×

Nonlinear parabolic problems on manifolds, and a nonexistence result for the noncompact Yamabe problem. (English) Zbl 0872.35050

Summary: We study the Cauchy problem for the semilinear parabolic equations \[ \Delta u-Ru+u^p-u_t=0\text{ on }\mathbf{M}^n\times(0,\infty) \] with initial value \(u_0\geq 0\), where \(\mathbf{M}^n\) is a Riemannian manifold including the ones with nonnegative Ricci curvature. In the Euclidean case and when \(R=0\), it is well known that \(1+2/n\) is the critical exponent, i.e., if \(p>1+2/n\) and \(u_0\) is smaller than a small Gaussian, then the Cauchy problem has global positive solutions, and if \(p<1+2/n\), then all positive solutions blow up in finite time. In this paper, we show that on certain Riemannian manifolds, the above equation with certain conditions on \(R\) also has a critical exponent. More importantly, we reveal an explicit relation between the size of the critical exponent and geometric properties such as the growth rate of geodesic balls. To achieve the results we introduce a new estimate for related heat kernels. As an application, we show that the well-known noncompact Yamabe problem (of prescribing constant positive scalar curvature) on a manifold with nonnegative Ricci curvature cannot be solved if the existing scalar curvature decays “too fast” and the volume of geodesic balls does not increase “fast enough”. We also find some complete manifolds with positive scalar curvature, which are conformal to complete manifolds with positive constant and with zero scalar curvatures. This is a new phenomenon which does not happen in the compact case.

MSC:

35K55 Nonlinear parabolic equations
58J35 Heat and other parabolic equation methods for PDEs on manifolds
35K15 Initial value problems for second-order parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 607 – 694. · Zbl 0182.13802
[2] T. Aubin, The scalar curvature, Differential geometry and relativity, Reidel, Dordrecht, 1976, pp. 5 – 18. Mathematical Phys. and Appl. Math., Vol. 3. · Zbl 0345.53029
[3] Patricio Aviles and Robert C. McOwen, Conformal deformation to constant negative scalar curvature on noncompact Riemannian manifolds, J. Differential Geom. 27 (1988), no. 2, 225 – 239. · Zbl 0648.53021
[4] E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. · Zbl 0699.35006
[5] Hiroshi Fujita, On the blowing up of solutions of the Cauchy problem for \?_{\?}=\Delta \?+\?^{1+\?}, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109 – 124 (1966). · Zbl 0163.34002
[6] A. A. Grigor\(^{\prime}\)yan, The heat equation on noncompact Riemannian manifolds, Mat. Sb. 182 (1991), no. 1, 55 – 87 (Russian); English transl., Math. USSR-Sb. 72 (1992), no. 1, 47 – 77.
[7] Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255 – 306. · Zbl 0504.53034
[8] Jerry L. Kazdan, Prescribing the curvature of a Riemannian manifold, CBMS Regional Conference Series in Mathematics, vol. 57, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1985. · Zbl 0561.53048
[9] Howard A. Levine, The role of critical exponents in blowup theorems, SIAM Rev. 32 (1990), no. 2, 262 – 288. · Zbl 0706.35008 · doi:10.1137/1032046
[10] Tzong-Yow Lee and Wei-Ming Ni, Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem, Trans. Amer. Math. Soc. 333 (1992), no. 1, 365 – 378. · Zbl 0785.35011
[11] Линейные и квазилинейные уравнения параболического типа, Издат. ”Наука”, Мосцощ, 1967 (Руссиан). О. А. Ладыžенскаја, В. А. Солонников, анд Н. Н. Урал\(^{\приме}\)цева, Линеар анд чуасилинеар ечуатионс оф параболиц тыпе, Транслатед фром тхе Руссиан бы С. Смитх. Транслатионс оф Матхематицал Монограпхс, Вол. 23, Америцан Матхематицал Социеты, Провиденце, Р.И., 1968 (Руссиан).
[12] Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153 – 201. · Zbl 0611.58045 · doi:10.1007/BF02399203
[13] Peter Meier, On the critical exponent for reaction-diffusion equations, Arch. Rational Mech. Anal. 109 (1990), no. 1, 63 – 71. · Zbl 0702.35132 · doi:10.1007/BF00377979
[14] Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101 – 134. · Zbl 0149.06902 · doi:10.1002/cpa.3160170106
[15] Wei Ming Ni, On the elliptic equation \Delta \?+\?(\?)\?^{(\?+2)/(\?-2)}=0, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), no. 4, 493 – 529. · Zbl 0496.35036 · doi:10.1512/iumj.1982.31.31040
[16] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices 2 (1992), 27 – 38. · Zbl 0769.58054 · doi:10.1155/S1073792892000047
[17] Richard Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), no. 2, 479 – 495. · Zbl 0576.53028
[18] Wan-Xiong Shi, Deforming the metric on complete Riemannian manifolds, J. Differential Geom. 30 (1989), no. 1, 223 – 301. · Zbl 0676.53044
[19] Neil S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 265 – 274. · Zbl 0159.23801
[20] Hidehiko Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21 – 37. · Zbl 0096.37201
[21] Shing Tung Yau , Seminar on Differential Geometry, Annals of Mathematics Studies, vol. 102, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. Papers presented at seminars held during the academic year 1979 – 1980. · Zbl 0471.00020
[22] Z. Zhao, On the existence of positive solutions of nonlinear elliptic equations — a probabilistic potential theory approach, Duke Math. J. 69 (1993), no. 2, 247 – 258. · Zbl 0793.35032 · doi:10.1215/S0012-7094-93-06913-X
[23] Qi Zhang, On a parabolic equation with a singular lower order term, Trans. Amer. Math. Soc. 348 (1996), no. 7, 2811 – 2844. · Zbl 0860.35044
[24] Qi Zhang, On a parabolic equation with a singular lower order term, Part II, Indiana U. Math. J., to appear. · Zbl 0860.35044
[25] Qi Zhang, Global existence and local continuity of solutions for semilinear parabolic equations, Comm. PDE, to appear. · Zbl 0883.35061
[26] Qi Zhang, The critical exponent of a reaction-diffusion equation on some Lie groups, Math. Z., to appear. · Zbl 0909.35072
[27] Qi Zhang, Semilinear parabolic problems on manifolds and applications to the noncompact Yamabe problem, preprint. · Zbl 0984.58011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.