Shagolshem, Sumanta; Bira, B.; Sil, Subhankar Conservation laws and some new exact solutions for traffic flow model via symmetry analysis. (English) Zbl 07646274 Chaos Solitons Fractals 165, Part 1, Article ID 112779, 11 p. (2022). MSC: 35L60 35L67 35D99 76M60 PDF BibTeX XML Cite \textit{S. Shagolshem} et al., Chaos Solitons Fractals 165, Part 1, Article ID 112779, 11 p. (2022; Zbl 07646274) Full Text: DOI OpenURL
Vergallo, Pierandrea Quasilinear systems of first order PDEs with nonlocal Hamiltonian structures. (English) Zbl 07620721 Math. Phys. Anal. Geom. 25, No. 4, Paper No. 26, 19 p. (2022). MSC: 35G50 37K06 37K10 PDF BibTeX XML Cite \textit{P. Vergallo}, Math. Phys. Anal. Geom. 25, No. 4, Paper No. 26, 19 p. (2022; Zbl 07620721) Full Text: DOI arXiv OpenURL
Serov, M. I.; Podoshvelev, Yu. G. Nonlocal symmetries of the system of chemotaxis equations with derivative nonlinearity. (English. Ukrainian original) Zbl 07613712 Ukr. Math. J. 74, No. 3, 420-438 (2022); translation from Ukr. Mat. Zh. 74, No. 3, 373-388 (2022). MSC: 35A22 35B06 35C05 35K59 92C17 PDF BibTeX XML Cite \textit{M. I. Serov} and \textit{Yu. G. Podoshvelev}, Ukr. Math. J. 74, No. 3, 420--438 (2022; Zbl 07613712); translation from Ukr. Mat. Zh. 74, No. 3, 373--388 (2022) Full Text: DOI OpenURL
de Laire, André; López-Martínez, Salvador Existence and decay of traveling waves for the nonlocal Gross-Pitaevskii equation. (English) Zbl 1497.35429 Commun. Partial Differ. Equations 47, No. 9, 1732-1794 (2022). MSC: 35Q55 35J20 35C07 37K06 35C08 35A01 37K40 35B45 35R09 82D05 81V73 PDF BibTeX XML Cite \textit{A. de Laire} and \textit{S. López-Martínez}, Commun. Partial Differ. Equations 47, No. 9, 1732--1794 (2022; Zbl 1497.35429) Full Text: DOI arXiv OpenURL
Rasin, Alexander G.; Schiff, Jeremy Four symmetries of the KdV equation. (English) Zbl 1492.35284 J. Nonlinear Sci. 32, No. 5, Paper No. 68, 23 p. (2022). MSC: 35Q53 37K10 37K35 17B80 70G65 PDF BibTeX XML Cite \textit{A. G. Rasin} and \textit{J. Schiff}, J. Nonlinear Sci. 32, No. 5, Paper No. 68, 23 p. (2022; Zbl 1492.35284) Full Text: DOI arXiv OpenURL
Waheed, Hira; Zada, Akbar; Rizwan, Rizwan; Popa, Ioan-Lucian Hyers-Ulam stability for a coupled system of fractional differential equation with \(p\)-Laplacian operator having integral boundary conditions. (English) Zbl 07558426 Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 92, 24 p. (2022). Reviewer: Hakan Adıgüzel (Serdivan) MSC: 34A08 34B10 34D10 34C14 PDF BibTeX XML Cite \textit{H. Waheed} et al., Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 92, 24 p. (2022; Zbl 07558426) Full Text: DOI OpenURL
Djitte, Sidy M.; Jarohs, Sven Symmetry of odd solutions to equations with fractional Laplacian. (English) Zbl 1490.35018 J. Elliptic Parabol. Equ. 8, No. 1, 209-230 (2022). MSC: 35B06 35B50 35J25 35J61 35R11 35S15 PDF BibTeX XML Cite \textit{S. M. Djitte} and \textit{S. Jarohs}, J. Elliptic Parabol. Equ. 8, No. 1, 209--230 (2022; Zbl 1490.35018) Full Text: DOI arXiv OpenURL
Yue, Yunfei; Huang, Lili On the similarity reduction solutions of the Bogoyavlenskii equation. (English) Zbl 1487.35024 Appl. Math. Lett. 131, Article ID 108050, 6 p. (2022). MSC: 35B06 35G50 PDF BibTeX XML Cite \textit{Y. Yue} and \textit{L. Huang}, Appl. Math. Lett. 131, Article ID 108050, 6 p. (2022; Zbl 1487.35024) Full Text: DOI OpenURL
Yang, Minbo; Rădulescu, Vicențiu D.; Zhou, Xianmei Critical Stein-Weiss elliptic systems: symmetry, regularity and asymptotic properties of solutions. (English) Zbl 1492.35110 Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 109, 38 p. (2022). Reviewer: Calogero Vetro (Palermo) MSC: 35J47 35B06 35B53 PDF BibTeX XML Cite \textit{M. Yang} et al., Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 109, 38 p. (2022; Zbl 1492.35110) Full Text: DOI OpenURL
Chen, Xueying; Bao, Gejun; Li, Guanfeng Symmetry of solutions for a class of nonlocal Monge-Ampère equations. (English) Zbl 1484.35019 Complex Var. Elliptic Equ. 67, No. 1, 129-150 (2022). MSC: 35B06 35B50 35J60 35J96 PDF BibTeX XML Cite \textit{X. Chen} et al., Complex Var. Elliptic Equ. 67, No. 1, 129--150 (2022; Zbl 1484.35019) Full Text: DOI OpenURL
Li, Jian; Xia, Tiecheng Darboux transformation to the nonlocal complex short pulse equation. (English) Zbl 1484.35013 Appl. Math. Lett. 126, Article ID 107809, 7 p. (2022). MSC: 35A22 35B06 35B10 35G25 PDF BibTeX XML Cite \textit{J. Li} and \textit{T. Xia}, Appl. Math. Lett. 126, Article ID 107809, 7 p. (2022; Zbl 1484.35013) Full Text: DOI OpenURL
Acunzo, Adriano; Bajardi, Francesco; Capozziello, Salvatore Non-local curvature gravity cosmology via Noether symmetries. (English) Zbl 1486.83007 Phys. Lett., B 826, Article ID 136907, 11 p. (2022). MSC: 83C15 34B10 83F05 70H33 46S60 PDF BibTeX XML Cite \textit{A. Acunzo} et al., Phys. Lett., B 826, Article ID 136907, 11 p. (2022; Zbl 1486.83007) Full Text: DOI arXiv OpenURL
Luo, Linfeng; Zhang, Zhengce Symmetry and nonexistence of positive solutions for fully nonlinear nonlocal systems. (English) Zbl 07443307 Appl. Math. Lett. 124, Article ID 107674, 7 p. (2022). MSC: 35R11 35B50 35B06 35J60 35J92 PDF BibTeX XML Cite \textit{L. Luo} and \textit{Z. Zhang}, Appl. Math. Lett. 124, Article ID 107674, 7 p. (2022; Zbl 07443307) Full Text: DOI OpenURL
Arnesen, Mathias Nikolai Decay and symmetry of solitary waves. (English) Zbl 1477.35154 J. Math. Anal. Appl. 507, No. 1, Article ID 125450, 24 p. (2022). MSC: 35Q35 35C08 35B06 76B15 PDF BibTeX XML Cite \textit{M. N. Arnesen}, J. Math. Anal. Appl. 507, No. 1, Article ID 125450, 24 p. (2022; Zbl 1477.35154) Full Text: DOI arXiv OpenURL
Krasil’shchik, I. S.; Verbovetsky, A. M. Recursion operators in the cotangent covering of the rdDym equation. (English) Zbl 1477.35010 Anal. Math. Phys. 12, No. 1, Paper No. 1, 14 p. (2022). MSC: 35B06 35G20 PDF BibTeX XML Cite \textit{I. S. Krasil'shchik} and \textit{A. M. Verbovetsky}, Anal. Math. Phys. 12, No. 1, Paper No. 1, 14 p. (2022; Zbl 1477.35010) Full Text: DOI arXiv OpenURL
Guo, Yuxia; Peng, Shaolong A direct method of moving planes for fully nonlinear nonlocal operators and applications. (English) Zbl 1479.35919 Discrete Contin. Dyn. Syst., Ser. S 14, No. 6, 1871-1897 (2021). MSC: 35R11 35B06 35B50 35B53 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{S. Peng}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 6, 1871--1897 (2021; Zbl 1479.35919) Full Text: DOI OpenURL
Wang, Pengyan; Chen, Li; Niu, Pengcheng Symmetric properties for Choquard equations involving fully nonlinear nonlocal operators. (English) Zbl 1479.35930 Bull. Braz. Math. Soc. (N.S.) 52, No. 4, 841-862 (2021). MSC: 35R11 35A09 35B06 35B09 35R09 PDF BibTeX XML Cite \textit{P. Wang} et al., Bull. Braz. Math. Soc. (N.S.) 52, No. 4, 841--862 (2021; Zbl 1479.35930) Full Text: DOI arXiv OpenURL
Hao, Xiazhi Nonlocal symmetries of some nonlinear partial differential equations with third-order Lax pairs. (English. Russian original) Zbl 1467.35019 Theor. Math. Phys. 206, No. 2, 119-127 (2021); translation from Teor. Mat. Fiz. 206, No. 2, 139-148 (2021). MSC: 35A30 35B06 PDF BibTeX XML Cite \textit{X. Hao}, Theor. Math. Phys. 206, No. 2, 119--127 (2021; Zbl 1467.35019); translation from Teor. Mat. Fiz. 206, No. 2, 139--148 (2021) Full Text: DOI OpenURL
Jin, Tianling; Xiong, Jingang Asymptotic symmetry and local behavior of solutions of higher order conformally invariant equations with isolated singularities. (English) Zbl 1465.35396 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 4, 1167-1216 (2021). MSC: 35R11 35J30 35J61 35B06 35B09 35B40 PDF BibTeX XML Cite \textit{T. Jin} and \textit{J. Xiong}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 4, 1167--1216 (2021; Zbl 1465.35396) Full Text: DOI arXiv OpenURL
Dai, Wei; Qin, Guolin Maximum principles and the method of moving planes for the uniformly elliptic nonlocal Bellman operator and applications. (English) Zbl 1467.35072 Ann. Mat. Pura Appl. (4) 200, No. 3, 1085-1134 (2021). Reviewer: Giovanni Anello (Messina) MSC: 35B50 35R11 35B06 35B53 35J96 PDF BibTeX XML Cite \textit{W. Dai} and \textit{G. Qin}, Ann. Mat. Pura Appl. (4) 200, No. 3, 1085--1134 (2021; Zbl 1467.35072) Full Text: DOI arXiv OpenURL
Krasil’shchik, I. S.; Vojčák, P. On the algebra of nonlocal symmetries for the 4D Martínez Alonso-Shabat equation. (English) Zbl 1461.35014 J. Geom. Phys. 163, Article ID 104122, 12 p. (2021). MSC: 35B06 35G20 PDF BibTeX XML Cite \textit{I. S. Krasil'shchik} and \textit{P. Vojčák}, J. Geom. Phys. 163, Article ID 104122, 12 p. (2021; Zbl 1461.35014) Full Text: DOI arXiv OpenURL
Baran, Hynek Infinitely many commuting nonlocal symmetries for modified Martínez Alonso-Shabat equation. (English) Zbl 1459.35010 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105692, 5 p. (2021). MSC: 35A30 35B06 35G20 37K06 37K10 PDF BibTeX XML Cite \textit{H. Baran}, Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105692, 5 p. (2021; Zbl 1459.35010) Full Text: DOI arXiv OpenURL
Dai, Wei; Peng, Shaolong Liouville theorems for nonnegative solutions to static weighted Schrödinger-Hartree-Maxwell type equations with combined nonlinearities. (English) Zbl 1458.35088 Anal. Math. Phys. 11, No. 2, Paper No. 46, 22 p. (2021). MSC: 35B53 35R11 35B06 PDF BibTeX XML Cite \textit{W. Dai} and \textit{S. Peng}, Anal. Math. Phys. 11, No. 2, Paper No. 46, 22 p. (2021; Zbl 1458.35088) Full Text: DOI OpenURL
Wang, Xueru; Zhu, Junyi; Qiao, Zhijun New solutions to the differential-difference KP equation. (English) Zbl 1458.35021 Appl. Math. Lett. 113, Article ID 106836, 8 p. (2021). MSC: 35B06 35Q53 35R09 PDF BibTeX XML Cite \textit{X. Wang} et al., Appl. Math. Lett. 113, Article ID 106836, 8 p. (2021; Zbl 1458.35021) Full Text: DOI OpenURL
Biler, Piotr; Boritchev, Alexandre; Karch, Grzegorz; Laurençot, Philippe Concentration phenomena in a diffusive aggregation model. (English) Zbl 1455.35264 J. Differ. Equations 271, 1092-1108 (2021). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q92 35K55 35B36 35B45 35B06 92C37 PDF BibTeX XML Cite \textit{P. Biler} et al., J. Differ. Equations 271, 1092--1108 (2021; Zbl 1455.35264) Full Text: DOI arXiv OpenURL
Sil, Subhankar; Raja Sekhar, T.; Zeidan, Dia Nonlocal conservation laws, nonlocal symmetries and exact solutions of an integrable soliton equation. (English) Zbl 1490.35015 Chaos Solitons Fractals 139, Article ID 110010, 9 p. (2020). MSC: 35A30 35B06 35Q51 PDF BibTeX XML Cite \textit{S. Sil} et al., Chaos Solitons Fractals 139, Article ID 110010, 9 p. (2020; Zbl 1490.35015) Full Text: DOI OpenURL
Kumar, Sachin; Malik, Sandeep; Biswas, Anjan A re-visitation to reported results on optical solitons. (English) Zbl 1489.35227 Chaos Solitons Fractals 137, Article ID 109855, 2 p. (2020). MSC: 35Q51 35C08 PDF BibTeX XML Cite \textit{S. Kumar} et al., Chaos Solitons Fractals 137, Article ID 109855, 2 p. (2020; Zbl 1489.35227) Full Text: DOI OpenURL
Gorni, Gianluca; Zampieri, Gaetano Lagrangian dynamics by nonlocal constants of motion. (English) Zbl 1461.37054 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2751-2759 (2020). Reviewer: Cristian Lăzureanu (Timişoara) MSC: 37J06 70H03 70H33 PDF BibTeX XML Cite \textit{G. Gorni} and \textit{G. Zampieri}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2751--2759 (2020; Zbl 1461.37054) Full Text: DOI arXiv OpenURL
Hu, Hengchun; Liu, Feiyan New interaction solutions and nonlocal symmetry of an equation combining the modified Calogero-Bogoyavlenskii-Schiff equation with its negative-order form. (English) Zbl 1451.35162 Commun. Theor. Phys. 72, No. 6, Article ID 065002, 5 p. (2020). MSC: 35Q53 35C08 35C07 35C10 PDF BibTeX XML Cite \textit{H. Hu} and \textit{F. Liu}, Commun. Theor. Phys. 72, No. 6, Article ID 065002, 5 p. (2020; Zbl 1451.35162) Full Text: DOI OpenURL
Lou, S. Y. Multi-place physics and multi-place nonlocal systems. (English) Zbl 1451.81011 Commun. Theor. Phys. 72, No. 5, Article ID 057001, 13 p. (2020). MSC: 81P05 35Q55 35C08 81P20 70H06 35Q53 PDF BibTeX XML Cite \textit{S. Y. Lou}, Commun. Theor. Phys. 72, No. 5, Article ID 057001, 13 p. (2020; Zbl 1451.81011) Full Text: DOI OpenURL
Gürses, Metin; Pekcan, Aslı; Zheltukhin, Kostyantyn Discrete symmetries and nonlocal reductions. (English) Zbl 1448.37065 Phys. Lett., A 384, No. 3, Article ID 126065, 5 p. (2020). MSC: 37J35 37K06 PDF BibTeX XML Cite \textit{M. Gürses} et al., Phys. Lett., A 384, No. 3, Article ID 126065, 5 p. (2020; Zbl 1448.37065) Full Text: DOI arXiv OpenURL
Xia, Yarong; Yao, Ruoxia; Xin, Xiangpeng Nonlocal symmetries and group invariant solutions for the coupled variable-coefficient Newell-Whitehead system. (English) Zbl 1441.35018 J. Nonlinear Math. Phys. 27, No. 4, 581-591 (2020). MSC: 35B06 37K35 PDF BibTeX XML Cite \textit{Y. Xia} et al., J. Nonlinear Math. Phys. 27, No. 4, 581--591 (2020; Zbl 1441.35018) Full Text: DOI OpenURL
Pei, Long Exponential decay and symmetry of solitary waves to Degasperis-Procesi equation. (English) Zbl 1442.35398 J. Differ. Equations 269, No. 10, 7730-7749 (2020). MSC: 35Q53 74J35 35B06 35B40 35C07 35C08 35S30 45K05 37K10 PDF BibTeX XML Cite \textit{L. Pei}, J. Differ. Equations 269, No. 10, 7730--7749 (2020; Zbl 1442.35398) Full Text: DOI arXiv OpenURL
Le, Phuong Symmetry of solutions for a fractional \(p\)-Laplacian equation of Choquard type. (English) Zbl 1477.35300 Int. J. Math. 31, No. 4, Article ID 2050026, 14 p. (2020). Reviewer: Sven Jarohs (Frankfurt am Main) MSC: 35R11 35B06 35J92 35R09 PDF BibTeX XML Cite \textit{P. Le}, Int. J. Math. 31, No. 4, Article ID 2050026, 14 p. (2020; Zbl 1477.35300) Full Text: DOI OpenURL
Mori, Tatsuki; Kuto, Kousuke; Tsujikawa, Tohru; Yotsutani, Shoji Representation formulas of solutions and bifurcation sheets to a nonlocal Allen-Cahn equation. (English) Zbl 1445.34063 Discrete Contin. Dyn. Syst. 40, No. 8, 4907-4925 (2020). Reviewer: Ruyun Ma (Lanzhou) MSC: 34C23 34B15 37G40 PDF BibTeX XML Cite \textit{T. Mori} et al., Discrete Contin. Dyn. Syst. 40, No. 8, 4907--4925 (2020; Zbl 1445.34063) Full Text: DOI OpenURL
Zeng, Fanqi Symmetric properties for system involving uniformly elliptic nonlocal operators. (English) Zbl 1440.35122 Mediterr. J. Math. 17, No. 3, Paper No. 79, 17 p. (2020). MSC: 35J60 35B09 35B06 PDF BibTeX XML Cite \textit{F. Zeng}, Mediterr. J. Math. 17, No. 3, Paper No. 79, 17 p. (2020; Zbl 1440.35122) Full Text: DOI OpenURL
Zhao, Lu; Qu, Changzheng Nonlocal symmetries of the Camassa-Holm type equations. (English) Zbl 1443.37050 Chin. Ann. Math., Ser. B 41, No. 3, 407-418 (2020). MSC: 37K06 37K10 35Q51 35B06 PDF BibTeX XML Cite \textit{L. Zhao} and \textit{C. Qu}, Chin. Ann. Math., Ser. B 41, No. 3, 407--418 (2020; Zbl 1443.37050) Full Text: DOI OpenURL
Wang, Kun; Yang, Minbo Symmetry of positive solutions for Hartree type nonlocal Lane-Emden system. (English) Zbl 1436.35144 Appl. Math. Lett. 105, Article ID 106318, 9 p. (2020). MSC: 35J47 35B09 35B06 PDF BibTeX XML Cite \textit{K. Wang} and \textit{M. Yang}, Appl. Math. Lett. 105, Article ID 106318, 9 p. (2020; Zbl 1436.35144) Full Text: DOI OpenURL
Catalano Ferraioli, D.; Gaeta, G. On the geometry of twisted symmetries: gauging and coverings. (English) Zbl 1436.35021 J. Geom. Phys. 151, Article ID 103620, 16 p. (2020). MSC: 35B06 35A30 70S15 81T13 PDF BibTeX XML Cite \textit{D. Catalano Ferraioli} and \textit{G. Gaeta}, J. Geom. Phys. 151, Article ID 103620, 16 p. (2020; Zbl 1436.35021) Full Text: DOI arXiv OpenURL
Wang, Haifeng; Zhang, Yufeng Residual symmetries and Bäcklund transformations of \((2+1)\)-dimensional strongly coupled Burgers system. (English) Zbl 1435.35024 Adv. Math. Phys. 2020, Article ID 6821690, 8 p. (2020). MSC: 35B06 35F50 58J72 PDF BibTeX XML Cite \textit{H. Wang} and \textit{Y. Zhang}, Adv. Math. Phys. 2020, Article ID 6821690, 8 p. (2020; Zbl 1435.35024) Full Text: DOI OpenURL
Lorenzoni, P.; Vitolo, R. Weakly nonlocal Poisson brackets, Schouten brackets and supermanifolds. (English) Zbl 1439.37071 J. Geom. Phys. 149, Article ID 103573, 8 p. (2020). Reviewer: Tihomir Valchev (Sofia) MSC: 37K25 37K06 37K10 58A50 46S60 35A30 PDF BibTeX XML Cite \textit{P. Lorenzoni} and \textit{R. Vitolo}, J. Geom. Phys. 149, Article ID 103573, 8 p. (2020; Zbl 1439.37071) Full Text: DOI arXiv OpenURL
de Laire, André; Mennuni, Pierre Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity. (English) Zbl 1431.35170 Discrete Contin. Dyn. Syst. 40, No. 1, 635-682 (2020). MSC: 35Q55 35J20 35C07 35B35 35C08 35Q53 37K06 49J20 PDF BibTeX XML Cite \textit{A. de Laire} and \textit{P. Mennuni}, Discrete Contin. Dyn. Syst. 40, No. 1, 635--682 (2020; Zbl 1431.35170) Full Text: DOI arXiv OpenURL
Stalin, S.; Senthilvelan, M.; Lakshmanan, M. Degenerate soliton solutions and their dynamics in the nonlocal Manakov system: I symmetry preserving and symmetry breaking solutions. (English) Zbl 1439.35447 Nonlinear Dyn. 95, No. 1, 343-360 (2019). MSC: 35Q55 35C08 35B06 PDF BibTeX XML Cite \textit{S. Stalin} et al., Nonlinear Dyn. 95, No. 1, 343--360 (2019; Zbl 1439.35447) Full Text: DOI arXiv OpenURL
Liu, Xi-zhong; Yu, Jun A nonlocal nonlinear Schrödinger equation derived from a two-layer fluid model. (English) Zbl 1437.35634 Nonlinear Dyn. 96, No. 3, 2103-2114 (2019). MSC: 35Q55 35Q35 76D10 35B06 PDF BibTeX XML Cite \textit{X.-z. Liu} and \textit{J. Yu}, Nonlinear Dyn. 96, No. 3, 2103--2114 (2019; Zbl 1437.35634) Full Text: DOI arXiv OpenURL
Shapovalov, Alexander V.; Trifonov, Andrey Yu. Approximate solutions and symmetry of a two-component nonlocal reaction-diffusion population model of the Fisher-KPP type. (English) Zbl 1423.35367 Symmetry 11, No. 3, Paper No. 366, 19 p. (2019). MSC: 35Q92 92D25 35K57 PDF BibTeX XML Cite \textit{A. V. Shapovalov} and \textit{A. Yu. Trifonov}, Symmetry 11, No. 3, Paper No. 366, 19 p. (2019; Zbl 1423.35367) Full Text: DOI OpenURL
Balondo Iyela, Daddy; Govaerts, Jan Nonlocal global symmetries of a free scalar field in a bounded spatial domain. (English) Zbl 1425.81070 J. Math. Phys. 60, No. 9, 092302, 14 p. (2019). Reviewer: Akira Asada (Takarazuka) MSC: 81T10 81R05 81R10 70S10 35G15 34B30 PDF BibTeX XML Cite \textit{D. Balondo Iyela} and \textit{J. Govaerts}, J. Math. Phys. 60, No. 9, 092302, 14 p. (2019; Zbl 1425.81070) Full Text: DOI arXiv OpenURL
Baran, H.; Blaschke, P.; Krasil’shchik, I. S.; Marvan, M. On symmetries of the Gibbons-Tsarev equation. (English) Zbl 1423.35015 J. Geom. Phys. 144, 54-80 (2019). MSC: 35B06 PDF BibTeX XML Cite \textit{H. Baran} et al., J. Geom. Phys. 144, 54--80 (2019; Zbl 1423.35015) Full Text: DOI arXiv OpenURL
Guha, Partha; Ghose-Choudhury, A. Nonlocal transformations of the generalized Liénard type equations and dissipative Ermakov-Milne-Pinney systems. (English) Zbl 1425.34052 Int. J. Geom. Methods Mod. Phys. 16, No. 7, Article ID 1950107, 18 p. (2019). MSC: 34C20 34C14 37L20 34A34 PDF BibTeX XML Cite \textit{P. Guha} and \textit{A. Ghose-Choudhury}, Int. J. Geom. Methods Mod. Phys. 16, No. 7, Article ID 1950107, 18 p. (2019; Zbl 1425.34052) Full Text: DOI arXiv OpenURL
Hu, Xiaorui; Jin, Yongyang; Zhou, Kai Optimal system and group invariant solutions of the Whitham-Broer-Kaup system. (English) Zbl 1418.35085 Adv. Math. Phys. 2019, Article ID 1892481, 10 p. (2019). MSC: 35G50 35B06 PDF BibTeX XML Cite \textit{X. Hu} et al., Adv. Math. Phys. 2019, Article ID 1892481, 10 p. (2019; Zbl 1418.35085) Full Text: DOI OpenURL
Casati, M.; Ferapontov, E. V.; Pavlov, M. V.; Vitolo, R. F. On a class of third-order nonlocal Hamiltonian operators. (English) Zbl 1420.37049 J. Geom. Phys. 138, 285-296 (2019). MSC: 37K05 37K10 37K20 37K25 PDF BibTeX XML Cite \textit{M. Casati} et al., J. Geom. Phys. 138, 285--296 (2019; Zbl 1420.37049) Full Text: DOI arXiv OpenURL
Zhang, Biran; Lü, Zhongxue Symmetry and nonexistence of solutions for a fully nonlinear nonlocal system. (English) Zbl 1412.35356 Pac. J. Math. 299, No. 1, 237-255 (2019). MSC: 35R09 35B06 35B09 35B50 35B53 PDF BibTeX XML Cite \textit{B. Zhang} and \textit{Z. Lü}, Pac. J. Math. 299, No. 1, 237--255 (2019; Zbl 1412.35356) Full Text: DOI OpenURL
Sun, Yu-Juan; Zhang, Li; Li, Wan-Tong; Wang, Zhi-Cheng Entire solutions in nonlocal monostable equations: asymmetric case. (English) Zbl 1409.35117 Commun. Pure Appl. Anal. 18, No. 3, 1049-1072 (2019). MSC: 35K57 35B08 34C14 PDF BibTeX XML Cite \textit{Y.-J. Sun} et al., Commun. Pure Appl. Anal. 18, No. 3, 1049--1072 (2019; Zbl 1409.35117) Full Text: DOI OpenURL
Shi, Zhenhua; Du, Jingjing A new kind of nonlocal symmetry for the \({\mu}\)-Camassa-Holm equation with linear dispersion. (English) Zbl 1406.37052 Math. Methods Appl. Sci. 42, No. 1, 272-286 (2019). MSC: 37K10 37K05 37K35 PDF BibTeX XML Cite \textit{Z. Shi} and \textit{J. Du}, Math. Methods Appl. Sci. 42, No. 1, 272--286 (2019; Zbl 1406.37052) Full Text: DOI OpenURL
Jamal, Sameerah; Leach, Peter G. L.; Paliathanasis, Andronikos Nonlocal representation of the \(\mathrm{sl}(2,R)\) algebra for the Chazy equation. (English) Zbl 1412.34241 Quaest. Math. 42, No. 1, 125-133 (2019). Reviewer: Thomas Dreyfus (Paris) MSC: 34M25 34M55 34C14 PDF BibTeX XML Cite \textit{S. Jamal} et al., Quaest. Math. 42, No. 1, 125--133 (2019; Zbl 1412.34241) Full Text: DOI arXiv OpenURL
Yan, Zhenya A novel hierarchy of two-family-parameter equations: local, nonlocal, and mixed-local-nonlocal vector nonlinear Schrödinger equations. (English) Zbl 1461.37073 Appl. Math. Lett. 79, 123-130 (2018). MSC: 37K10 37K06 35Q55 PDF BibTeX XML Cite \textit{Z. Yan}, Appl. Math. Lett. 79, 123--130 (2018; Zbl 1461.37073) Full Text: DOI arXiv OpenURL
Ma, Zheng-Yi; Fei, Jin-Xi; Chen, Jun-Chao Nonlocal symmetry and explicit solution of the Alice-Bob modified Korteweg-de Vries equation. (English) Zbl 1451.35170 Commun. Theor. Phys. 70, No. 1, 31-37 (2018). MSC: 35Q53 35B06 PDF BibTeX XML Cite \textit{Z.-Y. Ma} et al., Commun. Theor. Phys. 70, No. 1, 31--37 (2018; Zbl 1451.35170) Full Text: DOI OpenURL
Lelito, Aleksandra; Morozov, Oleg I. Nonlocal symmetries of Plebański’s second heavenly equation. (English) Zbl 1411.58007 J. Nonlinear Math. Phys. 25, No. 2, 188-197 (2018). MSC: 58H05 58J70 35A30 PDF BibTeX XML Cite \textit{A. Lelito} and \textit{O. I. Morozov}, J. Nonlinear Math. Phys. 25, No. 2, 188--197 (2018; Zbl 1411.58007) Full Text: DOI OpenURL
Loebbert, Florian; Spiering, Anne Nonlocal symmetries and factorized scattering. (English) Zbl 1411.82024 J. Phys. A, Math. Theor. 51, No. 48, Article ID 485202, 31 p. (2018). MSC: 82C20 82C23 81T60 81T20 81T40 81S05 81U20 PDF BibTeX XML Cite \textit{F. Loebbert} and \textit{A. Spiering}, J. Phys. A, Math. Theor. 51, No. 48, Article ID 485202, 31 p. (2018; Zbl 1411.82024) Full Text: DOI arXiv OpenURL
Grahovski, G. G.; Mohammed, A. J.; Susanto, H. Nonlocal reductions of the Ablowitz-Ladik equation. (English. Russian original) Zbl 1405.37076 Theor. Math. Phys. 197, No. 1, 1412-1429 (2018); translation from Teor. Mat. Fiz. 197, No. 1, 24-44 (2018). MSC: 37K10 37K05 35C08 35Q15 PDF BibTeX XML Cite \textit{G. G. Grahovski} et al., Theor. Math. Phys. 197, No. 1, 1412--1429 (2018; Zbl 1405.37076); translation from Teor. Mat. Fiz. 197, No. 1, 24--44 (2018) Full Text: DOI arXiv OpenURL
Krause, Andrew L.; Beliaev, Dmitry; Van Gorder, Robert A.; Waters, Sarah L. Bifurcations and dynamics emergent from lattice and continuum models of bioactive porous media. (English) Zbl 1402.35285 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 11, Article ID 1830037, 27 p. (2018). MSC: 35Q92 35A24 35K57 35B32 35B06 35B36 35B10 PDF BibTeX XML Cite \textit{A. L. Krause} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 11, Article ID 1830037, 27 p. (2018; Zbl 1402.35285) Full Text: DOI arXiv OpenURL
Huang, Lili; Chen, Yong Nonlocal symmetry and similarity reductions for a \((2+1)\)-dimensional Korteweg-de Vries equation. (English) Zbl 1398.35197 Nonlinear Dyn. 92, No. 2, 221-234 (2018). MSC: 35Q53 35B06 PDF BibTeX XML Cite \textit{L. Huang} and \textit{Y. Chen}, Nonlinear Dyn. 92, No. 2, 221--234 (2018; Zbl 1398.35197) Full Text: DOI OpenURL
Holba, P.; Krasil’shchik, I. S.; Morozov, O. I.; Vojčák, P. Reductions of the universal hierarchy and rdDym equations and their symmetry properties. (English) Zbl 1397.37068 Lobachevskii J. Math. 39, No. 5, 673-681 (2018). MSC: 37K05 37K10 PDF BibTeX XML Cite \textit{P. Holba} et al., Lobachevskii J. Math. 39, No. 5, 673--681 (2018; Zbl 1397.37068) Full Text: DOI arXiv OpenURL
Gorni, Gianluca; Zampieri, Gaetano Nonstandard separation of variables for the Maxwell-Bloch conservative system. (English) Zbl 1393.37070 São Paulo J. Math. Sci. 12, No. 1, 146-169 (2018). MSC: 37J35 70H06 78A60 37J15 PDF BibTeX XML Cite \textit{G. Gorni} and \textit{G. Zampieri}, São Paulo J. Math. Sci. 12, No. 1, 146--169 (2018; Zbl 1393.37070) Full Text: DOI OpenURL
Montoro, Luigi; Punzo, Fabio; Sciunzi, Berardino Qualitative properties of singular solutions to nonlocal problems. (English) Zbl 1391.35384 Ann. Mat. Pura Appl. (4) 197, No. 3, 941-964 (2018). Reviewer: Dian K. Palagachev (Bari) MSC: 35R09 34B10 35B06 35B51 PDF BibTeX XML Cite \textit{L. Montoro} et al., Ann. Mat. Pura Appl. (4) 197, No. 3, 941--964 (2018; Zbl 1391.35384) Full Text: DOI OpenURL
Kobayashi, Mio; Yoshinaga, Tetsuya Chaotic itinerancy observed in mutually coupled Gaussian maps. (English) Zbl 1390.37072 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 4, Article ID 1830011, 12 p. (2018). MSC: 37E30 37E05 37C25 37C80 37Gxx 37D45 PDF BibTeX XML Cite \textit{M. Kobayashi} and \textit{T. Yoshinaga}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 4, Article ID 1830011, 12 p. (2018; Zbl 1390.37072) Full Text: DOI OpenURL
Shapovalov, A. V.; Trifonov, A. Yu. An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher-KPP equation. (English) Zbl 1458.35432 Int. J. Geom. Methods Mod. Phys. 15, No. 6, Article ID 1850102, 30 p. (2018). MSC: 35Q92 35B36 81Q20 76M60 35B06 92D25 35K58 PDF BibTeX XML Cite \textit{A. V. Shapovalov} and \textit{A. Yu. Trifonov}, Int. J. Geom. Methods Mod. Phys. 15, No. 6, Article ID 1850102, 30 p. (2018; Zbl 1458.35432) Full Text: DOI arXiv OpenURL
Demontis, F.; Ortenzi, G.; van der Mee, C. Nonlocal integrable PDEs from hierarchies of symmetry laws: the example of Pohlmeyer-Lund-Regge equation and its reflectionless potential solutions. (English) Zbl 1406.35018 J. Geom. Phys. 127, 84-100 (2018). MSC: 35B06 35P25 35A30 35Q55 PDF BibTeX XML Cite \textit{F. Demontis} et al., J. Geom. Phys. 127, 84--100 (2018; Zbl 1406.35018) Full Text: DOI OpenURL
Kuto, Kousuke; Mori, Tatsuki; Tsujikawa, Tohru; Yotsutani, Shoji Global solution branches for a nonlocal Allen-Cahn equation. (English) Zbl 1387.34034 J. Differ. Equations 264, No. 9, 5928-5949 (2018). Reviewer: Ruyun Ma (Lanzhou) MSC: 34B08 34C23 34B10 37G40 PDF BibTeX XML Cite \textit{K. Kuto} et al., J. Differ. Equations 264, No. 9, 5928--5949 (2018; Zbl 1387.34034) Full Text: DOI OpenURL
Holba, P.; Krasil’Shchik, I. S.; Morozov, O. I.; Vojčák, P. 2D reductions of the equation \(u_{yy} = u_{tx} + u_y u_{xx} - u_x u_{xy}\) and their nonlocal symmetries. (English) Zbl 1420.35024 J. Nonlinear Math. Phys. 24, Suppl. 1, 36-47 (2017). MSC: 35B06 37K10 PDF BibTeX XML Cite \textit{P. Holba} et al., J. Nonlinear Math. Phys. 24, 36--47 (2017; Zbl 1420.35024) Full Text: DOI arXiv OpenURL
Tang, Xiao-Yan; Liang, Zu-Feng Nonlocal symmetries and conservation laws of the sinh-Gordon equation. (English) Zbl 1421.35225 J. Nonlinear Math. Phys. 24, No. 1, 93-106 (2017). MSC: 35L71 35A30 70S10 76M60 PDF BibTeX XML Cite \textit{X.-Y. Tang} and \textit{Z.-F. Liang}, J. Nonlinear Math. Phys. 24, No. 1, 93--106 (2017; Zbl 1421.35225) Full Text: DOI OpenURL
Carmona, V.; Fernández-Sánchez, F.; García-Medina, E. Including homoclinic connections and T-point heteroclinic cycles in the same global problem for a reversible family of piecewise linear systems. (English) Zbl 1411.34059 Appl. Math. Comput. 296, 33-41 (2017). MSC: 34C37 34A36 37G99 34C14 PDF BibTeX XML Cite \textit{V. Carmona} et al., Appl. Math. Comput. 296, 33--41 (2017; Zbl 1411.34059) Full Text: DOI OpenURL
Bai, Xirui; Wo, Weifeng Nonlocal symmetries and interaction solutions for the new \( (2 + 1)\)-dimensional generalized breaking soliton equation. (Chinese. English summary) Zbl 1399.35027 Pure Appl. Math. 33, No. 5, 536-544 (2017). MSC: 35B06 35Q51 PDF BibTeX XML Cite \textit{X. Bai} and \textit{W. Wo}, Pure Appl. Math. 33, No. 5, 536--544 (2017; Zbl 1399.35027) Full Text: DOI OpenURL
Baranetskij, Ya. O.; Kalenyuk, P. I.; Kolyasa, L. I.; Kopach, M. I. The nonlocal problem for the differential-operator equation of the even order with the involution. (English) Zbl 1397.34100 Carpathian Math. Publ. 9, No. 2, 109-119 (2017). MSC: 34G10 34L10 34C14 34B09 34B10 PDF BibTeX XML Cite \textit{Ya. O. Baranetskij} et al., Carpathian Math. Publ. 9, No. 2, 109--119 (2017; Zbl 1397.34100) Full Text: DOI OpenURL
Chetverikov, V. N. Coverings and integrable pseudosymmetries of differential equations. (English. Russian original) Zbl 1387.35021 Differ. Equ. 53, No. 11, 1428-1439 (2017); translation from Differ. Uravn. 53, No. 11, 1461-1472 (2017). MSC: 35B06 58J72 PDF BibTeX XML Cite \textit{V. N. Chetverikov}, Differ. Equ. 53, No. 11, 1428--1439 (2017; Zbl 1387.35021); translation from Differ. Uravn. 53, No. 11, 1461--1472 (2017) Full Text: DOI OpenURL
Bruell, Gabriele; Ehrnström, Mats; Geyer, Anna; Pei, Long Symmetric solutions of evolutionary partial differential equations. (English) Zbl 1375.35017 Nonlinearity 30, No. 10, 3932-3950 (2017). MSC: 35B06 35Q31 PDF BibTeX XML Cite \textit{G. Bruell} et al., Nonlinearity 30, No. 10, 3932--3950 (2017; Zbl 1375.35017) Full Text: DOI arXiv OpenURL
Chen, Junchao; Zhu, Shundong Residual symmetries and soliton-cnoidal wave interaction solutions for the negative-order Korteweg-de Vries equation. (English) Zbl 1375.35018 Appl. Math. Lett. 73, 136-142 (2017). MSC: 35B06 35Q53 PDF BibTeX XML Cite \textit{J. Chen} and \textit{S. Zhu}, Appl. Math. Lett. 73, 136--142 (2017; Zbl 1375.35018) Full Text: DOI OpenURL
Wu, Jian-Wen; Lou, Sen-Yue; Yu, Jun Localization of nonlocal symmetries and symmetry reductions of Burgers equation. (English) Zbl 1365.35146 Commun. Theor. Phys. 67, No. 5, 467-472 (2017). MSC: 35Q53 35Q35 35C08 35C10 PDF BibTeX XML Cite \textit{J.-W. Wu} et al., Commun. Theor. Phys. 67, No. 5, 467--472 (2017; Zbl 1365.35146) Full Text: DOI OpenURL
Euler, M.; Euler, N.; Nucci, M. C. On nonlocal symmetries generated by recursion operators: second-order evolution equations. (English) Zbl 1360.35045 Discrete Contin. Dyn. Syst. 37, No. 8, 4239-4247 (2017). MSC: 35G20 35A30 58J70 PDF BibTeX XML Cite \textit{M. Euler} et al., Discrete Contin. Dyn. Syst. 37, No. 8, 4239--4247 (2017; Zbl 1360.35045) Full Text: DOI OpenURL
Bruell, Gabriele; Ehrnström, Mats; Pei, Long Symmetry and decay of traveling wave solutions to the Whitham equation. (English) Zbl 1358.35151 J. Differ. Equations 262, No. 8, 4232-4254 (2017). MSC: 35Q53 35B06 35B40 35S30 45K05 35C07 35C08 PDF BibTeX XML Cite \textit{G. Bruell} et al., J. Differ. Equations 262, No. 8, 4232--4254 (2017; Zbl 1358.35151) Full Text: DOI arXiv OpenURL
Zhang, Zhi-Yong; Guo, Lei-Lei; Huang, Ji-Zheng The four-dimensional Martínez Alonso-Shabat equation: nonlinear self-adjointness and conservation laws. (English) Zbl 1361.35014 Math. Methods Appl. Sci. 40, No. 1, 84-91 (2017). MSC: 35A30 70S10 35B06 68W30 PDF BibTeX XML Cite \textit{Z.-Y. Zhang} et al., Math. Methods Appl. Sci. 40, No. 1, 84--91 (2017; Zbl 1361.35014) Full Text: DOI OpenURL
Huang, Lili; Chen, Yong Nonlocal symmetry and similarity reductions for the Drinfeld-Sokolov-Satsuma-Hirota system. (English) Zbl 1353.35023 Appl. Math. Lett. 64, 177-184 (2017). MSC: 35B06 35G55 PDF BibTeX XML Cite \textit{L. Huang} and \textit{Y. Chen}, Appl. Math. Lett. 64, 177--184 (2017; Zbl 1353.35023) Full Text: DOI OpenURL
Ren, Bo; Cheng, Xue-Ping; Lin, Ji The \((2+1)\)-dimensional Konopelchenko-Dubrovsky equation: nonlocal symmetries and interaction solutions. (English) Zbl 1371.35004 Nonlinear Dyn. 86, No. 3, 1855-1862 (2016). MSC: 35B06 37K10 37K35 PDF BibTeX XML Cite \textit{B. Ren} et al., Nonlinear Dyn. 86, No. 3, 1855--1862 (2016; Zbl 1371.35004) Full Text: DOI OpenURL
Zhang, Chaoyan; Li, Biao Nonlocal symmetries and consistent Riccati expansion integrability of \((2+1)\)-dimensional dispersive long-wave equations. (Chinese. English summary) Zbl 1374.35337 Commun. Appl. Math. Comput. 30, No. 4, 618-626 (2016). MSC: 35Q51 37J15 37J35 PDF BibTeX XML Cite \textit{C. Zhang} and \textit{B. Li}, Commun. Appl. Math. Comput. 30, No. 4, 618--626 (2016; Zbl 1374.35337) Full Text: DOI OpenURL
Jarohs, Sven Symmetry of solutions to nonlocal nonlinear boundary value problems in radial sets. (English) Zbl 1364.35021 NoDEA, Nonlinear Differ. Equ. Appl. 23, No. 3, Paper No. 32, 22 p. (2016). Reviewer: Antonio Greco (Cagliari) MSC: 35B06 35B50 35R11 35S15 PDF BibTeX XML Cite \textit{S. Jarohs}, NoDEA, Nonlinear Differ. Equ. Appl. 23, No. 3, Paper No. 32, 22 p. (2016; Zbl 1364.35021) Full Text: DOI arXiv OpenURL
Zhong, Yi; Elizalde, Emilio de Sitter and power-law solutions in some models of modified gravity. (English) Zbl 1353.83026 Mod. Phys. Lett. A 31, No. 38, Article ID 1650221, 10 p. (2016). MSC: 83D05 83F05 83C20 PDF BibTeX XML Cite \textit{Y. Zhong} and \textit{E. Elizalde}, Mod. Phys. Lett. A 31, No. 38, Article ID 1650221, 10 p. (2016; Zbl 1353.83026) Full Text: DOI arXiv OpenURL
Orhan, Özlem; Özer, Teoman Linearization properties, first integrals, nonlocal transformation for heat transfer equation. (English) Zbl 1367.34003 Int. J. Mod. Phys. B 30, No. 28-29, Article ID 1640024, 12 p. (2016). Reviewer: Vladimir L. Makarov (Kyïv) MSC: 34A05 34C14 34C20 PDF BibTeX XML Cite \textit{Ö. Orhan} and \textit{T. Özer}, Int. J. Mod. Phys. B 30, No. 28--29, Article ID 1640024, 12 p. (2016; Zbl 1367.34003) Full Text: DOI OpenURL
Nucci, M. C. Ubiquitous symmetries. (English. Russian original) Zbl 1351.81063 Theor. Math. Phys. 188, No. 3, 1361-1370 (2016); translation from Teor. Mat. Fiz. 188, No. 3, 459-469 (2016). MSC: 81S05 81R12 81R05 70H33 PDF BibTeX XML Cite \textit{M. C. Nucci}, Theor. Math. Phys. 188, No. 3, 1361--1370 (2016; Zbl 1351.81063); translation from Teor. Mat. Fiz. 188, No. 3, 459--469 (2016) Full Text: DOI OpenURL
Krasil’shchik, I. S.; Sergyeyev, A.; Morozov, O. I. Infinitely many nonlocal conservation laws for the ABC equation with \(A+B+C\neq 0\). (English) Zbl 1352.37178 Calc. Var. Partial Differ. Equ. 55, No. 5, Paper No. 123, 12 p. (2016). MSC: 37K10 37K05 PDF BibTeX XML Cite \textit{I. S. Krasil'shchik} et al., Calc. Var. Partial Differ. Equ. 55, No. 5, Paper No. 123, 12 p. (2016; Zbl 1352.37178) Full Text: DOI arXiv OpenURL
Wang, Gangwei; Kara, A. H.; Fakhar, K. Nonlocal symmetry analysis and conservation laws to an third-order Burgers equation. (English) Zbl 1353.35240 Nonlinear Dyn. 83, No. 4, 2281-2292 (2016). MSC: 35Q35 35B06 PDF BibTeX XML Cite \textit{G. Wang} et al., Nonlinear Dyn. 83, No. 4, 2281--2292 (2016; Zbl 1353.35240) Full Text: DOI OpenURL
Ren, Bo; Cheng, Xue-Ping CTE solvability, nonlocal symmetry and explicit solutions of modified Boussinesq system. (English) Zbl 1345.35077 Commun. Theor. Phys. 66, No. 1, 84-92 (2016). MSC: 35Q35 37K05 PDF BibTeX XML Cite \textit{B. Ren} and \textit{X.-P. Cheng}, Commun. Theor. Phys. 66, No. 1, 84--92 (2016; Zbl 1345.35077) Full Text: DOI OpenURL
Ren, Bo; Yu, Jun; Liu, Xi-Zhong Nonlocal symmetries and interaction solutions for potential Kadomtsev-Petviashvili equation. (English) Zbl 1335.35221 Commun. Theor. Phys. 65, No. 3, 341-346 (2016). MSC: 35Q53 35B06 35A25 PDF BibTeX XML Cite \textit{B. Ren} et al., Commun. Theor. Phys. 65, No. 3, 341--346 (2016; Zbl 1335.35221) Full Text: DOI OpenURL
Sheng, Qing; Wo, Weifeng Symmetry analysis and interaction solutions for the (\(2 + 1\))-dimensional Kaup-Kupershmidt system. (English) Zbl 1338.35022 Appl. Math. Lett. 58, 165-171 (2016). MSC: 35B06 PDF BibTeX XML Cite \textit{Q. Sheng} and \textit{W. Wo}, Appl. Math. Lett. 58, 165--171 (2016; Zbl 1338.35022) Full Text: DOI OpenURL
Xin, Xiangpeng; Liu, Yutang; Liu, Xiqiang Nonlocal symmetries, exact solutions and conservation laws of the coupled Hirota equations. (English) Zbl 1336.35029 Appl. Math. Lett. 55, 63-71 (2016). MSC: 35B06 35C05 PDF BibTeX XML Cite \textit{X. Xin} et al., Appl. Math. Lett. 55, 63--71 (2016; Zbl 1336.35029) Full Text: DOI OpenURL
Zhang, Hongxia; Wang, Wanwan; Wang, Jian Symmetry results for solutions of an integral system. (English) Zbl 1488.35588 J. Fract. Calc. Appl. 6, No. 2, 153-159 (2015). MSC: 35R11 35B06 35J99 PDF BibTeX XML Cite \textit{H. Zhang} et al., J. Fract. Calc. Appl. 6, No. 2, 153--159 (2015; Zbl 1488.35588) Full Text: Link OpenURL
Guckenheimer, John; Krauskopf, Bernd; Osinga, Hinke M.; Sandstede, Björn Invariant manifolds and global bifurcations. (English) Zbl 1374.37076 Chaos 25, No. 9, 097604, 13 p. (2015). MSC: 37J15 37D10 37G99 PDF BibTeX XML Cite \textit{J. Guckenheimer} et al., Chaos 25, No. 9, 097604, 13 p. (2015; Zbl 1374.37076) Full Text: DOI Link OpenURL
Tychynin, Valentyn New nonlocal symmetries of diffusion-convection equations and their connection with generalized hodograph transformation. (English) Zbl 1375.35023 Symmetry 7, No. 4, 1751-1767 (2015). MSC: 35B06 35K55 PDF BibTeX XML Cite \textit{V. Tychynin}, Symmetry 7, No. 4, 1751--1767 (2015; Zbl 1375.35023) Full Text: DOI OpenURL
Moitsheki, R. J.; Potsane, M. M. Nonlocal symmetries and classes of exact solutions for a convection-dispersion model. (English) Zbl 1426.35191 Quaest. Math. 38, No. 2, 217-235 (2015). MSC: 35Q35 35A08 35A20 35B06 PDF BibTeX XML Cite \textit{R. J. Moitsheki} and \textit{M. M. Potsane}, Quaest. Math. 38, No. 2, 217--235 (2015; Zbl 1426.35191) Full Text: DOI OpenURL
Wang, Gangwei; Kara, A. H. Nonlocal symmetry analysis, explicit solutions and conservation laws for the fourth-order Burgers’ equation. (English) Zbl 1355.35154 Chaos Solitons Fractals 81, Part A, 290-298 (2015). MSC: 35Q35 35B06 35C05 70S10 PDF BibTeX XML Cite \textit{G. Wang} and \textit{A. H. Kara}, Chaos Solitons Fractals 81, Part A, 290--298 (2015; Zbl 1355.35154) Full Text: DOI OpenURL
Shi, Zhen-hua; Kang, Jing; Yan, Lu Nonlocal symmetries and conservation laws of nonlocal Camassa-Holm type equations. (English) Zbl 1337.37048 Acta Math. Appl. Sin., Engl. Ser. 31, No. 4, 909-920 (2015). MSC: 37K05 37K35 35Q35 PDF BibTeX XML Cite \textit{Z.-h. Shi} et al., Acta Math. Appl. Sin., Engl. Ser. 31, No. 4, 909--920 (2015; Zbl 1337.37048) Full Text: DOI OpenURL
Yang, Wengui Symmetric positive solutions for second-order singular differential systems with multi-point coupled integral boundary conditions. (English) Zbl 1341.34029 Differ. Equ. Appl. 7, No. 4, 401-427 (2015). Reviewer: Petio S. Kelevedjiev (Sliven) MSC: 34B16 34B18 34C14 34B10 47N20 PDF BibTeX XML Cite \textit{W. Yang}, Differ. Equ. Appl. 7, No. 4, 401--427 (2015; Zbl 1341.34029) Full Text: DOI Link OpenURL