zbMATH — the first resource for mathematics

A partitioned coupling framework for peridynamics and classical theory: analysis and simulations. (English) Zbl 1440.74045
Summary: We develop and analyze a concurrent framework for coupling peridynamics and the corresponding classical elasticity theory, with applications to the numerical simulations of damage problems. In this framework, the peridynamic model and the elastic model are solved separately and coupled with a partitioned approach. In the region where material failure is expected to initiate, we employ the peridynamic theory. In the rest of the problem domain, the material is modeled by the classical elasticity theory. On the peridynamic-classical theory interface, there is a transition region where the two subdomains overlap. The two solvers communicate by exchanging proper boundary conditions at the peridynamic-classical theory interface, which enables a modular software implementation. We analyze different coupling strategies on a 1D simplified problem and obtain expressions for the optimal reduction factor (convergence rate index). The selection of optimal coupling parameters is verified with numerical experiments, where we demonstrate that the optimal Robin coefficient from 1D simplified problem analysis can be extrapolated to more complicated problems, including cases with damage. Both the analysis and the numerical results suggest that the optimal Robin boundary condition on the classical theory side combined with a Dirichlet boundary condition with Aitken relaxation rule on the peridynamic side would be the most robust choice. Comparing with the commonly employed Dirichlet interface conditions, the optimal Robin boundary condition together with Aitken relaxation accelerates the coupling convergence rate by 10 times. With the developed optimal coupling strategy, we also numerically demonstrate the coupling framework’s asymptotic convergence to the local solution and its capability to capture crack initiation and growth in 2D problems.

74A45 Theories of fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI
[1] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 1, 175-209 (2000)
[2] Baz̆ant, Z. P.; Jirásek, M., Nonlocal integral formulations of plasticity and damage: survey of progress, J. Eng. Mech., 128, 11, 1119-1149 (2002)
[3] Silling, S. A.; Bobaru, F., Peridynamic modeling of membranes and fibers, Int. J. Non-Linear Mech., 40, 2, 395-409 (2005)
[4] Silling, S.; Lehoucq, R., Peridynamic theory of solid mechanics, Adv. Appl. Mech., 44, 1, 73-166 (2010)
[5] Gerstle, W.; Sau, N.; Silling, S., Peridynamic modeling of concrete structures, Nucl. Eng. Des., 237, 12, 1250-1258 (2007)
[6] Demmie, P.; Silling, S., An approach to modeling extreme loading of structures using peridynamics, J. Mech. Mater. Struct., 2, 10, 1921-1945 (2007)
[7] Askari, E.; Xu, J.; Silling, S., Peridynamic analysis of damage and failure in composites, (44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (2006), AIAA: AIAA Reston, VA)
[8] Xu, J.; Askari, A.; Weckner, O.; Silling, S., Peridynamic analysis of impact damage in composite laminates, J. Aerosp. Eng., 21, 3, 187-194 (2008)
[9] O. Weckner, A. Askari, J. Xu, H. Razi, S. Silling, Damage and failure analysis based on peridynamics—theory and applications, in: 48th AIAA Structures, Structural Dynamics, and Materials Conf, 2007.
[10] Foster, J. T., Dynamic Crack Initiation Toughness: Experiments and Peridynamic Modeling (2009), Purdue University, (Ph.D. thesis)
[11] Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modeling, J. Elasticity, 88, 2, 151-184 (2007)
[12] Seleson, P.; Parks, M. L.; Gunzburger, M.; Lehoucq, R. B., Peridynamics as an upscaling of molecular dynamics, Multiscale Model. Simul., 8, 1, 204-227 (2009)
[13] Parks, M. L.; Lehoucq, R. B.; Plimpton, S. J.; Silling, S. A., Implementing peridynamics within a molecular dynamics code, Comput. Phys. Comm., 179, 11, 777-783 (2008)
[14] Silling, S. A.; Lehoucq, R. B., Convergence of peridynamics to classical elasticity theory, J. Elasticity, 93, 1, 13-37 (2008)
[15] Zimmermann, M., A Continuum Theory with Long-Range Forces for Solids (2005), Massachusetts Institute of Technology, (Ph.D. thesis)
[16] Emmrich, E.; Weckner, O., Analysis and numerical approximation of an integro-differential equation modeling non-local effects in linear elasticity, Math. Mech. Solids, 12, 4, 363-384 (2007)
[17] Emmrich, E.; Weckner, O., On the well-posedness of the linear peridynamic model and its convergence towards the navier equation of linear elasticity, Commun. Math. Sci., 5, 4, 851-864 (2007)
[18] Zhou, K.; Du, Q., Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J. Numer. Anal., 48, 5, 1759-1780 (2010)
[19] Du, Q.; Zhou, K., Mathematical analysis for the peridynamic nonlocal continuum theory, ESAIM Math. Model. Numer. Anal., 45, 02, 217-234 (2011)
[20] Warren, T. L.; Silling, S. A.; Askari, A.; Weckner, O.; Epton, M. A.; Xu, J., A non-ordinary state-based peridynamic method to model solid material deformation and fracture, Int. J. Solids Struct., 46, 5, 1186-1195 (2009)
[21] Foster, J. T.; Silling, S. A.; Chen, W. W., Viscoplasticity using peridynamics, Internat. J. Numer. Methods Engrg., 81, 10, 1242-1258 (2010)
[22] Seleson, P.; Gunzburger, M.; Parks, M. L., Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains, Comput. Methods Appl. Mech. Engrg., 266, 185-204 (2013)
[23] Azdoud, Y.; Han, F.; Lubineau, G., A morphing framework to couple non-local and local anisotropic continua, Int. J. Solids Struct., 50, 9, 1332-1341 (2013)
[24] Han, F.; Lubineau, G., Coupling of nonlocal and local continuum models by the arlequin approach, Internat. J. Numer. Methods Engrg., 89, 6, 671-685 (2012)
[25] Prudhomme, S.; Dhia, H. B.; Bauman, P. T.; Elkhodja, N.; Oden, J. T., Computational analysis of modeling error for the coupling of particle and continuum models by the arlequin method, Comput. Methods Appl. Mech. Engrg., 197, 41, 3399-3409 (2008)
[26] D’Elia, M.; Gunzburger, M., Optimal distributed control of nonlocal steady diffusion problems, SIAM J. Control Optim., 52, 1, 243-273 (2014)
[27] Q. Du, X.H. Li, J. Lu, X. Tian, A quasinonlocal coupling method for nonlocal and local diffusion models, 2017, arXiv preprint arXiv:1704.00348.
[28] X.H. Li, J. Lu, Quasinonlocal coupling of nonlocal diffusions, 2016, arxiv preprint arXiv:1607.03940.
[29] D’Elia, M.; Perego, M.; Bochev, P.; Littlewood, D., A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions, Comput. Math. Appl., 71, 11, 2218-2230 (2016)
[30] Lubineau, G.; Azdoud, Y.; Han, F.; Rey, C.; Askari, A., A morphing strategy to couple non-local to local continuum mechanics, J. Mech. Phys. Solids, 60, 6, 1088-1102 (2012)
[31] Seleson, P.; Ha, Y. D.; Beneddine, S., Concurrent coupling of bond-based peridynamics and the Navier equation of classical elasticity by blending, J. Multiscale Comput. Eng., 13, 2, 91-113 (2015)
[32] Askari, E.; Bobaru, F.; Lehoucq, R.; Parks, M.; Silling, S.; Weckner, O., Peridynamics for multiscale materials modeling, (Journal of Physics: Conference Series, Vol. 125 (2008), IOP Publishing), Article 012078 pp.
[33] Q. Du, X. Tian, Seamless coupling of nonlocal and local models, preprint.
[34] Silling, S.; Littlewood, D.; Seleson, P., Variable horizon in a peridynamic medium, J. Mech. Mater. Struct., 10, 5, 591-612 (2015)
[35] Macek, R. W.; Silling, S. A., Peridynamics via finite element analysis, Finite Elem. Anal. Des., 43, 15, 1169-1178 (2007)
[36] Oterkus, E., Peridynamic Theory for Modeling Three-Dimensional Damage Growth in Metallic and Composite Structures (2010), The University of Arizona, (Ph.D. thesis)
[37] A. Agwai, I. Guven, E. Madenci, Damage prediction for electronic package drop test using finite element method and peridynamic theory, in: Electronic Components and Technology Conference, 2009. ECTC 2009. 59th, 2009, pp. 565-569.
[38] Liu, W.; Hong, J. W., A coupling approach of discretized peridynamics with finite element method, Comput. Methods Appl. Mech. Engrg., 15, 163-175 (2012)
[39] Lee, J.; Oh, S. E.; Hong, J.-W., Parallel programming of a peridynamics code coupled with finite element method, Int. J. Fract., 1-16 (2016)
[40] Han, F.; Lubineau, G.; Azdoud, Y.; Askari, A., A morphing approach to couple state-based peridynamics with classical continuum mechanics, Comput. Methods Appl. Mech. Engrg., 301, 336-358 (2016), URL http://www.sciencedirect.com/science/article/pii/S0045782515004302
[41] Galvanetto, U.; Mudric, T.; Shojaei, A.; Zaccariotto, M., An effective way to couple FEM meshes and peridynamics grids for the solution of static equilibrium problems, Mech. Res. Commun., 76, 41-47 (2016), URL http://www.sciencedirect.com/science/article/pii/S0093641316300611
[42] Seleson, P.; Beneddine, S.; Prudhomme, S., A force-based coupling scheme for peridynamics and classical elasticity, Comput. Mater. Sci., 66, 34-49 (2013)
[43] Astorino, M.; Chouly, F.; Fernández, M. A., Robin based semi-implicit coupling in fluid-structure interaction: Stability analysis and numerics, SIAM J. Sci. Comput., 31, 6, 4041-4065 (2009)
[44] Badia, S.; Nobile, F.; Vergara, C., Fluid-structure partitioned procedures based on Robin transmission conditions, J. Comput. Phys., 227, 14, 7027-7051 (2008)
[45] Badia, S.; Nobile, F.; Vergara, C., Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems, Comput. Methods Appl. Mech. Engrg., 198, 33-36, 2768-2784 (2009)
[46] Gerardo-Giorda, L.; Nobile, F.; Vergara, C., Analysis and optimization of Robin-Robin partitioned procedures in fluid-structure interaction problems, SIAM J. Numer. Anal., 48, 6, 2091-2116 (2010)
[47] Roux, F. X.; Garaud, J. D., Domain decomposition methodology with Robin interface matching conditions for solving strongly coupled fluid-structure problems, Int. J. Multiscale Comput. Eng., 7, 1, 29-38 (2009)
[48] Plimpton, S.; Crozier, P.; Thompson, A., LAMMPS-Large-Scale Atomic/molecular Massively Parallel Simulator, Vol. 18 (2007), Sandia National Laboratories
[49] Parks, M. L.; Seleson, P.; Plimpton, S. J.; Lehoucq, R. B.; Silling, S. A., Peridynamics with LAMMPS: A User Guide v0.2 Beta (2008), Sandia National Laboraties
[50] Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modeling, J. Elasticity, 88, 151-184 (2007)
[51] Silling, S. A.; Askari, E., A meshfree method based on the peridynamic model of solid mechanics, Comput. Struct., 83, 1526-1535 (2005)
[52] Ha, Y. D.; Bobaru, F., Studies of dynamic crack propagation and crack branching with peridynamics, Int. J. Fract., 162, 1-2, 229-244 (2010)
[53] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 1, 175-209 (2000)
[54] Plimpton, S. J., LAMMPS User’s Manual (2013), Sandia National Laboraties, URL http://lammps.sandia.gov
[55] Yu, Y.; Baek, H.; Bittencourt, M. L.; Karniadakis, G. E., Mixed spectral/hp element formulation for nonlinear elasticity, Comput. Methods Appl. Mech. Engrg., 213-216, 0, 42-57 (2012)
[56] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method (2000), Butterworth-Heinemann
[57] Yu, Y.; Bittencourt, M. L.; Karniadakis, G. E., A semi-local spectral/hp element solver for linear elasticity problems, Internat. J. Numer. Methods Engrg., 100, 5, 347-373 (2014)
[58] Parks, M. L.; Bochev, P.; Lehoucq, R., Connecting atomistic-to-continuum coupling and domain decomposition, Multiscale Model. Simul., 7, 1, 362-380 (2008)
[59] Mok, D.; Wall, W.; Ramm, E., Accelerated iterative substructuring schemes for instationary fluid-structure interaction, (First MIT Conference on Computational Fluid and Solid Mechanics (2001), Elsevier: Elsevier Cambridge, MA, USA), 1325-1328
[60] Yu, Y.; Baek, H.; Karniadakis, G. E., Generalized fictitious methods for fluidstructure interactions: Analysis and simulations, J. Comput. Phys., 245, 317-346 (2013)
[61] Tian, X.; Du, Q., Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations, SIAM J. Numer. Anal., 51, 6, 3458-3482 (2013)
[62] Tian, X.; Du, Q., Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM J. Numer. Anal., 52, 4, 1641-1665 (2014)
[63] Causin, P.; Gerbeau, J. F.; Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Engrg., 194, 42-44, 4506-4527 (2005)
[64] Silling, S. A.; Weckner, O.; Askari, E.; Bobaru, F., Crack nucleation in a peridynamic solid, Int. J. Fract., 162, 1-2, 219-227 (2010)
[65] N. Trask, H. You, Y. Yu, M.L. Parks, (2018) A meshfree quadrature rule for non-local mechanics, under revision.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.