (2021). MSC: 35R11 35J25 35J61 35P30 45G05 46E30 PDF BibTeX XML Cite \textit{S. Bahrouni} and \textit{A. M. Salort}, ESAIM, Control Optim. Calc. Var. 27, Paper No. S15, 23 p. (2021; Zbl 1470.35387) Full Text: DOI arXiv
Jeffers, Benjamin L.; Lyons, Jeffrey W. Solutions of the variational equation for an \(n\)-th order boundary value problem with an integral boundary condition. (English) Zbl 1471.34047 Involve 14, No. 1, 155-166 (2021). MSC: 34B10 34B15 PDF BibTeX XML Cite \textit{B. L. Jeffers} and \textit{J. W. Lyons}, Involve 14, No. 1, 155--166 (2021; Zbl 1471.34047) Full Text: DOI
Chen, Pengyu; Zhang, Xuping Non-autonomous stochastic evolution equations of parabolic type with nonlocal initial conditions. (English) Zbl 1471.34119 Discrete Contin. Dyn. Syst., Ser. B 26, No. 9, 4681-4695 (2021). MSC: 34G20 37C60 34B10 34F05 60H15 47N20 PDF BibTeX XML Cite \textit{P. Chen} and \textit{X. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 9, 4681--4695 (2021; Zbl 1471.34119) Full Text: DOI
Bazzaev, Alexander K.; Gutnova, Dzerassa K. About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition. (English) Zbl 1473.65266 Sib. Èlektron. Mat. Izv. 18, No. 1, 548-560 (2021). MSC: 65N12 65N06 65N15 PDF BibTeX XML Cite \textit{A. K. Bazzaev} and \textit{D. K. Gutnova}, Sib. Èlektron. Mat. Izv. 18, No. 1, 548--560 (2021; Zbl 1473.65266) Full Text: DOI