Liu, Zhenhai; Zeng, Shengda; Gasiński, Leszek; Kim, Yun-Ho Nonlocal double phase complementarity systems with convection term and mixed boundary conditions. (English) Zbl 07561769 J. Geom. Anal. 32, No. 9, Paper No. 241, 33 p. (2022). MSC: 35J20 35J25 35R35 35J60 35A23 PDF BibTeX XML Cite \textit{Z. Liu} et al., J. Geom. Anal. 32, No. 9, Paper No. 241, 33 p. (2022; Zbl 07561769) Full Text: DOI OpenURL
Fan, Yiming; Tian, Xiaochuan; Yang, Xiu; Li, Xingjie; Webster, Clayton; Yu, Yue An asymptotically compatible probabilistic collocation method for randomly heterogeneous nonlocal problems. (English) Zbl 07561048 J. Comput. Phys. 465, Article ID 111376, 28 p. (2022). MSC: 65Nxx 65Cxx 60Hxx PDF BibTeX XML Cite \textit{Y. Fan} et al., J. Comput. Phys. 465, Article ID 111376, 28 p. (2022; Zbl 07561048) Full Text: DOI OpenURL
Alves, Claudianor O.; Boudjeriou, Tahir Existence of solution for a class of nonlocal problem via dynamical methods. (English) Zbl 07560191 Rend. Circ. Mat. Palermo (2) 71, No. 2, 611-632 (2022). MSC: 35K60 34B10 35J15 PDF BibTeX XML Cite \textit{C. O. Alves} and \textit{T. Boudjeriou}, Rend. Circ. Mat. Palermo (2) 71, No. 2, 611--632 (2022; Zbl 07560191) Full Text: DOI OpenURL
Pramanik, S.; Karn, B.; Padhi, S. Solutions of a Caputo type fractional differential equation of order \(\gamma\in(1, 2]-\text{II}\): Existence and multiplicity of solutions. (English) Zbl 07559322 Funct. Differ. Equ. 29, No. 1-2, 91-113 (2022). MSC: 34B08 34B18 34B15 34B10 PDF BibTeX XML Cite \textit{S. Pramanik} et al., Funct. Differ. Equ. 29, No. 1--2, 91--113 (2022; Zbl 07559322) Full Text: DOI OpenURL
De Maio, Umberto; Gaudiello, Antonio; Sili, Ali An uncoupled limit model for a high-contrast problem in a thin multi-structure. (English) Zbl 07556757 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 33, No. 1, 39-64 (2022). MSC: 35J25 35J70 PDF BibTeX XML Cite \textit{U. De Maio} et al., Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 33, No. 1, 39--64 (2022; Zbl 07556757) Full Text: DOI OpenURL
Yan, Debao Solutions for a category of singular nonlinear fractional differential equations subject to integral boundary conditions. (English) Zbl 07556217 Bound. Value Probl. 2022, Paper No. 3, 16 p. (2022). MSC: 34A08 34B10 34B16 PDF BibTeX XML Cite \textit{D. Yan}, Bound. Value Probl. 2022, Paper No. 3, 16 p. (2022; Zbl 07556217) Full Text: DOI OpenURL
Aoun, Abdellatif Ghendir; Djebali, Smaïl Multiple solutions for a nonlocal fractional boundary value problem with fractional integral conditions on infinite interval. (English) Zbl 07545970 Asian-Eur. J. Math. 15, No. 6, Article ID 2250118, 23 p. (2022). MSC: 34B08 34B10 34B40 PDF BibTeX XML Cite \textit{A. G. Aoun} and \textit{S. Djebali}, Asian-Eur. J. Math. 15, No. 6, Article ID 2250118, 23 p. (2022; Zbl 07545970) Full Text: DOI OpenURL
Kohutych, Oksana About one characteristic initial value problem with prehistory and its investigation. (English) Zbl 07541767 Miskolc Math. Notes 23, No. 1, 271-280 (2022). MSC: 34B10 34B15 PDF BibTeX XML Cite \textit{O. Kohutych}, Miskolc Math. Notes 23, No. 1, 271--280 (2022; Zbl 07541767) Full Text: DOI OpenURL
Raslan, K. R.; Ali, Khalid K.; Ahmed, Reda Gamal; Abd-Elall Ibrahim, Amira An extended analytical and numerical study the nonlocal boundary value problem for the functional integro-differential equation with the different conditions. (English) Zbl 07541680 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 70, 32 p. (2022). MSC: 65L03 65L12 34K10 PDF BibTeX XML Cite \textit{K. R. Raslan} et al., Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 70, 32 p. (2022; Zbl 07541680) Full Text: DOI OpenURL
Hrizi, Mourad; Bensalah, Mohamed; Hassine, Maatoug Determination of the initial density in nonlocal diffusion from final time measurements. (English) Zbl 07539677 Discrete Contin. Dyn. Syst., Ser. S 15, No. 6, 1469-1498 (2022). MSC: 35R30 35K20 35R11 65M32 65F10 65F22 PDF BibTeX XML Cite \textit{M. Hrizi} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 6, 1469--1498 (2022; Zbl 07539677) Full Text: DOI OpenURL
Kow, Pu-Zhao; Kimura, Masato The Lewy-Stampacchia inequality for the fractional Laplacian and its application to anomalous unidirectional diffusion equations. (English) Zbl 07536432 Discrete Contin. Dyn. Syst., Ser. B 27, No. 6, 2935-2957 (2022). MSC: 35R11 35K20 35K86 PDF BibTeX XML Cite \textit{P.-Z. Kow} and \textit{M. Kimura}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 6, 2935--2957 (2022; Zbl 07536432) Full Text: DOI OpenURL
Turmetov, B. Kh.; Kadirkulov, B. J. On the solvability of an initial-boundary value problem for a fractional heat equation with involution. (English) Zbl 07530757 Lobachevskii J. Math. 43, No. 1, 249-262 (2022). MSC: 35R11 35K20 PDF BibTeX XML Cite \textit{B. Kh. Turmetov} and \textit{B. J. Kadirkulov}, Lobachevskii J. Math. 43, No. 1, 249--262 (2022; Zbl 07530757) Full Text: DOI OpenURL
Motreanu, Dumitru Equations with \(s\)-fractional \((p,q)\)-Laplacian and convolution. (English) Zbl 1487.35467 Minimax Theory Appl. 7, No. 1, 159-172 (2022). MSC: 35S15 35J25 35J92 35R11 47G20 PDF BibTeX XML Cite \textit{D. Motreanu}, Minimax Theory Appl. 7, No. 1, 159--172 (2022; Zbl 1487.35467) Full Text: Link OpenURL
Kozhanov, A. I.; Dyuzheva, A. V. Integral analogue of the first initial-boundary value problem for second-order hyperbolic and parabolic equations. (English. Russian original) Zbl 1487.35006 Math. Notes 111, No. 4, 562-570 (2022); translation from Mat. Zametki 111, No. 4, 540-550 (2022). MSC: 35A01 35A02 35K20 35L20 35R09 PDF BibTeX XML Cite \textit{A. I. Kozhanov} and \textit{A. V. Dyuzheva}, Math. Notes 111, No. 4, 562--570 (2022; Zbl 1487.35006); translation from Mat. Zametki 111, No. 4, 540--550 (2022) Full Text: DOI OpenURL
Wu, Shaofei; Sharaf, Sanaa; Xu, Wei User-oriented intelligence mining under the existence of solutions to integral boundary value problems for fuzzy partial fractional differential equations. (English) Zbl 07507547 Fractals 30, No. 2, Article ID 2240063, 11 p. (2022). MSC: 34A07 34A08 34B10 PDF BibTeX XML Cite \textit{S. Wu} et al., Fractals 30, No. 2, Article ID 2240063, 11 p. (2022; Zbl 07507547) Full Text: DOI OpenURL
Afrouzi, Ghasem A.; Moradi, Shahin; Caristi, Giuseppe Infinitely many solutions for impulsive nonlocal elastic beam equations. (English) Zbl 07502784 Differ. Equ. Dyn. Syst. 30, No. 2, 287-300 (2022). Reviewer: Jan Tomeček (Olomouc) MSC: 34B10 34B37 58E50 PDF BibTeX XML Cite \textit{G. A. Afrouzi} et al., Differ. Equ. Dyn. Syst. 30, No. 2, 287--300 (2022; Zbl 07502784) Full Text: DOI OpenURL
Niu, Shiwen; Cheng, Hongmei; Yuan, Rong A free boundary problem of some modified Leslie-gower predator-prey model with nonlocal diffusion term. (English) Zbl 1485.35435 Discrete Contin. Dyn. Syst., Ser. B 27, No. 4, 2189-2219 (2022). MSC: 35R35 35B40 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{S. Niu} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 4, 2189--2219 (2022; Zbl 1485.35435) Full Text: DOI OpenURL
Khieu, Tran Thi; Khanh, Tra Quoc Fractional filter method for recovering the historical distribution for diffusion equations with coupling operator of local and nonlocal type. (English) Zbl 1486.65153 Numer. Algorithms 89, No. 4, 1743-1767 (2022). MSC: 65M32 65M30 65M06 65N21 65N20 65T50 60J70 35R30 35R25 47J06 26A33 35R11 PDF BibTeX XML Cite \textit{T. T. Khieu} and \textit{T. Q. Khanh}, Numer. Algorithms 89, No. 4, 1743--1767 (2022; Zbl 1486.65153) Full Text: DOI OpenURL
Chaudhary, Sudhakar; Srivastava, Vimal Semi-discrete finite-element approximation of nonlocal hyperbolic problem. (English) Zbl 07495652 Appl. Anal. 101, No. 2, 479-496 (2022). MSC: 65M60 65M06 65N30 65K10 65M12 65M15 65N22 35D35 35R09 35L72 74K05 74S05 PDF BibTeX XML Cite \textit{S. Chaudhary} and \textit{V. Srivastava}, Appl. Anal. 101, No. 2, 479--496 (2022; Zbl 07495652) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Au, Vo Van; Nguyen, Anh Tuan Mild solutions to a time-fractional Cauchy problem with nonlocal nonlinearity in Besov spaces. (English) Zbl 1485.35408 Arch. Math. 118, No. 3, 305-314 (2022). MSC: 35R11 35K20 35R09 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Arch. Math. 118, No. 3, 305--314 (2022; Zbl 1485.35408) Full Text: DOI OpenURL
Shcheglov, A. Yu. Uniqueness of the solution of the inverse problem for a model of the dynamics of an age-structured population. (English. Russian original) Zbl 1485.35427 Math. Notes 111, No. 1, 139-146 (2022); translation from Mat. Zametki 111, No. 1, 125-133 (2022). MSC: 35R30 35A02 35L04 65M32 92D25 PDF BibTeX XML Cite \textit{A. Yu. Shcheglov}, Math. Notes 111, No. 1, 139--146 (2022; Zbl 1485.35427); translation from Mat. Zametki 111, No. 1, 125--133 (2022) Full Text: DOI OpenURL
Glushak, A. V. Uniqueness criterion for solutions of nonlocal problems on a finite interval for abstract singular equations. (English. Russian original) Zbl 07488476 Math. Notes 111, No. 1, 20-32 (2022); translation from Mat. Zametki 111, No. 1, 24-39 (2022). Reviewer: Nikita V. Artamonov (Moskva) MSC: 34G10 34B10 34B16 PDF BibTeX XML Cite \textit{A. V. Glushak}, Math. Notes 111, No. 1, 20--32 (2022; Zbl 07488476); translation from Mat. Zametki 111, No. 1, 24--39 (2022) Full Text: DOI OpenURL
Sadybekov, Makhmud; Dukenbayeva, Aishabibi On boundary value problems of the Samarskii-Ionkin type for the Laplace operator in a ball. (English) Zbl 1485.35132 Complex Var. Elliptic Equ. 67, No. 2, 369-383 (2022). MSC: 35J05 35J25 PDF BibTeX XML Cite \textit{M. Sadybekov} and \textit{A. Dukenbayeva}, Complex Var. Elliptic Equ. 67, No. 2, 369--383 (2022; Zbl 1485.35132) Full Text: DOI OpenURL
Aida-zade, Kamil; Rahimov, Anar On recovering space or time-dependent source functions for a parabolic equation with nonlocal conditions. (English) Zbl 07483682 Appl. Math. Comput. 419, Article ID 126849, 17 p. (2022). MSC: 35R30 35K20 65N40 65N21 65L09 34A55 PDF BibTeX XML Cite \textit{K. Aida-zade} and \textit{A. Rahimov}, Appl. Math. Comput. 419, Article ID 126849, 17 p. (2022; Zbl 07483682) Full Text: DOI OpenURL
Ma, Xinxin; Kuang, Yonghui Inverse scattering transform for a nonlocal derivative nonlinear Schrödinger equation. (English. Russian original) Zbl 1486.81097 Theor. Math. Phys. 210, No. 1, 31-45 (2022); translation from Teor. Mat. Fiz. 210, No. 1, 38-53 (2022). MSC: 81Q05 35Q55 34B10 81U40 35Q15 PDF BibTeX XML Cite \textit{X. Ma} and \textit{Y. Kuang}, Theor. Math. Phys. 210, No. 1, 31--45 (2022; Zbl 1486.81097); translation from Teor. Mat. Fiz. 210, No. 1, 38--53 (2022) Full Text: DOI OpenURL
Gomez, Daniel; Mei, Linfeng; Wei, Juncheng Boundary layer solutions in the Gierer-Meinhardt system with inhomogeneous boundary conditions. (English) Zbl 1484.35024 Physica D 429, Article ID 133071, 16 p. (2022). MSC: 35B25 35B36 35C20 35K51 35K57 PDF BibTeX XML Cite \textit{D. Gomez} et al., Physica D 429, Article ID 133071, 16 p. (2022; Zbl 1484.35024) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Caraballo, Tomás; Van, Phan Thi Khanh; Au, Vo Van On a terminal value problem for parabolic reaction-diffusion systems with nonlocal coupled diffusivity terms. (English) Zbl 1483.35336 Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106248, 29 p. (2022). MSC: 35R25 35R30 35K51 35K57 35R09 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106248, 29 p. (2022; Zbl 1483.35336) Full Text: DOI OpenURL
Tang, Qinglin; Xie, Manting; Zhang, Yong; Zhang, Yuqing A spectrally accurate numerical method for computing the Bogoliubov-de Gennes excitations of dipolar Bose-Einstein condensates. (English) Zbl 1484.65273 SIAM J. Sci. Comput. 44, No. 1, B100-B121 (2022). MSC: 65M70 68Q25 65T50 65R20 65F15 82C10 82D05 35Q82 PDF BibTeX XML Cite \textit{Q. Tang} et al., SIAM J. Sci. Comput. 44, No. 1, B100--B121 (2022; Zbl 1484.65273) Full Text: DOI OpenURL
Davitashvili, Tinatin; Meladze, Hamlet Non-local contact problem for linear differential equations with partial derivatives of parabolic type with constant and variable coefficients. (English) Zbl 07564159 Lect. Notes TICMI 22, 73-90 (2021). MSC: 35K20 PDF BibTeX XML Cite \textit{T. Davitashvili} and \textit{H. Meladze}, Lect. Notes TICMI 22, 73--90 (2021; Zbl 07564159) Full Text: Link OpenURL
Providas, Efthinios; Pulkina, Ludmila Stepanovna; Parasidis, Ioannis Nestorios Factorization of ordinary and hyperbolic integro-differential equations with integral boundary conditions in a Banach space. (English) Zbl 07557333 Vestn. Samar. Univ., Estestvennonauchn. Ser. 27, No. 1, 29-43 (2021). MSC: 35Lxx 65Mxx 35Axx PDF BibTeX XML Cite \textit{E. Providas} et al., Vestn. Samar. Univ., Estestvennonauchn. Ser. 27, No. 1, 29--43 (2021; Zbl 07557333) Full Text: DOI MNR OpenURL
Starovoĭtov, Victor N. Solvability of a boundary value problem of chaotic dynamics of polymer molecule in the case of bounded interaction potential. (Russian. English summary) Zbl 07543528 Sib. Èlektron. Mat. Izv. 18, No. 2, 1714-1719 (2021). MSC: 35K58 35K20 35Q92 35R09 PDF BibTeX XML Cite \textit{V. N. Starovoĭtov}, Sib. Èlektron. Mat. Izv. 18, No. 2, 1714--1719 (2021; Zbl 07543528) Full Text: DOI OpenURL
Mary, S. Joe Christin; Tamilselvan, Ayyadurai Numerical method for a non-local boundary value problem with Caputo fractional order. (English) Zbl 1487.65095 J. Appl. Math. Comput. 67, No. 1-2, 671-687 (2021). MSC: 65L12 34A08 34B10 PDF BibTeX XML Cite \textit{S. J. C. Mary} and \textit{A. Tamilselvan}, J. Appl. Math. Comput. 67, No. 1--2, 671--687 (2021; Zbl 1487.65095) Full Text: DOI OpenURL
Jong, KumSong; Choi, HuiChol; Kim, MunChol; Kim, KwangHyok; Jo, SinHyok; Ri, Ok On the solvability and approximate solution of a one-dimensional singular problem for a \(p\)-Laplacian fractional differential equation. (English) Zbl 1486.34028 Chaos Solitons Fractals 147, Article ID 110948, 18 p. (2021). MSC: 34A08 34B10 65L10 PDF BibTeX XML Cite \textit{K. Jong} et al., Chaos Solitons Fractals 147, Article ID 110948, 18 p. (2021; Zbl 1486.34028) Full Text: DOI OpenURL
Azizbayov, Elvin I. The unique solvability of a nonlocal inverse boundary-value problem for the pseudo-hyperbolic equation of fourth order. (English) Zbl 07527519 Adv. Differ. Equ. Control Process. 24, No. 1, 79-100 (2021). MSC: 34B10 35R30 35K70 35A01 35A02 35A09 PDF BibTeX XML Cite \textit{E. I. Azizbayov}, Adv. Differ. Equ. Control Process. 24, No. 1, 79--100 (2021; Zbl 07527519) Full Text: DOI OpenURL
Turmetov, B. Kh.; Kadirkulov, B. J. On a problem for nonlocal mixed-type fractional order equation with degeneration. (English) Zbl 07526734 Chaos Solitons Fractals 146, Article ID 110835, 5 p. (2021). MSC: 34K37 35M12 PDF BibTeX XML Cite \textit{B. Kh. Turmetov} and \textit{B. J. Kadirkulov}, Chaos Solitons Fractals 146, Article ID 110835, 5 p. (2021; Zbl 07526734) Full Text: DOI OpenURL
Ye, Fumei; Han, Xiaoling Global bifurcation result and nodal solutions for Kirchhoff-type equation. (English) Zbl 1485.34176 AIMS Math. 6, No. 8, 8331-8341 (2021). MSC: 34K18 34K10 47J10 PDF BibTeX XML Cite \textit{F. Ye} and \textit{X. Han}, AIMS Math. 6, No. 8, 8331--8341 (2021; Zbl 1485.34176) Full Text: DOI OpenURL
Jalilov, M. A. On a problem for a nonlocal mixed-type equation of fractional order with degeneration. (English) Zbl 07503347 Lobachevskii J. Math. 42, No. 15, 3652-3660 (2021). MSC: 35M12 35C10 35R09 35R11 PDF BibTeX XML Cite \textit{M. A. Jalilov}, Lobachevskii J. Math. 42, No. 15, 3652--3660 (2021; Zbl 07503347) Full Text: DOI OpenURL
Dzhamalov, S. Z.; Ashurov, R. R.; Turakulov, Kh. Sh. The linear inverse problem for the three-dimensional Tricomi equation in a prismatic unbounded domain. (English) Zbl 1486.35464 Lobachevskii J. Math. 42, No. 15, 3606-3615 (2021). MSC: 35R30 35M12 PDF BibTeX XML Cite \textit{S. Z. Dzhamalov} et al., Lobachevskii J. Math. 42, No. 15, 3606--3615 (2021; Zbl 1486.35464) Full Text: DOI OpenURL
Matyjasik, Marek; Szymańska-Dȩbowska, Katarzyna Solvability for nonlocal boundary value problems with generalized \(p\)-Laplacian on an unbounded domain. (English) Zbl 07502421 Forum Math. 33, No. 5, 1321-1330 (2021). MSC: 34B10 34B15 34B40 47N20 PDF BibTeX XML Cite \textit{M. Matyjasik} and \textit{K. Szymańska-Dȩbowska}, Forum Math. 33, No. 5, 1321--1330 (2021; Zbl 07502421) Full Text: DOI OpenURL
Turmetov, Batirkhan Khudaĭbergenovich; Karachik, Valeriĭ Valentinovich On solvability of the Dirichlet and Neumann boundary value problems for the Poisson equation with multiple involution. (Russian. English summary) Zbl 1485.35138 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 31, No. 4, 651-667 (2021). MSC: 35J05 35J25 PDF BibTeX XML Cite \textit{B. K. Turmetov} and \textit{V. V. Karachik}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 31, No. 4, 651--667 (2021; Zbl 1485.35138) Full Text: DOI MNR OpenURL
Štikonas, Artūras; Şen, Erdoğan Asymptotic analysis of Sturm-Liouville problem with nonlocal integral-type boundary condition. (English) Zbl 07473964 Nonlinear Anal., Model. Control 26, No. 5, 969-991 (2021). Reviewer: Fatma Hıra (Atakum) MSC: 34B24 34B10 34L15 34L20 PDF BibTeX XML Cite \textit{A. Štikonas} and \textit{E. Şen}, Nonlinear Anal., Model. Control 26, No. 5, 969--991 (2021; Zbl 07473964) Full Text: DOI OpenURL
Mehmood, Nayyar; Abbas, Ahsan; Abdeljawad, Thabet; Akgül, Ali Existence results for ABC-fractional differential equations with non-separated and integral type of boundary conditions. (English) Zbl 1487.34030 Fractals 29, No. 5, Article ID 2140016, 16 p. (2021). MSC: 34A08 26A33 34B10 47N20 PDF BibTeX XML Cite \textit{N. Mehmood} et al., Fractals 29, No. 5, Article ID 2140016, 16 p. (2021; Zbl 1487.34030) Full Text: DOI OpenURL
Turmetov, B. Kh.; Kadirkulov, B. J. An inverse problem for a parabolic equation with involution. (English) Zbl 1480.35409 Lobachevskii J. Math. 42, No. 12, 3006-3015 (2021). MSC: 35R30 35C10 35K20 35R10 PDF BibTeX XML Cite \textit{B. Kh. Turmetov} and \textit{B. J. Kadirkulov}, Lobachevskii J. Math. 42, No. 12, 3006--3015 (2021; Zbl 1480.35409) Full Text: DOI OpenURL
Jiang, Weihua; Dong, Qian Existence of solutions for three-point boundary value problems of conformable fractional differential equations at resonance. (Chinese. English summary) Zbl 07448461 J. Jilin Univ., Sci. 59, No. 4, 821-827 (2021). MSC: 34B10 34A08 47N20 PDF BibTeX XML Cite \textit{W. Jiang} and \textit{Q. Dong}, J. Jilin Univ., Sci. 59, No. 4, 821--827 (2021; Zbl 07448461) Full Text: DOI OpenURL
Shang, Shuyan; Han, Xiaoling Existence of positive solutions for integral boundary value problems of fractional differential equations. (Chinese. English summary) Zbl 07448424 J. Jilin Univ., Sci. 59, No. 3, 444-450 (2021). MSC: 34B18 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{S. Shang} and \textit{X. Han}, J. Jilin Univ., Sci. 59, No. 3, 444--450 (2021; Zbl 07448424) Full Text: DOI OpenURL
Khanfer, Ammar; Bougoffa, Lazhar A cantilever beam problem with small deflections and perturbed boundary data. (English) Zbl 1487.34068 J. Funct. Spaces 2021, Article ID 9081623, 9 p. (2021). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34B10 34B09 47N20 PDF BibTeX XML Cite \textit{A. Khanfer} and \textit{L. Bougoffa}, J. Funct. Spaces 2021, Article ID 9081623, 9 p. (2021; Zbl 1487.34068) Full Text: DOI OpenURL
Starovoitov, Victor N. Weak solvability of a boundary value problem for a parabolic equation with a global-in-time term that contains a weighted integral. (English) Zbl 1479.35906 J. Elliptic Parabol. Equ. 7, No. 2, 623-634 (2021). MSC: 35R09 35D30 35K20 35K58 35Q92 PDF BibTeX XML Cite \textit{V. N. Starovoitov}, J. Elliptic Parabol. Equ. 7, No. 2, 623--634 (2021; Zbl 1479.35906) Full Text: DOI arXiv OpenURL
Cardinali, Tiziana; Duricchi, Giulia On nonlocal problems for semilinear second order differential inclusions without compactness. (English) Zbl 07444223 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 66, 32 p. (2021). MSC: 34G25 47N20 34B10 93B05 PDF BibTeX XML Cite \textit{T. Cardinali} and \textit{G. Duricchi}, Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 66, 32 p. (2021; Zbl 07444223) Full Text: DOI OpenURL
Zhang, Yajie; Shi, Zuoqiang A nonlocal model of elliptic equation with jump coefficients on manifold. (English) Zbl 1479.35007 Commun. Math. Sci. 19, No. 7, 1881-1912 (2021). MSC: 35A01 35J25 35R01 35R09 45A05 45P05 46E35 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{Z. Shi}, Commun. Math. Sci. 19, No. 7, 1881--1912 (2021; Zbl 1479.35007) Full Text: DOI OpenURL
Imaga, O. F.; Oghonyon, J. G.; Ogunniyi, P. O. On the solvability of a resonant third-order integral \(m\)-point boundary value problem on the half-line. (English) Zbl 1482.34068 Abstr. Appl. Anal. 2021, Article ID 8870108, 8 p. (2021). MSC: 34B15 34B10 34B40 47N20 34B18 PDF BibTeX XML Cite \textit{O. F. Imaga} et al., Abstr. Appl. Anal. 2021, Article ID 8870108, 8 p. (2021; Zbl 1482.34068) Full Text: DOI OpenURL
Heidarkhani, Shapour; Salari, Amjad Existence of three solutions for Kirchhoff-type three-point boundary value problems. (English) Zbl 07426781 Hacet. J. Math. Stat. 50, No. 2, 304-317 (2021). MSC: 34B10 34B18 35J20 PDF BibTeX XML Cite \textit{S. Heidarkhani} and \textit{A. Salari}, Hacet. J. Math. Stat. 50, No. 2, 304--317 (2021; Zbl 07426781) Full Text: DOI OpenURL
Heidarkhani, Shapour; Bohner, Martin; Caristi, Giuseppe; Ayazi, Farahnaz A critical point approach for a second-order dynamic Sturm-Liouville boundary value problem with \(p\)-Laplacian. (English) Zbl 07424984 Appl. Math. Comput. 409, Article ID 125521, 13 p. (2021). MSC: 34B15 34B10 34N05 PDF BibTeX XML Cite \textit{S. Heidarkhani} et al., Appl. Math. Comput. 409, Article ID 125521, 13 p. (2021; Zbl 07424984) Full Text: DOI OpenURL
del Teso, Félix; Endal, Jørgen; Vázquez, Juan Luis The one-phase fractional Stefan problem. (English) Zbl 1473.80010 Math. Models Methods Appl. Sci. 31, No. 1, 83-131 (2021). MSC: 80A22 35D30 35K15 35K65 35R09 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{F. del Teso} et al., Math. Models Methods Appl. Sci. 31, No. 1, 83--131 (2021; Zbl 1473.80010) Full Text: DOI arXiv OpenURL
Biswas, Anup Existence and non-existence results for a class of semilinear nonlocal operators with exterior condition. (English) Zbl 1473.34018 Pure Appl. Funct. Anal. 6, No. 2, 289-308 (2021). MSC: 34B15 47G20 PDF BibTeX XML Cite \textit{A. Biswas}, Pure Appl. Funct. Anal. 6, No. 2, 289--308 (2021; Zbl 1473.34018) Full Text: arXiv Link OpenURL
Verma, Amit K.; Urus, Nazia; Agarwal, Ravi P. R region of existence of multiple solutions for a class of Robin type four-point BVPs. (English) Zbl 07417939 Opusc. Math. 41, No. 4, 571-600 (2021). Reviewer: Haiyan Wang (Phoenix) MSC: 34B10 34B27 34A45 PDF BibTeX XML Cite \textit{A. K. Verma} et al., Opusc. Math. 41, No. 4, 571--600 (2021; Zbl 07417939) Full Text: DOI OpenURL
Wei, Chunyan; Liu, Xiping; Jia, Mei; Zhang, Luchao The monotone iterative method for the integral boundary value problems of fractional \(p\)-Laplacian equations with delay. (English) Zbl 07412218 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 1, 23-32 (2021). MSC: 34A08 34B10 34K10 65L10 PDF BibTeX XML Cite \textit{C. Wei} et al., Int. J. Nonlinear Sci. Numer. Simul. 22, No. 1, 23--32 (2021; Zbl 07412218) Full Text: DOI OpenURL
Dzhamalov, S. Z.; Ashurov, R. R.; Turakulov, Kh. Sh. On a semi-nonlocal boundary value problem for the three-dimensional Tricomi equation of an unbounded prismatic domain. (Russian. English summary) Zbl 07407927 Vestn. KRAUNTS, Fiz.-Mat. Nauki 35, No. 2, 8-16 (2021). MSC: 35M13 35A22 PDF BibTeX XML Cite \textit{S. Z. Dzhamalov} et al., Vestn. KRAUNTS, Fiz.-Mat. Nauki 35, No. 2, 8--16 (2021; Zbl 07407927) Full Text: DOI MNR OpenURL
Turmetov, B. Kh.; Karachik, V. V. On a Dirichlet problem for a nonlocal polyharmonic equation. (Russian. English summary) Zbl 1479.35330 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 13, No. 2, 37-45 (2021). MSC: 35J40 35A01 PDF BibTeX XML Cite \textit{B. Kh. Turmetov} and \textit{V. V. Karachik}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 13, No. 2, 37--45 (2021; Zbl 1479.35330) Full Text: DOI MNR OpenURL
Xu, Baiyan; Jiang, Yicheng; Yang, Yang Existence of solutions for a class of fractional differential equations with \(p\)-Laplacian operators and integral boundary conditions. (Chinese. English summary) Zbl 07404424 Math. Pract. Theory 51, No. 6, 290-296 (2021). MSC: 34B10 34A08 34B18 34B27 47N20 PDF BibTeX XML Cite \textit{B. Xu} et al., Math. Pract. Theory 51, No. 6, 290--296 (2021; Zbl 07404424) OpenURL
Lei, Ceyu; Han, Xiaoling The existence of positive solutions to a third-order three-point boundary value problem with sign-changing Green’s function. (Chinese. English summary) Zbl 07404229 J. South China Norm. Univ., Nat. Sci. Ed. 53, No. 2, 104-109 (2021). MSC: 34B18 34B10 34B27 34A45 PDF BibTeX XML Cite \textit{C. Lei} and \textit{X. Han}, J. South China Norm. Univ., Nat. Sci. Ed. 53, No. 2, 104--109 (2021; Zbl 07404229) OpenURL
Mykhaĭlets’, V. A.; Skorobohach, T. B. Fredholm boundary-value problems with parameter in Sobolev-Slobodetskiĭ spaces. (Ukrainian. English summary) Zbl 1481.47115 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2021, No. 4, 3-8 (2021). MSC: 47N20 34A30 34B10 47A53 46E35 PDF BibTeX XML Cite \textit{V. A. Mykhaĭlets'} and \textit{T. B. Skorobohach}, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2021, No. 4, 3--8 (2021; Zbl 1481.47115) Full Text: DOI OpenURL
Gorodets’kyĭ, V. V.; Kolisnyk, R. S.; Martynyuk, O. V. The non-local time problem for one class of pseudodifferential equations with smooth symbols. (Ukrainian. English summary) Zbl 07402521 Bukovyn. Mat. Zh. 9, No. 1, 107-127 (2021). MSC: 35S16 46T30 PDF BibTeX XML Cite \textit{V. V. Gorodets'kyĭ} et al., Bukovyn. Mat. Zh. 9, No. 1, 107--127 (2021; Zbl 07402521) Full Text: DOI OpenURL
Azroul, Elhoussine; Benkirane, Abdelmoujib; Shimi, Mohammed On a nonlocal problem involving the fractional \(p(x,.)\)-Laplacian satisfying Cerami condition. (English) Zbl 1473.35621 Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3479-3495 (2021). MSC: 35R11 35A15 35J25 35J92 47G30 35S15 PDF BibTeX XML Cite \textit{E. Azroul} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3479--3495 (2021; Zbl 1473.35621) Full Text: DOI OpenURL
Yang, Liu; Zhou, Hui; Shen, Chunfang Positive solutions of nonlinear third-order boundary value problems involving Stieltjes integral conditions. (English) Zbl 1479.34052 Fixed Point Theory 22, No. 2, 933-946 (2021). Reviewer: Haiyan Wang (Phoenix) MSC: 34B18 34B10 47H10 34B08 PDF BibTeX XML Cite \textit{L. Yang} et al., Fixed Point Theory 22, No. 2, 933--946 (2021; Zbl 1479.34052) Full Text: Link OpenURL
Benchohra, Mouffak; Bouriah, Soufyane; Henderson, Johnny Ulam stability for nonlocal differential equations involving the Hilfer-Katugampola fractional derivative. (English) Zbl 07394723 Afr. Mat. 32, No. 5-6, 829-851 (2021). MSC: 34A08 34B10 26A33 PDF BibTeX XML Cite \textit{M. Benchohra} et al., Afr. Mat. 32, No. 5--6, 829--851 (2021; Zbl 07394723) Full Text: DOI OpenURL
Assanova, Anar T. On the solvability of a nonlocal problem for the system of Sobolev-type differential equations with integral condition. (English) Zbl 1472.35099 Georgian Math. J. 28, No. 1, 49-57 (2021). MSC: 35G46 35K70 PDF BibTeX XML Cite \textit{A. T. Assanova}, Georgian Math. J. 28, No. 1, 49--57 (2021; Zbl 1472.35099) Full Text: DOI OpenURL
Su, Hua; Yu, Jinmin Existence of positive solutions for second-order third-point semipositive BVP. (English) Zbl 1487.34081 J. Funct. Spaces 2021, Article ID 7567858, 7 p. (2021). Reviewer: Alberto Cabada (Santiago de Compostela) MSC: 34B18 34B10 47N20 34B08 34B27 PDF BibTeX XML Cite \textit{H. Su} and \textit{J. Yu}, J. Funct. Spaces 2021, Article ID 7567858, 7 p. (2021; Zbl 1487.34081) Full Text: DOI OpenURL
Ruziev, Menglibay A boundary value problem for a partial differential equation with fractional derivative. (English) Zbl 07382466 Fract. Calc. Appl. Anal. 24, No. 2, 509-517 (2021). MSC: 35M10 35M12 35Q05 35R11 PDF BibTeX XML Cite \textit{M. Ruziev}, Fract. Calc. Appl. Anal. 24, No. 2, 509--517 (2021; Zbl 07382466) Full Text: DOI OpenURL
Djourdem, Habib A class of nonlinear third-order boundary value problem with integral condition at resonance. (English) Zbl 07381437 Differ. Equ. Appl. 13, No. 1, 51-61 (2021). MSC: 34B10 34B15 47N20 PDF BibTeX XML Cite \textit{H. Djourdem}, Differ. Equ. Appl. 13, No. 1, 51--61 (2021; Zbl 07381437) Full Text: DOI OpenURL
Machado Martinez, André Luís; Castelani, Emerson Vitor; Pendeza Martinez, Cristiane Aparecida; Bressan, Glaucia Maria; De Souza, Roberto Molina Multiple solutions to a third-order three-point nonhomogeneous boundary value problem aided by nonlinear programming methods. (English) Zbl 07381436 Differ. Equ. Appl. 13, No. 1, 35-49 (2021). MSC: 34B10 47N20 65L10 PDF BibTeX XML Cite \textit{A. L. Machado Martinez} et al., Differ. Equ. Appl. 13, No. 1, 35--49 (2021; Zbl 07381436) Full Text: DOI OpenURL
Cheng, Tingzhi; Xu, Xianghui On the number of positive solutions for a four-point boundary value problem with generalized Laplacian. (English) Zbl 1476.34076 J. Fixed Point Theory Appl. 23, No. 3, Paper No. 46, 22 p. (2021). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34B18 34B16 47N20 34B10 PDF BibTeX XML Cite \textit{T. Cheng} and \textit{X. Xu}, J. Fixed Point Theory Appl. 23, No. 3, Paper No. 46, 22 p. (2021; Zbl 1476.34076) Full Text: DOI OpenURL
Čiupaila, Regimantas; Pupalaigė, Kristina; Sapagovas, Mifodijus On the numerical solution for nonlinear elliptic equations with variable weight coefficients in an integral boundary conditions. (English) Zbl 1486.65223 Nonlinear Anal., Model. Control 26, No. 4, 738-758 (2021). MSC: 65N06 65N25 35J15 PDF BibTeX XML Cite \textit{R. Čiupaila} et al., Nonlinear Anal., Model. Control 26, No. 4, 738--758 (2021; Zbl 1486.65223) Full Text: DOI OpenURL
Salim, Abdelkrim; Benchohra, Mouffak; Lazreg, Jamal Eddine; Nieto, Juan J.; Zhou, Yong Nonlocal initial value problem for hybrid generalized Hilfer-type fractional implicit differential equations. (English) Zbl 1471.34025 Nonauton. Dyn. Syst. 8, 87-100 (2021). MSC: 34A09 34A08 34B10 47N20 34A38 PDF BibTeX XML Cite \textit{A. Salim} et al., Nonauton. Dyn. Syst. 8, 87--100 (2021; Zbl 1471.34025) Full Text: DOI OpenURL
Triet, Nguyen Anh; Binh, Tran Thanh; Phuong, Nguyen Duc; Baleanu, Dumitru; Can, Nguyen Huu Recovering the initial value for a system of nonlocal diffusion equations with random noise on the measurements. (English) Zbl 1470.35439 Math. Methods Appl. Sci. 44, No. 6, 5188-5209 (2021). MSC: 35R30 35R25 35K58 47J06 47H10 35K51 PDF BibTeX XML Cite \textit{N. A. Triet} et al., Math. Methods Appl. Sci. 44, No. 6, 5188--5209 (2021; Zbl 1470.35439) Full Text: DOI OpenURL
Nain, Ankit; Vats, Ramesh; Kumar, Avadhesh Coupled fractional differential equations involving Caputo-Hadamard derivative with nonlocal boundary conditions. (English) Zbl 1471.34048 Math. Methods Appl. Sci. 44, No. 5, 4192-4204 (2021). MSC: 34B10 34A08 47N20 PDF BibTeX XML Cite \textit{A. Nain} et al., Math. Methods Appl. Sci. 44, No. 5, 4192--4204 (2021; Zbl 1471.34048) Full Text: DOI OpenURL
Djebali, Ismail; Guedda, Lamine Fractional multipoint boundary value problems at resonance with kernel dimension greater than one. (English) Zbl 1479.34046 Math. Methods Appl. Sci. 44, No. 3, 2621-2636 (2021). Reviewer: Bashir Ahmad (Jeddah) MSC: 34B10 34A08 47N20 PDF BibTeX XML Cite \textit{I. Djebali} and \textit{L. Guedda}, Math. Methods Appl. Sci. 44, No. 3, 2621--2636 (2021; Zbl 1479.34046) Full Text: DOI OpenURL
Li, Jing; Qi, Jiangang On a nonlocal Sturm-Liouville problem with composite fractional derivatives. (English) Zbl 1472.34047 Math. Methods Appl. Sci. 44, No. 2, 1931-1941 (2021). MSC: 34B24 34A08 34B09 34L15 26A33 PDF BibTeX XML Cite \textit{J. Li} and \textit{J. Qi}, Math. Methods Appl. Sci. 44, No. 2, 1931--1941 (2021; Zbl 1472.34047) Full Text: DOI OpenURL
BenSalah, Mohamed; Hassine, Maatoug Inverse source problem for a diffusion equation involving the fractional spectral Laplacian. (English) Zbl 1469.35247 Math. Methods Appl. Sci. 44, No. 1, 917-936 (2021). MSC: 35R30 35J25 35R11 65M32 65F10 65F22 PDF BibTeX XML Cite \textit{M. BenSalah} and \textit{M. Hassine}, Math. Methods Appl. Sci. 44, No. 1, 917--936 (2021; Zbl 1469.35247) Full Text: DOI OpenURL
Mahmudov, Elimhan N.; Yusubov, Shakir Sh. Nonlocal boundary value problems for hyperbolic equations with a Caputo fractional derivative. (English) Zbl 1469.35228 J. Comput. Appl. Math. 398, Article ID 113709, 15 p. (2021). MSC: 35R11 35L20 PDF BibTeX XML Cite \textit{E. N. Mahmudov} and \textit{S. Sh. Yusubov}, J. Comput. Appl. Math. 398, Article ID 113709, 15 p. (2021; Zbl 1469.35228) Full Text: DOI OpenURL
Zavgorodnii, M. G. A multipoint boundary value problem on a graph. (English. Russian original) Zbl 1472.34054 Differ. Equ. 57, No. 6, 824-827 (2021); translation from Differ. Uravn. 57, No. 6, 840-843 (2021). MSC: 34B45 34B10 34B05 34B27 PDF BibTeX XML Cite \textit{M. G. Zavgorodnii}, Differ. Equ. 57, No. 6, 824--827 (2021; Zbl 1472.34054); translation from Differ. Uravn. 57, No. 6, 840--843 (2021) Full Text: DOI OpenURL
Obukhovskii, Valeri; Zecca, Pietro; Afanasova, Maria Boundary value problems for fractional-order differential inclusions in Banach spaces with nondensely defined operators. (English) Zbl 1472.34118 Fixed Point Theory 22, No. 1, 279-298 (2021). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34G25 34B15 34A08 47N20 34B10 PDF BibTeX XML Cite \textit{V. Obukhovskii} et al., Fixed Point Theory 22, No. 1, 279--298 (2021; Zbl 1472.34118) Full Text: Link OpenURL
Bahrouni, Sabri; Salort, Ariel M. Neumann and Robin type boundary conditions in fractional Orlicz-Sobolev spaces. (English) Zbl 1470.35387 ESAIM, Control Optim. Calc. Var. 27, Suppl., Paper No. S15, 23 p. (2021). MSC: 35R11 35J25 35J61 35P30 45G05 46E30 PDF BibTeX XML Cite \textit{S. Bahrouni} and \textit{A. M. Salort}, ESAIM, Control Optim. Calc. Var. 27, Paper No. S15, 23 p. (2021; Zbl 1470.35387) Full Text: DOI arXiv OpenURL
Wu, Rui; Gao, Shanshan; Cheng, Yi Nonlocal problems of a class of Caputo-type fractional differential inclusions. (Chinese. English summary) Zbl 1474.34106 J. Jilin Univ., Sci. 59, No. 1, 55-59 (2021). MSC: 34A60 34A08 47N20 34B10 PDF BibTeX XML Cite \textit{R. Wu} et al., J. Jilin Univ., Sci. 59, No. 1, 55--59 (2021; Zbl 1474.34106) Full Text: DOI OpenURL
Tuan, Nguyen Huy On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. (English) Zbl 1466.35362 Discrete Contin. Dyn. Syst., Ser. B 26, No. 10, 5465-5494 (2021). MSC: 35R11 35K20 35K70 35K92 47A52 47J06 PDF BibTeX XML Cite \textit{N. H. Tuan}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 10, 5465--5494 (2021; Zbl 1466.35362) Full Text: DOI OpenURL
Bazzaev, Alexander K.; Gutnova, Dzerassa K. About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition. (English) Zbl 1473.65266 Sib. Èlektron. Mat. Izv. 18, No. 1, 548-560 (2021). MSC: 65N12 65N06 65N15 PDF BibTeX XML Cite \textit{A. K. Bazzaev} and \textit{D. K. Gutnova}, Sib. Èlektron. Mat. Izv. 18, No. 1, 548--560 (2021; Zbl 1473.65266) Full Text: DOI OpenURL
dos Santos, Gelson C. G.; Tavares, Leandro S. Existence results for an anisotropic nonlocal problem involving critical and discontinuous nonlinearities. (English) Zbl 1466.35187 Complex Var. Elliptic Equ. 66, No. 5, 731-755 (2021). MSC: 35J62 35J25 35A01 35A15 PDF BibTeX XML Cite \textit{G. C. G. dos Santos} and \textit{L. S. Tavares}, Complex Var. Elliptic Equ. 66, No. 5, 731--755 (2021; Zbl 1466.35187) Full Text: DOI OpenURL
Coclite, G. M.; Donadello, C.; Nguyen, T. N. T. An hyperbolic-parabolic predator-prey model involving a vole population structured in age. (English) Zbl 1470.35359 J. Math. Anal. Appl. 502, No. 1, Article ID 125232, 33 p. (2021). MSC: 35Q92 92D25 35B35 PDF BibTeX XML Cite \textit{G. M. Coclite} et al., J. Math. Anal. Appl. 502, No. 1, Article ID 125232, 33 p. (2021; Zbl 1470.35359) Full Text: DOI OpenURL
Tudorache, Alexandru; Luca, Rodica On a singular Riemann-Liouville fractional boundary value problem with parameters. (English) Zbl 1470.34029 Nonlinear Anal., Model. Control 26, No. 1, 151-168 (2021). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34A08 34B10 34B18 34B08 34B09 34B16 47N20 PDF BibTeX XML Cite \textit{A. Tudorache} and \textit{R. Luca}, Nonlinear Anal., Model. Control 26, No. 1, 151--168 (2021; Zbl 1470.34029) Full Text: DOI OpenURL
Caballero, J.; López, B.; Sadarangani, K. Existence of positive solutions in the space of Lipschitz functions for a fractional boundary problem with nonlocal boundary condition. (English) Zbl 1470.34011 J. Fixed Point Theory Appl. 23, No. 2, Paper No. 27, 14 p. (2021). MSC: 34A08 34B10 34B18 47N20 PDF BibTeX XML Cite \textit{J. Caballero} et al., J. Fixed Point Theory Appl. 23, No. 2, Paper No. 27, 14 p. (2021; Zbl 1470.34011) Full Text: DOI OpenURL
Pyatkov, S. G. Boundary value and inverse problems for some classes of nonclassical operator-differential equations. (English. Russian original) Zbl 1465.35317 Sib. Math. J. 62, No. 3, 489-502 (2021); translation from Sib. Mat. Zh. 62, No. 3, 607-622 (2021). MSC: 35M12 35R30 34G10 PDF BibTeX XML Cite \textit{S. G. Pyatkov}, Sib. Math. J. 62, No. 3, 489--502 (2021; Zbl 1465.35317); translation from Sib. Mat. Zh. 62, No. 3, 607--622 (2021) Full Text: DOI OpenURL
Su, Hua Existence of positive solutions for multi-point semi-positive boundary value problems. (English) Zbl 1472.34045 Mediterr. J. Math. 18, No. 3, Paper No. 108, 13 p. (2021). Reviewer: Eric R. Kaufmann (Little Rock) MSC: 34B18 34B10 47N20 34B08 PDF BibTeX XML Cite \textit{H. Su}, Mediterr. J. Math. 18, No. 3, Paper No. 108, 13 p. (2021; Zbl 1472.34045) Full Text: DOI OpenURL
Minglibayeva, B. B.; Assanova, A. T. An existence of an isolated solution to nonlinear two-point boundary value problem with parameter. (English) Zbl 07350136 Lobachevskii J. Math. 42, No. 3, 587-597 (2021). Reviewer: Ruyun Ma (Lanzhou) MSC: 34B08 34B10 34A45 PDF BibTeX XML Cite \textit{B. B. Minglibayeva} and \textit{A. T. Assanova}, Lobachevskii J. Math. 42, No. 3, 587--597 (2021; Zbl 07350136) Full Text: DOI OpenURL
Wang, JinRong; Fečkan, Michal; Zhang, Wenlin On the nonlocal boundary value problem of geophysical fluid flows. (English) Zbl 1480.34024 Z. Angew. Math. Phys. 72, No. 1, Paper No. 27, 18 p. (2021). Reviewer: Minghe Pei (Jilin) MSC: 34B10 34B18 47N20 86A08 PDF BibTeX XML Cite \textit{J. Wang} et al., Z. Angew. Math. Phys. 72, No. 1, Paper No. 27, 18 p. (2021; Zbl 1480.34024) Full Text: DOI OpenURL
Jong, KumSong; Choi, HuiChol; Jang, KyongJun; Jong, SongGuk; Jon, KyongSon; Ri, Ok Some properties of solutions to multiterm fractional boundary value problems with \(p\)-Laplacian operator. (English) Zbl 1471.34019 J. Funct. Spaces 2021, Article ID 7527306, 16 p. (2021). Reviewer: Ismail Huseynov (Mersin) MSC: 34A08 34B18 34B10 47N20 PDF BibTeX XML Cite \textit{K. Jong} et al., J. Funct. Spaces 2021, Article ID 7527306, 16 p. (2021; Zbl 1471.34019) Full Text: DOI OpenURL
Li, Jing; Wang, Mengran Spectral problem and initial value problem of a nonlocal Sturm-Liouville equation. (English) Zbl 1467.34029 Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 28, 22 p. (2021). MSC: 34B24 34A08 34L15 34L10 34B10 47E05 PDF BibTeX XML Cite \textit{J. Li} and \textit{M. Wang}, Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 28, 22 p. (2021; Zbl 1467.34029) Full Text: DOI OpenURL
Gomez, Daniel; Wei, Juncheng Multi-spike patterns in the Gierer-Meinhardt system with a nonzero activator boundary flux. (English) Zbl 1462.35032 J. Nonlinear Sci. 31, No. 2, Paper No. 37, 41 p. (2021). MSC: 35B25 35B36 35K51 35K57 PDF BibTeX XML Cite \textit{D. Gomez} and \textit{J. Wei}, J. Nonlinear Sci. 31, No. 2, Paper No. 37, 41 p. (2021; Zbl 1462.35032) Full Text: DOI arXiv OpenURL
Wang, Jinxiang; Guan, Wen Positive solutions for nonlocal extended Fisher-Kolmogorov and Swift-Hohenberg equations. (English) Zbl 1479.34051 Mediterr. J. Math. 18, No. 2, Paper No. 60, 9 p. (2021). Reviewer: George Karakostas (Ioannina) MSC: 34B18 34B10 PDF BibTeX XML Cite \textit{J. Wang} and \textit{W. Guan}, Mediterr. J. Math. 18, No. 2, Paper No. 60, 9 p. (2021; Zbl 1479.34051) Full Text: DOI arXiv OpenURL
Caballero, Josefa; Harjani, J.; Sadarangani, K. Existence and uniqueness of positive solutions for a class of singular fractional differential equation with infinite-point boundary value conditions. (English) Zbl 1459.34011 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 48, 12 p. (2021). MSC: 34A08 34B10 34B18 47N20 34B16 PDF BibTeX XML Cite \textit{J. Caballero} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 48, 12 p. (2021; Zbl 1459.34011) Full Text: DOI OpenURL
Wang, Hui; Zhang, Lingling Uniqueness methods for the higher-order coupled fractional differential systems with multi-point boundary conditions. (English) Zbl 1461.34043 Bull. Sci. Math. 166, Article ID 102935, 31 p. (2021). Reviewer: Syed Abbas (Mandi) MSC: 34B08 34B10 47N20 PDF BibTeX XML Cite \textit{H. Wang} and \textit{L. Zhang}, Bull. Sci. Math. 166, Article ID 102935, 31 p. (2021; Zbl 1461.34043) Full Text: DOI OpenURL
Cid, José Ángel; Mawhin, Jean; Zima, Mirosława An abstract averaging method with applications to differential equations. (English) Zbl 1467.34045 J. Differ. Equations 274, 231-250 (2021). Reviewer: Regilene Oliveira (São Paulo) MSC: 34C29 34C25 34B10 34K13 PDF BibTeX XML Cite \textit{J. Á. Cid} et al., J. Differ. Equations 274, 231--250 (2021; Zbl 1467.34045) Full Text: DOI OpenURL