×

A nonlocal species concentration theory for diffusion and phase changes in electrode particles of lithium ion batteries. (English) Zbl 1392.78023

Summary: A nonlocal species concentration theory for diffusion and phase changes is introduced from a nonlocal free energy density. It can be applied, say, to electrode materials of lithium ion batteries. This theory incorporates two second-order partial differential equations involving second-order spatial derivatives of species concentration and an additional variable called nonlocal species concentration. Nonlocal species concentration theory can be interpreted as an extension of the Cahn-Hilliard theory. In principle, nonlocal effects beyond an infinitesimal neighborhood are taken into account. In this theory, the nonlocal free energy density is split into the penalty energy density and the variance energy density. The thickness of the interface between two phases in phase segregated states of a material is controlled by a normalized penalty energy coefficient and a characteristic interface length scale. We implemented the theory in COMSOL Multiphysics\(^{\circledR}\) for a spherically symmetric boundary value problem of lithium insertion into a \(\mathrm{Li}_x\mathrm{Mn}_2\mathrm{O}_4\) cathode material particle of a lithium ion battery. The two above-mentioned material parameters controlling the interface are determined for \(\mathrm{Li}_x\mathrm{Mn}_2\mathrm{O}_4\), and the interface evolution is studied. Comparison to the Cahn-Hilliard theory shows that nonlocal species concentration theory is superior when simulating problems where the dimensions of the microstructure such as phase boundaries are of the same order of magnitude as the problem size. This is typically the case in nanosized particles of phase-separating electrode materials. For example, the nonlocality of nonlocal species concentration theory turns out to make the interface of the local concentration field thinner than in Cahn-Hilliard theory.

MSC:

78M25 Numerical methods in optics (MSC2010)
80A30 Chemical kinetics in thermodynamics and heat transfer
80M25 Other numerical methods (thermodynamics) (MSC2010)

Software:

COMSOL
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arndt, M; Griebel, M; Roubicek, T, Modelling and numerical simulation of martensitic transformation in shape memory alloys, Continuum Mech. Therm., 15, 463-485, (2003) · Zbl 1068.74588 · doi:10.1007/s00161-003-0127-3
[2] Brandon, D; Lin, T; Rogers, RC, Phase transitions and hysteresis in nonlocal and order-parameter models, Meccanica, 30, 541-565, (1995) · Zbl 0835.73005 · doi:10.1007/BF01557084
[3] Brandon, D; Rogers, R, The coercivity paradox and nonlocal ferromagnetism, Continuum Mech. Therm., 4, 1-21, (1992) · doi:10.1007/BF01126384
[4] Brandon, D; Rogers, RC, Nonlocal superconductivity, Z. Angew. Math. Phys., 45, 135-152, (1994) · Zbl 0798.49011 · doi:10.1007/BF00942851
[5] Cahn, JW; Hilliard, JE, Free energy of a nonuniform system. I. interfacial free energy, J. Chem. Phys., 28, 258-267, (1958) · doi:10.1063/1.1744102
[6] Christensen, J; Newman, J, A mathematical model of stress generation and fracture in lithium manganese oxide, J. Electrochem. Soc., 153, a1019-a1030, (2006) · doi:10.1149/1.2185287
[7] Cogswell, DA; Bazant, MZ, Coherency strain and the kinetics of phase separation in \(\text{LiFePO}_4\) nanoparticles, ACS Nano, 6, 2215-2225, (2012) · doi:10.1021/nn204177u
[8] Comsol Multiphysics Reference Manual, version 4.4. COMSOL Inc, https://www.comsol.com
[9] Leo, CV; Rejovitzky, E; Anand, L, A Cahn-Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: application to phase-separating Li-ion electrode materials, J. Mech. Phys. Solids, 70, 1-29, (2014) · Zbl 1328.74042 · doi:10.1016/j.jmps.2014.05.001
[10] Efendiev, M; Miranville, A, New models of Cahn-Hilliard-Gurtin equations, Continuum Mech. Therm., 16, 441-451, (2004) · Zbl 1100.74003 · doi:10.1007/s00161-003-0169-6
[11] Fosdick, RL; Mason, DE, Single phase energy minimizers for materials with nonlocal spatial dependence, Quart. Appl. Math., 54, 161-195, (1996) · Zbl 0840.73079 · doi:10.1090/qam/1373845
[12] Fosdick, RL; Mason, DE, On a model of nonlocal continuum mechanics part I: existence and regularity, SIAM J. Appl. Math., 58, 1278-1306, (1998) · Zbl 0923.73003 · doi:10.1137/S0036139996314805
[13] Gajewski, H; Zacharias, K, On a nonlocal phase separation model, J. Math. Anal. Appl., 286, 11-31, (2003) · Zbl 1032.35078 · doi:10.1016/S0022-247X(02)00425-0
[14] Germain, P, The method of virtual power in continuum mechanics. part 2: microstructure, SIAM J. Appl. Math., 25, 556-575, (1973) · Zbl 0273.73061 · doi:10.1137/0125053
[15] Giacomin, G; Lebowitz, JL, Phase segregation dynamics in particle systems with long range interactions. I. macroscopic limits, J. Stat. Phys., 87, 37-61, (1997) · Zbl 0937.82037 · doi:10.1007/BF02181479
[16] Gurtin, ME, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92, 178-192, (1996) · Zbl 0885.35121 · doi:10.1016/0167-2789(95)00173-5
[17] Gurtin, ME, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, J. Mech. Phys. Solids, 50, 5-32, (2002) · Zbl 1043.74007 · doi:10.1016/S0022-5096(01)00104-1
[18] Han, B; Ven, A; Morgan, D; Ceder, G, Electrochemical modeling of intercalation processes with phase field models, Electrochim. Acta, 49, 4691-4699, (2004) · doi:10.1016/j.electacta.2004.05.024
[19] Huttin, M.: Ph.D. Thesis, Karlsruhe, Karlsruher Institut für Technologie (KIT) (2014) · Zbl 1406.74227
[20] Huttin, M; Kamlah, M, Phase-field modeling of stress generation in electrode particles of lithium ion batteries, Appl. Phys. Lett., 101, 133902, (2012) · doi:10.1063/1.4754705
[21] Lin, T; Rogers, R, On an order-parameter model for a binary liquid, Comput. Mater. Sci., 4, 159-171, (1995) · doi:10.1016/0927-0256(95)00017-K
[22] Peerlings, R; Geers, M; Borst, R; Brekelmans, W, A critical comparison of nonlocal and gradient-enhanced softening continua, Int. J. Solids Struct., 38, 7723-7746, (2001) · Zbl 1032.74008 · doi:10.1016/S0020-7683(01)00087-7
[23] Rogers, R, A nonlocal model for the exchange energy in ferromagnetic materials, J. Integral Equ. Appl., 3, 85-127, (1991) · Zbl 0762.45004 · doi:10.1216/jiea/1181075602
[24] Rogers, RC, Some remarks on nonlocal interactions and hysteresis in phase transitions, Continuum Mech. Therm., 8, 65-73, (1994) · Zbl 0845.73005 · doi:10.1007/BF01175752
[25] Roubíček, T, Approximation in multiscale modelling of microstructure evolution in shape-memory alloys, Continuum Mech. Therm., 23, 491-507, (2011) · Zbl 1272.74487 · doi:10.1007/s00161-011-0190-0
[26] Trinh, B; Hackl, K, A model for high temperature creep of single crystal superalloys based on nonlocal damage and viscoplastic material behavior, Continuum Mech. Therm., 26, 551-562, (2014) · Zbl 1341.74067 · doi:10.1007/s00161-013-0317-6
[27] Truskinovsky, L; Vainchtein, A, Quasicontinuum models of dynamic phase transitions, Continuum Mech. Therm., 18, 1-21, (2006) · Zbl 1101.74049 · doi:10.1007/s00161-006-0018-5
[28] Truskinovsky, L; Vainchtein, A, Dynamics of martensitic phase boundaries: discreteness, dissipation and inertia, Continuum Mech. Therm., 20, 97-122, (2008) · Zbl 1160.74398 · doi:10.1007/s00161-008-0069-x
[29] Ubachs, R; Schreurs, P; Geers, M, A nonlocal diffuse interface model for microstructure evolution of tin-lead solder, J. Mech. Phys. Solids, 52, 1763-1792, (2004) · Zbl 1062.74515 · doi:10.1016/j.jmps.2004.02.002
[30] Ven, A; Marianetti, C; Morgan, D; Ceder, G, Phase transformations and volume changes in spinel \(\text{ Li }_{x}\text{ Mn }_{2}\text{ O }_{4}\), Solid State Ion., 135, 21-32, (2000)
[31] Walk, AC; Huttin, M; Kamlah, M, Comparison of a phase-field model for intercalation induced stresses in electrode particles of lithium ion batteries for small and finite deformation theory, Eur. J. Mech. A, 48, 74-82, (2014) · Zbl 1406.74227 · doi:10.1016/j.euromechsol.2014.02.020
[32] Walter, J.W.: Ph.D. Thesis, University of Minnesota (1985)
[33] Wodo, O; Ganapathysubramanian, B, Computationally efficient solution to the Cahn-Hilliard equation: adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem, J. Comput. Phys., 230, 6037-6060, (2011) · Zbl 1416.65364 · doi:10.1016/j.jcp.2011.04.012
[34] Yamada, A; Koizumi, H; Nishimura, S; Sonoyama, N; Kanno, R; Yonemura, M; Nakamura, T; Kobayashi, Y, Room-temperature miscibility gap in \(\text{ Li }_{x}\text{ FePO }_{4}\), Nat. Mater., 5, 357-360, (2006) · doi:10.1038/nmat1634
[35] Zhang, X; Shyy, W; Sastry, AM, Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles, J. Electrochem. Soc., 154, a910-a916, (2007) · doi:10.1149/1.2759840
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.