×

zbMATH — the first resource for mathematics

An asymptotically compatible formulation for local-to-nonlocal coupling problems without overlapping regions. (English) Zbl 1442.74244
Summary: In this paper we design and analyze an explicit partitioned procedure for a 2D dynamic local-to-nonlocal (LtN) coupling problem, based on a new nonlocal Robin-type transmission condition. The nonlocal subproblem is modeled by the nonlocal heat equation with a finite horizon parameter \(\delta\) characterizing the range of nonlocal interactions, and the local subproblem is described by the classical heat equation. We consider a heterogeneous system where the local and nonlocal subproblems present different physical properties, and employ no overlapping region between the two subdomains. We first propose a new generalization of classical local Neumann-type condition by converting the local flux to a correction term in the nonlocal model, and show that the proposed Neumann-type boundary formulation recovers the local case as \(\mathcal{O} (\delta^2)\) in the \(L^\infty\) norm. We then extend the nonlocal Neumann-type boundary condition to a Robin-type boundary condition, and develop a local-to-nonlocal coupling formulation with Robin-Dirichlet transmission conditions. To stabilize the explicit coupling procedure and to achieve asymptotic compatibility, the choice of the coefficient in the Robin condition is obtained via amplification factor analysis for the discretized system with coarse grids. Employing a high-order meshfree discretization method in the nonlocal solver and a linear finite element method in the local solver, the selection of optimal Robin coefficients are verified with numerical experiments on heterogeneous and complicated domains. With the developed optimal coupling strategy, we numerically demonstrate the coupling framework’s asymptotic convergence to the local limit with an \(\mathcal{O} (\delta) = \mathcal{O} (h)\) rate, when there is a fixed ratio between the horizon size \(\delta\) and the spatial discretization size \(h\).

MSC:
74S05 Finite element methods applied to problems in solid mechanics
45K05 Integro-partial differential equations
35R09 Integral partial differential equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74A15 Thermodynamics in solid mechanics
Software:
EJ-HEAT; FEniCS; SyFi
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 1, 175-209 (2000) · Zbl 0970.74030
[2] Baz̆ant, Z. P.; Jirásek, M., Nonlocal integral formulations of plasticity and damage: survey of progress, J. Eng. Mech., 128, 11, 1119-1149 (2002)
[3] Zimmermann, M., A Continuum Theory with Long-Range Forces for Solids (2005), Massachusetts Institute of Technology, (Ph.D. thesis)
[4] Emmrich, E.; Weckner, O., Analysis and numerical approximation of an integro-differential equation modeling non-local effects in linear elasticity, Math. Mech. Solids, 12, 4, 363-384 (2007) · Zbl 1175.74013
[5] Emmrich, E.; Weckner, O., On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity, Commun. Math. Sci., 5, 4, 851-864 (2007) · Zbl 1133.35098
[6] Zhou, K.; Du, Q., Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J. Numer. Anal., 48, 5, 1759-1780 (2010) · Zbl 1220.82074
[7] Du, Q.; Zhou, K., Mathematical analysis for the peridynamic nonlocal continuum theory, ESAIM Math. Model. Numer. Anal., 45, 02, 217-234 (2011) · Zbl 1269.45005
[8] Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Vol. 198 (1998), Academic Press
[9] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (2010), World Scientific · Zbl 1210.26004
[10] Magin, R. L., Fractional Calculus in Bioengineering (2006), Begell House Publishers Inc.: Begell House Publishers Inc. Redding, CT
[11] Burch, N.; Lehoucq, R., Classical, nonlocal, and fractional diffusion equations on bounded domains, Int. J. Multiscale Comput. Eng., 9, 6 (2011)
[12] Du, Q.; Huang, Z.; Lehoucq, R. B., Nonlocal convection-diffusion volume-constrained problems and jump processes, Discrete Contin. Dyn. Syst. Ser. B, 19, 4 (2014) · Zbl 1284.35223
[13] Defterli, O.; D’Elia, M.; Du, Q.; Gunzburger, M.; Lehoucq, R.; Meerschaert, M. M., Fractional diffusion on bounded domains, Fract. Calc. Appl. Anal., 18, 2, 342-360 (2015) · Zbl 06418052
[14] Lischke, A.; Pang, G.; Gulian, M.; Song, F.; Glusa, C.; Zheng, X.; Mao, Z.; Cai, W.; Meerschaert, M. M.; Ainsworth, M., What is the fractional Laplacian? (2018), arXiv preprint arXiv:1801.09767
[15] Du, Q.; Lipton, R., Peridynamics, fracture, and nonlocal continuum models, SIAM News, 47, 3 (2014)
[16] Antoine, X.; Barucq, H., Approximation by generalized impedance boundary conditions of a transmission problem in acoustic scattering, ESAIM Math. Model. Numer. Anal., 39, 5, 1041-1059 (2005) · Zbl 1074.78004
[17] Dayal, K.; Bhattacharya, K., A real-space non-local phase-field model of ferroelectric domain patterns in complex geometries, Acta Mater., 55, 6, 1907-1917 (2007)
[18] Sachs, E. W.; Schu, M., A priori error estimates for reduced order models in finance, ESAIM Math. Model. Numer. Anal., 47, 2, 449-469 (2013) · Zbl 1268.91182
[19] Bucur, C.; Valdinoci, E., Nonlocal Diffusion and Applications, Vol. 20 (2016), Springer
[20] Seleson, P.; Gunzburger, M.; Parks, M. L., Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains, Comput. Methods Appl. Mech. Engrg., 266, 185-204 (2013) · Zbl 1286.74010
[21] Azdoud, Y.; Han, F.; Lubineau, G., A morphing framework to couple non-local and local anisotropic continua, Int. J. Solids Struct., 50, 9, 1332-1341 (2013)
[22] Han, F.; Lubineau, G., Coupling of nonlocal and local continuum models by the Arlequin approach, Internat. J. Numer. Methods Engrg., 89, 6, 671-685 (2012) · Zbl 1242.74004
[23] Prudhomme, S.; Dhia, H. B.; Bauman, P. T.; Elkhodja, N.; Oden, J. T., Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method, Comput. Methods Appl. Mech. Engrg., 197, 41, 3399-3409 (2008) · Zbl 1159.74303
[24] D’Elia, M.; Gunzburger, M., Optimal distributed control of nonlocal steady diffusion problems, SIAM J. Control Optim., 52, 1, 243-273 (2014) · Zbl 1298.49006
[25] Du, Q.; Li, X. H.; Lu, J.; Tian, X., A quasinonlocal coupling method for nonlocal and local diffusion models (2017), arXiv preprint arXiv:1704.00348
[26] Li, X. H.; Lu, J., Quasinonlocal coupling of nonlocal diffusions, SIAM J. Numer. Anal., 55, 2394-2415 (2017) · Zbl 1422.65166
[27] D’Elia, M.; Perego, M.; Bochev, P.; Littlewood, D., A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions, Comput. Math. Appl., 71, 11, 2218-2230 (2016)
[28] Lubineau, G.; Azdoud, Y.; Han, F.; Rey, C.; Askari, A., A morphing strategy to couple non-local to local continuum mechanics, J. Mech. Phys. Solids, 60, 6, 1088-1102 (2012)
[29] Seleson, P.; Ha, Y. D.; Beneddine, S., Concurrent coupling of bond-based peridynamics and the Navier equation of classical elasticity by blending, Int. J. Multiscale Comput. Eng., 13, 2, 91-113 (2015)
[30] Askari, E.; Bobaru, F.; Lehoucq, R.; Parks, M.; Silling, S.; Weckner, O., Peridynamics for multiscale materials modeling, J. Phys. Conf. Ser., 125, 1, Article 012078 pp. (2008)
[31] Tao, Y.; Tian, X.; Du, Q., Nonlocal models with heterogeneous localization and their application to seamless local-nonlocal coupling, Multiscale Model. Simul., 17, 3, 1052-1075 (2019) · Zbl 1447.45001
[32] Silling, S.; Littlewood, D.; Seleson, P., Variable horizon in a peridynamic medium, J. Mech. Mater. Struct., 10, 5, 591-612 (2015)
[33] Macek, R. W.; Silling, S. A., Peridynamics via finite element analysis, Finite Elem. Anal. Des., 43, 15, 1169-1178 (2007)
[34] Oterkus, E., Peridynamic Theory for Modeling Three-Dimensional Damage Growth in Metallic and Composite Structures (2010), The University of Arizona, (Ph.D. thesis)
[35] A. Agwai, I. Guven, E. Madenci, Damage prediction for electronic package drop test using finite element method and peridynamic theory, in: Electronic Components and Technology Conference, 2009. ECTC 2009. 59th, 2009, pp. 565-569.
[36] Liu, W.; Hong, J. W., A coupling approach of discretized peridynamics with finite element method, Comput. Methods Appl. Mech. Engrg., 15, 163-175 (2012) · Zbl 1354.74284
[37] Lee, J.; Oh, S. E.; Hong, J.-W., Parallel programming of a peridynamics code coupled with finite element method, Int. J. Fract., 1-16 (2016)
[38] Han, F.; Lubineau, G.; Azdoud, Y.; Askari, A., A morphing approach to couple state-based peridynamics with classical continuum mechanics, Comput. Methods Appl. Mech. Engrg., 301, 336-358 (2016), URL http://www.sciencedirect.com/science/article/pii/S0045782515004302 · Zbl 1425.74079
[39] Galvanetto, U.; Mudric, T.; Shojaei, A.; Zaccariotto, M., An effective way to couple FEM meshes and Peridynamics grids for the solution of static equilibrium problems, Mech. Res. Commun., 76, 41-47 (2016), URL http://www.sciencedirect.com/science/article/pii/S0093641316300611
[40] Yu, Y.; Bargos, F. F.; You, H.; Parks, M. L.; Bittencourt, M. L.; Karniadakis, G. E., A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations, Comput. Methods Appl. Mech. Engrg., 340, 905-931 (2018) · Zbl 1440.74045
[41] Du, Q.; Li, X. H.; Lu, J.; Tian, X., A quasi-nonlocal coupling method for nonlocal and local diffusion models, SIAM J. Numer. Anal., 56, 1386-1404 (2018) · Zbl 06880667
[42] Seleson, P.; Beneddine, S.; Prudhomme, S., A force-based coupling scheme for peridynamics and classical elasticity, Comput. Mater. Sci., 66, 34-49 (2013)
[43] Bobaru, F.; Ha, Y. D., Adaptive refinement and multiscale modeling in 2D peridynamics, Int. J. Multiscale Comput. Eng., 9, 6 (2011)
[44] Bobaru, F.; Yang, M.; Alves, L. F.; Silling, S. A.; Askari, E.; Xu, J., Convergence, adaptive refinement, and scaling in 1D peridynamics, Internat. J. Numer. Methods Engrg., 77, 6, 852-877 (2009) · Zbl 1156.74399
[45] Ren, H.; Zhuang, X.; Cai, Y.; Rabczuk, T., Dual-horizon peridynamics, Internat. J. Numer. Methods Engrg., 108, 12, 1451-1476 (2016)
[46] Seleson, P. D., Peridynamic Multiscale Models for the Mechanics of Materials: Constitutive Relations, Upscaling from Atomistic Systems, and Interface Problems (2010), The Florida State University
[47] Tian, X.; Du, Q., Trace theorems for some nonlocal function spaces with heterogeneous localization, SIAM J. Math. Anal., 49, 2, 1621-1644 (2017) · Zbl 1373.46030
[48] Tian, X.; Du, Q., Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM J. Numer. Anal., 52, 4, 1641-1665 (2014) · Zbl 1303.65098
[49] You, H.; Lu, X.-Y.; Trask, N.; Yu, Y., An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems, ESAIM Math. Model. Numer. Anal. (2020), in press
[50] Tao, Y.; Tian, X.; Du, Q., Nonlocal diffusion and peridynamic models with Neumann type constraints and their numerical approximations, Appl. Math. Comput., 305, 282-298 (2017) · Zbl 1411.74058
[51] M. D’Elia, D. Littlewood, P. Bochev, M. Perego, An optimization-based coupling strategy for local and nonlocal elasti problems, in: Presented at the 13th World Congress on Computational Mechanics, WCCM XIII, July 2018, New York, NY, USA, 2018.
[52] Q. Du, J. Zhang, C. Zheng, On uniform second order nonlocal approximations to linear two-point boundary value problems, preprint. · Zbl 1426.47013
[53] Cortazar, C.; Elgueta, M.; Rossi, J. D.; Wolanski, N., Boundary fluxes for nonlocal diffusion, J. Differential Equations, 234, 2, 360-390 (2007) · Zbl 1113.35101
[54] Cortazar, C.; Elgueta, M.; Rossi, J. D.; Wolanski, N., How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Ration. Mech. Anal., 187, 1, 137-156 (2008) · Zbl 1145.35060
[55] D’Elia, M.; Tian, X.; Yu, Y., A physically-consistent, flexible and efficient strategy to convert local boundary conditions into nonlocal volume constraints (2019), arXiv preprint arXiv:1906.04259
[56] Trask, N.; You, H.; Yu, Y.; Parks, M. L., An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics, Comput. Methods Appl. Mech. Engrg., 343, 151-165 (2019) · Zbl 1440.74463
[57] Badia, S.; Nobile, F.; Vergara, C., Fluid-structure partitioned procedures based on Robin transmission conditions, J. Comput. Phys., 227, 14, 7027-7051 (2008) · Zbl 1140.74010
[58] Chen, W.; Gunzburger, M.; Hua, F.; Wang, X., A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system, SIAM J. Numer. Anal., 49, 3, 1064-1084 (2011) · Zbl 1414.76017
[59] Discacciati, M.; Quarteroni, A.; Valli, A., Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer. Anal., 45, 3, 1246-1268 (2007) · Zbl 1139.76030
[60] Douglas, J.; Huang, C.-S., An accelerated domain decomposition procedure based on Robin transmission conditions, BIT Numer. Math., 37, 3, 678-686 (1997) · Zbl 0886.65114
[61] Wiegmann, A.; Zemitis, A., EJ-HEAT: A Fast Explicit Jump Harmonic Averaging Solver for the Effective Heat Conductivity of Composite Materials (2006)
[62] Sonmez, F. O.; Hahn, H., Modeling of heat transfer and crystallization in thermoplastic composite tape placement process, J. Thermoplast. Compos. Mater., 10, 3, 198-240 (1997)
[63] Rakopoulos, C.; Mavropoulos, G., Components heat transfer studies in a low heat rejection di diesel engine using a hybrid thermostructural finite element model, Appl. Therm. Eng., 18, 5, 301-316 (1998)
[64] Prasad, R.; Samria, N., Transient heat transfer analysis in an internal combustion engine piston, Comput. Struct., 34, 5, 787-793 (1990)
[65] Trask, N.; Maxey, M.; Hu, X., A compatible high-order meshless method for the Stokes equations with applications to suspension flows, J. Comput. Phys., 355, 310-326 (2018) · Zbl 1380.76109
[66] Gross, B.; Trask, N.; Kuberry, P.; Atzberger, P., Meshfree methods on manifolds for hydrodynamic flows on curved surfaces: a generalized moving least-squares (GMLS) approach, J. Comput. Phys., Article 109340 pp. (2020)
[67] Fasshauer, G., Meshfree methods, (Handbook of theoretical and computational nanotechnology, 27 (2006), American Scientific Publishers), 33-97
[68] Wendland, H., Scattered Data Approximation, Vol. 17 (2004), Cambridge university press
[69] Alnæs, M.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M. E.; Wells, G. N., The FEniCS project version 1.5, Arch. Numer. Softw., 3, 100 (2015)
[70] Logg, A.; Mardal, K.-A.; Wells, G., Automated Solution of Differential Equations By the Finite Element Method: The FEniCS Book, Vol. 84 (2012), Springer Science & Business Media
[71] Krylov, N. V., Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Vol. 96 (2008), American Mathematical Soc. · Zbl 1147.35001
[72] Krylov, N. V., Lectures on Elliptic and Parabolic Equations in Holder Spaces (1996), American Mathematical Soc. · Zbl 0865.35001
[73] Park, H. S.; Klein, P. A.; Wagner, G. J., A surface Cauchy-Born model for nanoscale materials, Internat. J. Numer. Methods Engrg., 68, 10, 1072-1095 (2006) · Zbl 1128.74005
[74] Ponce, A. C., An estimate in the spirit of Poincaré’s inequality, J. Eur. Math. Soc., 6, 1, 1-15 (2004) · Zbl 1051.46019
[75] Du, Q.; Gunzburger, M.; Lehoucq, R. B.; Zhou, K., Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54, 4, 667-696 (2012) · Zbl 1422.76168
[76] Mengesha, T.; Du, Q., Analysis of a scalar peridynamic model with a sign changing kernel, Discrete Contin. Dyn. Syst. Ser. B, 18, 1415-1437 (2013) · Zbl 1278.45014
[77] Hillman, M.; Pasetto, M.; Zhou, G., Generalized reproducing kernel peridynamics: unification of local and non-local meshfree methods, non-local derivative operations, and an arbitrary-order state-based peridynamic formulation, Comput. Part. Mech. (2019)
[78] Degroote, J.; Bathe, K.-J.; Vierendeels, J., Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction, Comput. Struct., 87, 11-12, 793-801 (2009)
[79] Quarteroni, A.; Valli, A., Domain Decomposition Methods for Partial Differential Equations, no. BOOK (1999), Oxford University Press
[80] Mathew, T., Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations, Vol. 61 (2008), Springer Science & Business Media
[81] Toselli, A.; Widlund, O., Domain Decomposition Methods-Algorithms and Theory, Vol. 34 (2006), Springer Science & Business Media
[82] Burman, E.; Fernández, M. A., Explicit strategies for incompressible fluid-structure interaction problems: Nitsche type mortaring versus Robin-Robin coupling, Internat. J. Numer. Methods Engrg., 97, 10, 739-758 (2014) · Zbl 1352.74104
[83] Fernández, M. A.; Mullaert, J.; Vidrascu, M., Generalized Robin-Neumann explicit coupling schemes for incompressible fluid-structure interaction: Stability analysis and numerics, Internat. J. Numer. Methods Engrg., 101, 3, 199-229 (2015) · Zbl 1352.76048
[84] Burman, E.; Durst, R.; Guzman, J., Stability and error analysis of a splitting method using Robin-Robin coupling applied to a fluid-structure interaction problem (2019), arXiv preprint arXiv:1911.06760
[85] Levin, D., The approximation power of moving least-squares, Math. Comput., 67, 224, 1517-1531 (1998) · Zbl 0911.41016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.