Hasil, Petr; Veselý, Michal Oscillation and nonoscillation of perturbed nonlinear equations with \(p\)-Laplacian. (English) Zbl 07747062 Math. Nachr. 296, No. 7, 2809-2837 (2023). MSC: 34C10 PDF BibTeX XML Cite \textit{P. Hasil} and \textit{M. Veselý}, Math. Nachr. 296, No. 7, 2809--2837 (2023; Zbl 07747062) Full Text: DOI
Kavgaci, Musa Emre; Obaidi, Huda Al; Bereketoglu, Huseyin Some results on a first-order neutral differential equation with piecewise constant mixed arguments. (English) Zbl 07745864 Period. Math. Hung. 87, No. 1, 265-277 (2023). MSC: 34C10 34K11 34K20 34K40 PDF BibTeX XML Cite \textit{M. E. Kavgaci} et al., Period. Math. Hung. 87, No. 1, 265--277 (2023; Zbl 07745864) Full Text: DOI
Migda, Małgorzata; Schmeidel, Ewa; Zdanowicz, Małgorzata; Migda, Janusz Oscillation results via comparison theorems for fourth-order delay three-terms difference equations. (English) Zbl 07692659 Period. Math. Hung. 86, No. 2, 395-412 (2023). Reviewer: Eszter Gselmann (Debrecen) MSC: 39A10 39A22 PDF BibTeX XML Cite \textit{M. Migda} et al., Period. Math. Hung. 86, No. 2, 395--412 (2023; Zbl 07692659) Full Text: DOI
Ishibashi, Kazuki Nonoscillation of damped linear differential equations with a proportional derivative controller and its application to Whittaker-Hill-type and Mathieu-type equations. (English) Zbl 07687890 Opusc. Math. 43, No. 1, 67-79 (2023). Reviewer: Qiru Wang (Guangzhou) MSC: 34C10 34A30 34B30 34H05 PDF BibTeX XML Cite \textit{K. Ishibashi}, Opusc. Math. 43, No. 1, 67--79 (2023; Zbl 07687890) Full Text: DOI
Tripathy, A. K.; Chhatria, G. N. Oscillation criteria for first order neutral impulsive difference equations with constant coefficients. (English) Zbl 1508.39008 Differ. Equ. Dyn. Syst. 31, No. 1, 209-222 (2023). MSC: 39A21 39A12 34K40 PDF BibTeX XML Cite \textit{A. K. Tripathy} and \textit{G. N. Chhatria}, Differ. Equ. Dyn. Syst. 31, No. 1, 209--222 (2023; Zbl 1508.39008) Full Text: DOI
Šepitka, Peter; Šimon Hilscher, Roman Solutions with prescribed numbers of focal points of nonoscillatory linear Hamiltonian systems. (English) Zbl 1511.37061 Monatsh. Math. 200, No. 2, 359-387 (2023). MSC: 37J12 37N35 34C10 34B24 70H05 PDF BibTeX XML Cite \textit{P. Šepitka} and \textit{R. Šimon Hilscher}, Monatsh. Math. 200, No. 2, 359--387 (2023; Zbl 1511.37061) Full Text: DOI
Baiarystanov, Askar; Kalybay, Aigerim; Oinarov, Ryskul Oscillatory and spectral properties of fourth-order differential operator and weighted differential inequality with boundary conditions. (English) Zbl 1498.26033 Bound. Value Probl. 2022, Paper No. 78, 21 p. (2022). MSC: 26D10 34C10 26D15 34C15 PDF BibTeX XML Cite \textit{A. Baiarystanov} et al., Bound. Value Probl. 2022, Paper No. 78, 21 p. (2022; Zbl 1498.26033) Full Text: DOI
Chhatria, G. N.; Tripathy, A. K. Linearized oscillation theory of second order neutral impulsive difference equations. (English) Zbl 1513.39023 Electron. J. Math. Anal. Appl. 10, No. 1, 15-28 (2022). MSC: 39A21 47N20 47H10 PDF BibTeX XML Cite \textit{G. N. Chhatria} and \textit{A. K. Tripathy}, Electron. J. Math. Anal. Appl. 10, No. 1, 15--28 (2022; Zbl 1513.39023) Full Text: Link
Šepitka, Peter; Šimon Hilscher, Roman Weak disconjugacy, weak controllability, and genera of conjoined bases for linear Hamiltonian systems. (English) Zbl 1506.37118 Ann. Mat. Pura Appl. (4) 201, No. 5, 2121-2136 (2022). MSC: 37N35 37J25 37J65 34H05 93B05 93C15 PDF BibTeX XML Cite \textit{P. Šepitka} and \textit{R. Šimon Hilscher}, Ann. Mat. Pura Appl. (4) 201, No. 5, 2121--2136 (2022; Zbl 1506.37118) Full Text: DOI
Iwaasa, Pati; Matsunaga, Hideaki Oscillation and nonoscillation for nonlinear delay difference equations by phase plane analysis. (English) Zbl 1506.39008 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 120, 21 p. (2022). Reviewer: Hakan Adıgüzel (Serdivan) MSC: 39A21 39A12 34K11 PDF BibTeX XML Cite \textit{P. Iwaasa} and \textit{H. Matsunaga}, Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 120, 21 p. (2022; Zbl 1506.39008) Full Text: DOI
Tripathy, A. K.; Chhatria, G. N. Oscillation of linear third-order impulsive difference equations with variable coefficients. (English) Zbl 1495.39008 J. Egypt. Math. Soc. 30, Paper No. 12, 19 p. (2022); correction ibid. 30, Paper No. 14, 1 p. (2022). MSC: 39A21 PDF BibTeX XML Cite \textit{A. K. Tripathy} and \textit{G. N. Chhatria}, J. Egypt. Math. Soc. 30, Paper No. 12, 19 p. (2022; Zbl 1495.39008) Full Text: DOI
Tripathy, Arun K.; Das, Sunita Necessary and sufficient conditions for oscillation of nonlinear neutral difference systems of dim-2. (English) Zbl 1496.39008 Nonauton. Dyn. Syst. 9, 91-102 (2022). MSC: 39A21 PDF BibTeX XML Cite \textit{A. K. Tripathy} and \textit{S. Das}, Nonauton. Dyn. Syst. 9, 91--102 (2022; Zbl 1496.39008) Full Text: DOI
Ishibashi, Kazuki Nonoscillation of the Mathieu-type half-linear differential equation and its application to the generalized Whittaker-Hill-type equation. (English) Zbl 07557945 Monatsh. Math. 198, No. 4, 741-756 (2022). MSC: 34C10 34B30 PDF BibTeX XML Cite \textit{K. Ishibashi}, Monatsh. Math. 198, No. 4, 741--756 (2022; Zbl 07557945) Full Text: DOI
Nar, Aysun; Bolat, Yaşar; Değer, Serbun Ufuk; Gevgeşoğlu, Murat Nonoscillation and oscillation criteria for class of higher-order difference equations involving generalized difference operator. (English) Zbl 1491.39003 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 71, No. 1, 188-203 (2022). MSC: 39A21 47B39 PDF BibTeX XML Cite \textit{A. Nar} et al., Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 71, No. 1, 188--203 (2022; Zbl 1491.39003) Full Text: DOI
Mohanta, Rashmi Rekha; Tripathy, Arun Kumar Unbounded oscillation criteria for fourth order neutral differential equations of non-canonical type. (English) Zbl 1507.34077 Math. Slovaca 72, No. 3, 661-676 (2022). Reviewer: Fatma Karakoç (Ankara) MSC: 34K11 34K40 PDF BibTeX XML Cite \textit{R. R. Mohanta} and \textit{A. K. Tripathy}, Math. Slovaca 72, No. 3, 661--676 (2022; Zbl 1507.34077) Full Text: DOI
Silva, M. A.; Federson, M.; Gadotti, M. C. Oscillation and nonoscillation criteria for impulsive delay differential equations with Perron integrable coefficients. (English) Zbl 1504.34167 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 2, 125-136 (2022). Reviewer: Qiru Wang (Guangzhou) MSC: 34K11 34K45 26A39 PDF BibTeX XML Cite \textit{M. A. Silva} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 2, 125--136 (2022; Zbl 1504.34167) Full Text: arXiv Link
Dřímalová, Iva Extremal solutions at infinity for symplectic systems on time scales. I: Genera of conjoined bases. (English) Zbl 1486.34172 Differ. Equ. Appl. 14, No. 1, 99-136 (2022). MSC: 34N05 34C10 39A12 39A21 PDF BibTeX XML Cite \textit{I. Dřímalová}, Differ. Equ. Appl. 14, No. 1, 99--136 (2022; Zbl 1486.34172) Full Text: DOI
Ishibashi, Kazuki Nonoscillation criteria for damped half-linear dynamic equations with mixed derivatives on a time scale. (English) Zbl 1494.34194 J. Math. Anal. Appl. 512, No. 2, Article ID 126183, 20 p. (2022). MSC: 34N05 34C10 PDF BibTeX XML Cite \textit{K. Ishibashi}, J. Math. Anal. Appl. 512, No. 2, Article ID 126183, 20 p. (2022; Zbl 1494.34194) Full Text: DOI
Tripathy, A. K.; Santra, S. S. Necessary and sufficient conditions for oscillation of a class of second order impulsive systems. (English) Zbl 07502793 Differ. Equ. Dyn. Syst. 30, No. 2, 433-450 (2022). MSC: 34K11 34K40 34K45 47H10 PDF BibTeX XML Cite \textit{A. K. Tripathy} and \textit{S. S. Santra}, Differ. Equ. Dyn. Syst. 30, No. 2, 433--450 (2022; Zbl 07502793) Full Text: DOI
Saker, S. H.; Selvarangam, S.; Geetha, S.; Thandapani, E.; Alzabut, J. Asymptotic behavior of third order delay difference equations with a negative middle term. (English) Zbl 1494.39014 Adv. Difference Equ. 2021, Paper No. 248, 12 p. (2021). MSC: 39A22 39A10 39A21 PDF BibTeX XML Cite \textit{S. H. Saker} et al., Adv. Difference Equ. 2021, Paper No. 248, 12 p. (2021; Zbl 1494.39014) Full Text: DOI
Sethi, A. K.; Tripathy, A. K. On oscillatory second order differential equations with variable delays. (English) Zbl 1486.34133 Palest. J. Math. 10, No. 2, 487-501 (2021). MSC: 34K11 PDF BibTeX XML Cite \textit{A. K. Sethi} and \textit{A. K. Tripathy}, Palest. J. Math. 10, No. 2, 487--501 (2021; Zbl 1486.34133) Full Text: Link
Srinivasan, R.; Dharuman, C.; Graef, John R.; Thandapani, E. Asymptotic properties of Kneser type solutions for third order half-linear neutral difference equations. (English) Zbl 1499.39049 Miskolc Math. Notes 22, No. 2, 991-1000 (2021). MSC: 39A22 39A21 PDF BibTeX XML Cite \textit{R. Srinivasan} et al., Miskolc Math. Notes 22, No. 2, 991--1000 (2021; Zbl 1499.39049) Full Text: DOI
Grace, Said R.; Chhatria, G. N. Oscillation theorems for Emden-Fowler type delay dynamic equations on time scales. (English) Zbl 1479.34118 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 5, 345-356 (2021). MSC: 34K11 34C10 34N05 39A10 PDF BibTeX XML Cite \textit{S. R. Grace} and \textit{G. N. Chhatria}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 5, 345--356 (2021; Zbl 1479.34118) Full Text: Link
Kalybay, Aigerim; Oinarov, Ryskul; Sultanaev, Yaudat Weighted differential inequality and oscillatory properties of fourth order differential equations. (English) Zbl 1504.34085 J. Inequal. Appl. 2021, Paper No. 199, 17 p. (2021). MSC: 34C10 34A40 26D10 PDF BibTeX XML Cite \textit{A. Kalybay} et al., J. Inequal. Appl. 2021, Paper No. 199, 17 p. (2021; Zbl 1504.34085) Full Text: DOI
Abbas, Saïd; Benchohra, Mouffak; Henderson, Johnny Existence and oscillation for coupled fractional \(q\)-difference systems. (English) Zbl 1513.39017 J. Fract. Calc. Appl. 12, No. 1, 143-155 (2021). MSC: 39A21 39A13 PDF BibTeX XML Cite \textit{S. Abbas} et al., J. Fract. Calc. Appl. 12, No. 1, 143--155 (2021; Zbl 1513.39017) Full Text: Link
El-Sheikh, Mohamed M. A.; Sallam, Ragaa; Salem, Shaimaa Oscillation of nonlinear third-order differential equations with several sublinear neutral terms. (English) Zbl 1495.34096 Math. Slovaca 71, No. 6, 1411-1426 (2021). Reviewer: Yige Zhao (Jinan) MSC: 34K11 34K40 PDF BibTeX XML Cite \textit{M. M. A. El-Sheikh} et al., Math. Slovaca 71, No. 6, 1411--1426 (2021; Zbl 1495.34096) Full Text: DOI
Chhatria, G. N.; Grace, Said R.; Graef, John R. Oscillation of nonlinear neutral dynamic equations on time scales. (English) Zbl 1477.34117 J. Egypt. Math. Soc. 29, Paper No. 22, 14 p. (2021). MSC: 34N05 34C10 34K11 39A10 PDF BibTeX XML Cite \textit{G. N. Chhatria} et al., J. Egypt. Math. Soc. 29, Paper No. 22, 14 p. (2021; Zbl 1477.34117) Full Text: DOI
Domoshnitsky, A.; Mizgireva, Iu.; Raichik, V. Seminonoscillation intervals and sign-constancy of Green’s functions of two-point impulsive boundary-value problems. (English) Zbl 1492.34069 Ukr. Math. J. 73, No. 7, 1033-1049 (2021) and Ukr. Mat. Zh. 73, No. 7, 887-901 (2021). Reviewer: Rakhee Basu (Hyderabad) MSC: 34K11 34K45 PDF BibTeX XML Cite \textit{A. Domoshnitsky} et al., Ukr. Math. J. 73, No. 7, 1033--1049 (2021; Zbl 1492.34069) Full Text: DOI
Tripathy, A. K.; Santra, S. S. On forced impulsive oscillatory nonlinear neutral systems of the second order. (English) Zbl 1492.34072 J. Math. Sci., New York 258, No. 5, 722-738 (2021) and Neliniĭni Kolyvannya 23, No. 2, 274-288 (2020). Reviewer: Leonid Berezanski (Be’er Sheva) MSC: 34K11 34K40 34K45 PDF BibTeX XML Cite \textit{A. K. Tripathy} and \textit{S. S. Santra}, J. Math. Sci., New York 258, No. 5, 722--738 (2021; Zbl 1492.34072) Full Text: DOI
Jaffer, I. Mohammed Ali; Shanmugapriya, R. Oscillation for certain third order functional delay difference equation. (English) Zbl 1488.39023 J. Indian Math. Soc., New Ser. 88, No. 3-4, 323-333 (2021). MSC: 39A21 PDF BibTeX XML Cite \textit{I. M. A. Jaffer} and \textit{R. Shanmugapriya}, J. Indian Math. Soc., New Ser. 88, No. 3--4, 323--333 (2021; Zbl 1488.39023)
Abbas, Said; Benchohra, Mouffak; Sivasundaram, Seenith; Tunç, Cemil Existence and oscillatory results for Caputo-Fabrizio fractional differential equations and inclusions. (English) Zbl 1499.34016 Nonlinear Stud. 28, No. 1, 283-298 (2021). MSC: 34A08 26A33 34A60 34C10 PDF BibTeX XML Cite \textit{S. Abbas} et al., Nonlinear Stud. 28, No. 1, 283--298 (2021; Zbl 1499.34016) Full Text: Link
Selvarangam, Srinivasan; Rupadevi, Sethurajan A.; Thandapani, Ethiraju; Pinelas, Sandra Existence of nonoscillatory solutions to third order neutral type difference equations with delay and advanced arguments. (English) Zbl 07396231 Math. Bohem. 146, No. 3, 263-278 (2021). MSC: 39A10 PDF BibTeX XML Cite \textit{S. Selvarangam} et al., Math. Bohem. 146, No. 3, 263--278 (2021; Zbl 07396231) Full Text: DOI
Chhatria, Gokula Nanda Oscillation of a kind of second-order nonlinear neutral difference equations. (English) Zbl 1473.39015 Rocky Mt. J. Math. 51, No. 3, 787-803 (2021). MSC: 39A21 39A12 34K40 34K11 PDF BibTeX XML Cite \textit{G. N. Chhatria}, Rocky Mt. J. Math. 51, No. 3, 787--803 (2021; Zbl 1473.39015) Full Text: DOI
Chhatria, Gokula Nanda Application of characteristic equation of first order neutral impulsive difference equations. (English) Zbl 1465.39004 J. Anal. 29, No. 1, 191-206 (2021). MSC: 39A21 39A12 34K11 34K40 PDF BibTeX XML Cite \textit{G. N. Chhatria}, J. Anal. 29, No. 1, 191--206 (2021; Zbl 1465.39004) Full Text: DOI
Karpuz, Başak; Özsavaş, Büşra An improved product type oscillation test for partial difference equations. (English) Zbl 1472.39016 Appl. Math. Comput. 391, Article ID 125629, 11 p. (2021). MSC: 39A21 39A14 PDF BibTeX XML Cite \textit{B. Karpuz} and \textit{B. Özsavaş}, Appl. Math. Comput. 391, Article ID 125629, 11 p. (2021; Zbl 1472.39016) Full Text: DOI
Wu, Fentao; She, Lin; Ishibashi, Kazuki Moore-type nonoscillation criteria for half-linear difference equations. (English) Zbl 1466.39007 Monatsh. Math. 194, No. 2, 377-393 (2021). Reviewer: Pavel Rehak (Brno) MSC: 39A21 39A06 39A12 PDF BibTeX XML Cite \textit{F. Wu} et al., Monatsh. Math. 194, No. 2, 377--393 (2021; Zbl 1466.39007) Full Text: DOI
Karpuz, Başak; Stavroulakis, Ioannis P. Oscillation and nonoscillation of difference equations with several delays. (English) Zbl 1472.39017 Mediterr. J. Math. 18, No. 1, Paper No. 3, 14 p. (2021). Reviewer: Hakan Adıgüzel (Serdivan) MSC: 39A21 39A10 39A05 PDF BibTeX XML Cite \textit{B. Karpuz} and \textit{I. P. Stavroulakis}, Mediterr. J. Math. 18, No. 1, Paper No. 3, 14 p. (2021; Zbl 1472.39017) Full Text: DOI
Santra, Shyam Sundar Necessary and sufficient condition for oscillatory and asymptotic behaviour of second-order functional differential equations. (English) Zbl 07661739 Kragujevac J. Math. 44, No. 3, 459-473 (2020). MSC: 34K11 34K25 34K40 PDF BibTeX XML Cite \textit{S. S. Santra}, Kragujevac J. Math. 44, No. 3, 459--473 (2020; Zbl 07661739) Full Text: DOI Link
Tripathy, Arun Kumar; Santra, Shyam Sundar On oscillatory second order nonlinear impulsive systems of neutral type. (English) Zbl 1513.34259 Stud. Univ. Babeș-Bolyai, Math. 65, No. 4, 503-519 (2020). MSC: 34K11 35K40 34K45 PDF BibTeX XML Cite \textit{A. K. Tripathy} and \textit{S. S. Santra}, Stud. Univ. Babeș-Bolyai, Math. 65, No. 4, 503--519 (2020; Zbl 1513.34259) Full Text: DOI
Karpuz, Başak; Santra, Shyam Sundar New criteria for the oscillation and asymptotic behavior of second-order neutral differential equations with several delays. (English) Zbl 1493.34180 Turk. J. Math. 44, No. 6, 1990-2003 (2020). MSC: 34K11 34K25 34K40 PDF BibTeX XML Cite \textit{B. Karpuz} and \textit{S. S. Santra}, Turk. J. Math. 44, No. 6, 1990--2003 (2020; Zbl 1493.34180) Full Text: DOI
Chhatria, Gokula Nanda On oscillatory second order impulsive neutral difference equations. (English) Zbl 1489.39013 AIMS Math. 5, No. 3, 2433-2447 (2020). MSC: 39A21 PDF BibTeX XML Cite \textit{G. N. Chhatria}, AIMS Math. 5, No. 3, 2433--2447 (2020; Zbl 1489.39013) Full Text: DOI
Sallam, Ragaa A.; Salem, Shaimaa; El-Sheikh, Mohamed M. A. Oscillation of solutions of third order nonlinear neutral differential equations. (English) Zbl 1485.34168 Adv. Difference Equ. 2020, Paper No. 314, 25 p. (2020). MSC: 34K11 34K40 PDF BibTeX XML Cite \textit{R. A. Sallam} et al., Adv. Difference Equ. 2020, Paper No. 314, 25 p. (2020; Zbl 1485.34168) Full Text: DOI
Tripathy, Arun Kumar; Mohanta, Rashmi Rekha Unbounded oscillation of fourth order functional differential equations. (English) Zbl 1483.34094 Math. Slovaca 70, No. 5, 1153-1164 (2020). MSC: 34K11 34K40 PDF BibTeX XML Cite \textit{A. K. Tripathy} and \textit{R. R. Mohanta}, Math. Slovaca 70, No. 5, 1153--1164 (2020; Zbl 1483.34094) Full Text: DOI
Chhatria, Gokula Nanda Some remark on oscillation of second order impulsive delay dynamic equations on time scales. (English) Zbl 1483.34124 Tatra Mt. Math. Publ. 76, 115-126 (2020). MSC: 34N05 34K42 34K11 34K45 PDF BibTeX XML Cite \textit{G. N. Chhatria}, Tatra Mt. Math. Publ. 76, 115--126 (2020; Zbl 1483.34124) Full Text: DOI
Grace, Said Rezk; Alzabut, Jehad; Punitha, Sakthivel; Muthulakshmi, Velu; Adıgüzel, Hakan On the nonoscillatory behavior of solutions of three classes of fractional difference equations. (English) Zbl 1464.39006 Opusc. Math. 40, No. 5, 549-568 (2020). MSC: 39A13 39A21 PDF BibTeX XML Cite \textit{S. R. Grace} et al., Opusc. Math. 40, No. 5, 549--568 (2020; Zbl 1464.39006) Full Text: DOI
Drimalova, Iva; Šimon Hilscher, Roman Antiprincipal solutions at infinity for symplectic systems on time scales. (English) Zbl 1474.34629 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 44, 32 p. (2020). MSC: 34N05 34C10 39A12 39A21 PDF BibTeX XML Cite \textit{I. Drimalova} and \textit{R. Šimon Hilscher}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 44, 32 p. (2020; Zbl 1474.34629) Full Text: DOI
Akın, Elvan; Yeni, Gülşah Oscillation and nonoscillation criteria for four-dimensional advanced and delay time-scale systems. (English) Zbl 1458.34137 Rocky Mt. J. Math. 50, No. 6, 1923-1934 (2020). MSC: 34K42 34N05 34K11 PDF BibTeX XML Cite \textit{E. Akın} and \textit{G. Yeni}, Rocky Mt. J. Math. 50, No. 6, 1923--1934 (2020; Zbl 1458.34137) Full Text: DOI Euclid
Tripathy, Arun Kumar; Chhatria, Gokula Nanda On oscillatory first order neutral impulsive difference equations. (English) Zbl 1513.39026 Math. Bohem. 145, No. 4, 361-375 (2020). Reviewer: Haydar Akca (Abu Dhabi) MSC: 39A21 34K11 PDF BibTeX XML Cite \textit{A. K. Tripathy} and \textit{G. N. Chhatria}, Math. Bohem. 145, No. 4, 361--375 (2020; Zbl 1513.39026) Full Text: DOI
Tripathy, Arun Kumar; Chhatria, Gokula Nanda On the behaviour of solutions of neutral impulsive difference equations of second order. (English) Zbl 1451.39008 Math. Commun. 25, No. 2, 297-314 (2020). MSC: 39A21 39A10 39A12 PDF BibTeX XML Cite \textit{A. K. Tripathy} and \textit{G. N. Chhatria}, Math. Commun. 25, No. 2, 297--314 (2020; Zbl 1451.39008) Full Text: Link
Fujimoto, Kōdai; Hasil, Petr; Veselý, Michal Riccati transformation and nonoscillation criterion for linear difference equations. (English) Zbl 1450.39006 Proc. Am. Math. Soc. 148, No. 10, 4319-4332 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 39A21 39A06 39A10 39A12 PDF BibTeX XML Cite \textit{K. Fujimoto} et al., Proc. Am. Math. Soc. 148, No. 10, 4319--4332 (2020; Zbl 1450.39006) Full Text: DOI
Panda, K. C.; Rath, R. N.; Rath, S. K. Oscillatory behaviour of a first-order neutral differential equation in relation to an old open problem. (English) Zbl 1486.34131 Int. J. Math. Math. Sci. 2020, Article ID 9383481, 11 p. (2020). MSC: 34K11 34K40 PDF BibTeX XML Cite \textit{K. C. Panda} et al., Int. J. Math. Math. Sci. 2020, Article ID 9383481, 11 p. (2020; Zbl 1486.34131) Full Text: DOI
Karpuz, Başak Sharp conditions for oscillation and nonoscillation of neutral difference equations. (English) Zbl 1443.39006 Bohner, Martin (ed.) et al., Difference equations and discrete dynamical systems with applications. ICDEA 24, Dresden, Germany, May 21–25, 2018. Proceedings of the 24th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 312, 251-265 (2020). MSC: 39A21 39A12 34K40 PDF BibTeX XML Cite \textit{B. Karpuz}, Springer Proc. Math. Stat. 312, 251--265 (2020; Zbl 1443.39006) Full Text: DOI
Naito, Manabu Oscillation criteria for second order ordinary differential equations. (English) Zbl 1446.34058 Can. Math. Bull. 63, No. 2, 276-286 (2020). Reviewer: Qingkai Kong (DeKalb) MSC: 34C10 PDF BibTeX XML Cite \textit{M. Naito}, Can. Math. Bull. 63, No. 2, 276--286 (2020; Zbl 1446.34058) Full Text: DOI
Berezansky, Leonid; Domoshnitsky, Alexander Nonoscillation and exponential stability of the second order delay differential equation with damping. (English) Zbl 1485.34178 Appl. Anal. Optim. 3, No. 2, 147-158 (2019). MSC: 34K20 PDF BibTeX XML Cite \textit{L. Berezansky} and \textit{A. Domoshnitsky}, Appl. Anal. Optim. 3, No. 2, 147--158 (2019; Zbl 1485.34178)
Santra, Shyam Sundar Necessary and sufficient condition for oscillation and asymptotic behaviour of non-linear neutral first-order differential equations. (English) Zbl 1499.34350 Rom. J. Math. Comput. Sci. 9, No. 2, 98-107 (2019). MSC: 34K11 34K25 34K40 PDF BibTeX XML Cite \textit{S. S. Santra}, Rom. J. Math. Comput. Sci. 9, No. 2, 98--107 (2019; Zbl 1499.34350)
Zhou, Yong; Alsaedi, Ahmed; Ahmad, Bashir Oscillation and nonoscillation theorems of neutral dynamic equations on time scales. (English) Zbl 1485.34170 Adv. Difference Equ. 2019, Paper No. 404, 11 p. (2019). MSC: 34K11 34K40 39A21 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Adv. Difference Equ. 2019, Paper No. 404, 11 p. (2019; Zbl 1485.34170) Full Text: DOI
Karpuz, Başak; Santra, Shyam S. Oscillation theorems for second-order nonlinear delay differential equations of neutral type. (English) Zbl 1471.34135 Hacet. J. Math. Stat. 48, No. 3, 633-643 (2019). MSC: 34K11 34C10 34C15 34K40 PDF BibTeX XML Cite \textit{B. Karpuz} and \textit{S. S. Santra}, Hacet. J. Math. Stat. 48, No. 3, 633--643 (2019; Zbl 1471.34135) Full Text: Link
Grace, Said R.; Graef, John R.; Tunc, Ercan On the asymptotic behavior of solutions of certain integro-differential equations. (English) Zbl 1458.34118 J. Appl. Anal. Comput. 9, No. 4, 1305-1318 (2019). MSC: 34K11 45J05 PDF BibTeX XML Cite \textit{S. R. Grace} et al., J. Appl. Anal. Comput. 9, No. 4, 1305--1318 (2019; Zbl 1458.34118) Full Text: DOI
Naito, Manabu Oscillation and nonoscillation of solutions of a second-order nonlinear ordinary differential equation. (English) Zbl 1443.34030 Result. Math. 74, No. 4, Paper No. 178, 18 p. (2019). Reviewer: Abdullah Özbekler (Ankara) MSC: 34C10 PDF BibTeX XML Cite \textit{M. Naito}, Result. Math. 74, No. 4, Paper No. 178, 18 p. (2019; Zbl 1443.34030) Full Text: DOI
Benchohra, Mouffak; Hamani, Samira; Nieto, Juan Oscillation and nonoscillation for Caputo-Hadamard impulsive fractional diffrential equations. (English) Zbl 1448.34012 Nonlinear Dyn. Syst. Theory 19, No. 4, 474-485 (2019). Reviewer: Hristo S. Kiskinov (Plovdiv) MSC: 34A08 34A37 34C10 47N20 PDF BibTeX XML Cite \textit{M. Benchohra} et al., Nonlinear Dyn. Syst. Theory 19, No. 4, 474--485 (2019; Zbl 1448.34012)
Santra, Shyam Sundar Necessary and sufficient condition for the solutions of first-order neutral differential equations to be oscillatory or tend to zero. (English) Zbl 1455.34076 Kyungpook Math. J. 59, No. 1, 73-82 (2019). Reviewer: Jiří Šremr (Brno) MSC: 34K25 34K11 34K40 47N20 PDF BibTeX XML Cite \textit{S. S. Santra}, Kyungpook Math. J. 59, No. 1, 73--82 (2019; Zbl 1455.34076) Full Text: DOI
Chiu, Kuo-Shou; Li, Tongxing Oscillatory and periodic solutions of differential equations with piecewise constant generalized mixed arguments. (English) Zbl 1442.34104 Math. Nachr. 292, No. 10, 2153-2164 (2019). Reviewer: Qingkai Kong (DeKalb) MSC: 34K11 34K13 PDF BibTeX XML Cite \textit{K.-S. Chiu} and \textit{T. Li}, Math. Nachr. 292, No. 10, 2153--2164 (2019; Zbl 1442.34104) Full Text: DOI
Sugie, Jitsuro; Ishibashi, Kazuki Nonoscillation of Mathieu equations with two frequencies. (English) Zbl 1428.34044 Appl. Math. Comput. 346, 491-499 (2019). MSC: 34C10 34B30 34E10 34C27 PDF BibTeX XML Cite \textit{J. Sugie} and \textit{K. Ishibashi}, Appl. Math. Comput. 346, 491--499 (2019; Zbl 1428.34044) Full Text: DOI
Karpuz, Başak Hille-Nehari theorems for dynamic equations with a time scale independent critical constant. (English) Zbl 1428.34043 Appl. Math. Comput. 346, 336-351 (2019). MSC: 34C10 34N05 39A21 PDF BibTeX XML Cite \textit{B. Karpuz}, Appl. Math. Comput. 346, 336--351 (2019; Zbl 1428.34043) Full Text: DOI
Heittokangas, Janne; Ishizaki, Katsuya; Laine, Ilpo; Tohge, Kazuya Complex oscillation and nonoscillation results. (English) Zbl 1429.34087 Trans. Am. Math. Soc. 372, No. 9, 6161-6182 (2019). Reviewer: Mykola Grygorenko (Kyïv) MSC: 34M10 30D35 34M03 PDF BibTeX XML Cite \textit{J. Heittokangas} et al., Trans. Am. Math. Soc. 372, No. 9, 6161--6182 (2019; Zbl 1429.34087) Full Text: DOI
Pinelas, Sandra; Santra, Shyam S. Necessary and sufficient conditions for oscillation of nonlinear first-order forced differential equations with several delays of neutral type. (English) Zbl 1443.34067 Analysis, München 39, No. 3, 97-105 (2019). Reviewer: Satoshi Tanaka (Sendai) MSC: 34K11 34K25 34K40 47N20 PDF BibTeX XML Cite \textit{S. Pinelas} and \textit{S. S. Santra}, Analysis, München 39, No. 3, 97--105 (2019; Zbl 1443.34067) Full Text: DOI
Santra, Shyam Sundar Oscillation analysis for nonlinear neutral differential equations of second order with several delays and forcing term. (English) Zbl 1438.34232 Mathematica 61(84), No. 1, 63-78 (2019). MSC: 34K11 34K25 34K40 PDF BibTeX XML Cite \textit{S. S. Santra}, Mathematica 61(84), No. 1, 63--78 (2019; Zbl 1438.34232) Full Text: DOI
Nockowska-Rosiak, Magdalena Uncountably many nonoscillatory bounded solutions to second-order nonlinear neutral dynamic equations. (English) Zbl 1423.34100 Turk. J. Math. 43, No. 3, 1699-1711 (2019). MSC: 34N05 34K11 34K40 47N20 PDF BibTeX XML Cite \textit{M. Nockowska-Rosiak}, Turk. J. Math. 43, No. 3, 1699--1711 (2019; Zbl 1423.34100) Full Text: DOI
Núñez, Carmen; Obaya, Rafael Non-Atkinson perturbations of nonautonomous linear Hamiltonian systems: exponential dichotomy and nonoscillation. (English) Zbl 1422.34169 J. Dyn. Differ. Equations 31, No. 3, 1397-1426 (2019). MSC: 34D09 37J40 34A30 37C60 34C10 PDF BibTeX XML Cite \textit{C. Núñez} and \textit{R. Obaya}, J. Dyn. Differ. Equations 31, No. 3, 1397--1426 (2019; Zbl 1422.34169) Full Text: DOI arXiv Link
Santra, Shyam S.; Tripathy, Arun K. On oscillatory first order nonlinear neutral differential equations with nonlinear impulses. (English) Zbl 1454.34095 J. Appl. Math. Comput. 59, No. 1-2, 257-270 (2019). Reviewer: Fatma Karakoç (Ankara) MSC: 34K11 34K40 34K45 PDF BibTeX XML Cite \textit{S. S. Santra} and \textit{A. K. Tripathy}, J. Appl. Math. Comput. 59, No. 1--2, 257--270 (2019; Zbl 1454.34095) Full Text: DOI
Karpuz, Basak Sharp oscillation and nonoscillation tests for delay dynamic equations. (English) Zbl 1419.34241 Math. Methods Appl. Sci. 42, No. 9, 2993-3001 (2019). MSC: 34N05 34K11 PDF BibTeX XML Cite \textit{B. Karpuz}, Math. Methods Appl. Sci. 42, No. 9, 2993--3001 (2019; Zbl 1419.34241) Full Text: DOI
Tripathy, A. K.; Chhatria, G. N. Oscillation of second order nonlinear impulsive neutral differential equations. (English) Zbl 1419.34179 Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 86, 11 p. (2019). MSC: 34K11 34K40 34K45 PDF BibTeX XML Cite \textit{A. K. Tripathy} and \textit{G. N. Chhatria}, Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 86, 11 p. (2019; Zbl 1419.34179) Full Text: DOI
Benchohra, Mouffak; Hamani, Samira; Zhou, Yong Oscillation and nonoscillation for Caputo-Hadamard impulsive fractional differential inclusions. (English) Zbl 1458.34133 Adv. Difference Equ. 2019, Paper No. 74, 15 p. (2019). MSC: 34K37 34A08 26A33 PDF BibTeX XML Cite \textit{M. Benchohra} et al., Adv. Difference Equ. 2019, Paper No. 74, 15 p. (2019; Zbl 1458.34133) Full Text: DOI
Vidhyaa, K. S.; Dharuman, C.; Graef, John R.; Thandapani, E. Existence of nonoscillatory solutions to third order nonlinear neutral difference equations. (English) Zbl 1499.39045 Filomat 32, No. 14, 4981-4991 (2018). MSC: 39A21 PDF BibTeX XML Cite \textit{K. S. Vidhyaa} et al., Filomat 32, No. 14, 4981--4991 (2018; Zbl 1499.39045) Full Text: DOI
Schmeidel, Ewa; Tripathy, Arun Kumar Oscillation criteria for three dimensional linear difference systems. (English) Zbl 1499.39044 Appl. Anal. Discrete Math. 12, No. 2, 347-361 (2018). MSC: 39A21 PDF BibTeX XML Cite \textit{E. Schmeidel} and \textit{A. K. Tripathy}, Appl. Anal. Discrete Math. 12, No. 2, 347--361 (2018; Zbl 1499.39044) Full Text: DOI
Ružička, Vojtěch Nonoscillation of even order Euler type half-linear difference equations. (English) Zbl 1424.39025 Miskolc Math. Notes 19, No. 2, 1137-1161 (2018). MSC: 39A21 47J30 PDF BibTeX XML Cite \textit{V. Ružička}, Miskolc Math. Notes 19, No. 2, 1137--1161 (2018; Zbl 1424.39025) Full Text: DOI
Öztürk, Özkan On oscillation of two-dimensional time-scale systems with a forcing term. (English) Zbl 1424.34327 Turk. J. Math. 42, No. 1, 312-319 (2018). MSC: 34N05 34C10 PDF BibTeX XML Cite \textit{Ö. Öztürk}, Turk. J. Math. 42, No. 1, 312--319 (2018; Zbl 1424.34327) Full Text: DOI
Tripathy, Arun Kumar; Sethi, Abhay Kumar Oscillation of sublinear second order neutral differential equations via Riccati transformation. (English) Zbl 1407.34047 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. ICDDEA, Amadora, Portugal, June 5–9, 2017. Cham: Springer. Springer Proc. Math. Stat. 230, 543-557 (2018). MSC: 34C10 34K11 PDF BibTeX XML Cite \textit{A. K. Tripathy} and \textit{A. K. Sethi}, Springer Proc. Math. Stat. 230, 543--557 (2018; Zbl 1407.34047) Full Text: DOI
Tripathy, A. K.; Chhatria, Gokula Nanda Oscillation criteria for forced first order nonlinear neutral impulsive difference system. (English) Zbl 1497.39009 Tatra Mt. Math. Publ. 71, 175-193 (2018). MSC: 39A21 PDF BibTeX XML Cite \textit{A. K. Tripathy} and \textit{G. N. Chhatria}, Tatra Mt. Math. Publ. 71, 175--193 (2018; Zbl 1497.39009) Full Text: DOI
Öztürk, Özkan On oscillatory behavior of two-dimensional time scale systems. (English) Zbl 1445.34129 Adv. Difference Equ. 2018, Paper No. 18, 12 p. (2018). MSC: 34N05 34C10 PDF BibTeX XML Cite \textit{Ö. Öztürk}, Adv. Difference Equ. 2018, Paper No. 18, 12 p. (2018; Zbl 1445.34129) Full Text: DOI
Akın, Elvan; Yeni, Gülşah Oscillation criteria for four-dimensional time-scale systems. (English) Zbl 1405.34076 Mediterr. J. Math. 15, No. 5, Paper No. 200, 15 p. (2018). MSC: 34N05 34K11 PDF BibTeX XML Cite \textit{E. Akın} and \textit{G. Yeni}, Mediterr. J. Math. 15, No. 5, Paper No. 200, 15 p. (2018; Zbl 1405.34076) Full Text: DOI
Domoshnitsky, Alexander; Shklyar, Roman Positivity for non-Metzler systems and its applications to stability of time-varying delay systems. (English) Zbl 1402.93213 Syst. Control Lett. 118, 44-51 (2018). MSC: 93D20 93D05 93C15 PDF BibTeX XML Cite \textit{A. Domoshnitsky} and \textit{R. Shklyar}, Syst. Control Lett. 118, 44--51 (2018; Zbl 1402.93213) Full Text: DOI
Sethi, Abhay Kumar Oscillation of second order sublinear neutral delay dynamic equations via Riccati transformation. (English) Zbl 1398.34132 J. Appl. Math. Inform. 36, No. 3-4, 213-229 (2018). MSC: 34N05 34K11 PDF BibTeX XML Cite \textit{A. K. Sethi}, J. Appl. Math. Inform. 36, No. 3--4, 213--229 (2018; Zbl 1398.34132) Full Text: DOI
Hasil, Petr; Veselý, Michal Oscillation and non-oscillation results for solutions of perturbed half-linear equations. (English) Zbl 1412.34120 Math. Methods Appl. Sci. 41, No. 9, 3246-3269 (2018). Reviewer: Robert Mařík (Brno) MSC: 34C10 PDF BibTeX XML Cite \textit{P. Hasil} and \textit{M. Veselý}, Math. Methods Appl. Sci. 41, No. 9, 3246--3269 (2018; Zbl 1412.34120) Full Text: DOI
Pinelas, Sandra; Santra, Shyam Sundar Necessary and sufficient condition for oscillation of nonlinear neutral first-order differential equations with several delays. (English) Zbl 1387.34095 J. Fixed Point Theory Appl. 20, No. 1, Paper No. 27, 13 p. (2018). MSC: 34K11 34K40 47N20 PDF BibTeX XML Cite \textit{S. Pinelas} and \textit{S. S. Santra}, J. Fixed Point Theory Appl. 20, No. 1, Paper No. 27, 13 p. (2018; Zbl 1387.34095) Full Text: DOI
Yamaoka, Naoto Oscillation and nonoscillation criteria for second-order nonlinear difference equations of Euler type. (English) Zbl 1383.39013 Proc. Am. Math. Soc. 146, No. 5, 2069-2081 (2018). MSC: 39A21 39A12 34C10 PDF BibTeX XML Cite \textit{N. Yamaoka}, Proc. Am. Math. Soc. 146, No. 5, 2069--2081 (2018; Zbl 1383.39013) Full Text: DOI
Tamer Şenel, M. On oscillation of third order functional differential equation. (English) Zbl 1377.34089 Electron. J. Math. Anal. Appl. 6, No. 1, 103-108 (2018). MSC: 34K11 34K25 PDF BibTeX XML Cite \textit{M. Tamer Şenel}, Electron. J. Math. Anal. Appl. 6, No. 1, 103--108 (2018; Zbl 1377.34089) Full Text: Link
Santra, Shyam Sundar Oscillation analysis for nonlinear neutral differential equations of second order with several delays. (English) Zbl 1438.34231 Mathematica 59(82), No. 1-2, 111-123 (2017). MSC: 34K11 34K25 34K40 PDF BibTeX XML Cite \textit{S. S. Santra}, Mathematica 59(82), No. 1--2, 111--123 (2017; Zbl 1438.34231)
Sugie, Jitsuro Nonoscillation theorems for second-order linear difference equations via the Riccati-type transformation. II. (English) Zbl 1411.39003 Appl. Math. Comput. 304, 142-152 (2017). MSC: 39A06 39A10 39A21 PDF BibTeX XML Cite \textit{J. Sugie}, Appl. Math. Comput. 304, 142--152 (2017; Zbl 1411.39003) Full Text: DOI
Santra, Shyam Sundar Necessary and sufficient conditions for oscillation of solutions of nonlinear second order differential equations. (English) Zbl 1424.34227 Rom. J. Math. Comput. Sci. 7, No. 2, 80-85 (2017). MSC: 34K11 PDF BibTeX XML Cite \textit{S. S. Santra}, Rom. J. Math. Comput. Sci. 7, No. 2, 80--85 (2017; Zbl 1424.34227)
Sugie, Jitsuro; Tanaka, Masahiko Nonoscillation of second-order linear equations involving a generalized difference operator. (English) Zbl 1382.39027 Elaydi, Saber (ed.) et al., Advances in difference equations and discrete dynamical systems. ICDEA, Osaka, Japan, July 24–28, 2016. Proceedings of the 22nd international conference on difference equations and applications. Singapore: Springer (ISBN 978-981-10-6408-1/hbk; 978-981-10-6409-8/ebook). Springer Proceedings in Mathematics & Statistics 212, 241-258 (2017). MSC: 39A70 39A21 39A06 PDF BibTeX XML Cite \textit{J. Sugie} and \textit{M. Tanaka}, Springer Proc. Math. Stat. 212, 241--258 (2017; Zbl 1382.39027) Full Text: DOI
Karakoç, Fatma Asymptotic behaviour of a population model with piecewise constant argument. (English) Zbl 1372.34128 Appl. Math. Lett. 70, 7-13 (2017). MSC: 34K60 34K25 34K11 PDF BibTeX XML Cite \textit{F. Karakoç}, Appl. Math. Lett. 70, 7--13 (2017; Zbl 1372.34128) Full Text: DOI
Sugie, Jitsuro Nonoscillation of second-order linear difference systems with varying coefficients. (English) Zbl 1372.39017 Linear Algebra Appl. 531, 22-37 (2017). MSC: 39A21 39A06 PDF BibTeX XML Cite \textit{J. Sugie}, Linear Algebra Appl. 531, 22--37 (2017; Zbl 1372.39017) Full Text: DOI
Šepitka, Peter; Šimon Hilscher, Roman Dominant and recessive solutions at infinity and genera of conjoined bases for discrete symplectic systems. (English) Zbl 1376.39004 J. Difference Equ. Appl. 23, No. 4, 657-698 (2017). Reviewer: Thanin Sitthiwirattham (Bangkok) MSC: 39A12 39A21 39A06 37J10 PDF BibTeX XML Cite \textit{P. Šepitka} and \textit{R. Šimon Hilscher}, J. Difference Equ. Appl. 23, No. 4, 657--698 (2017; Zbl 1376.39004) Full Text: DOI
Öztürk, Özkan Classification schemes of nonoscillatory solutions for two-dimensional time scale systems. (English) Zbl 1367.34107 Math. Inequal. Appl. 20, No. 2, 377-387 (2017). MSC: 34N05 34C10 PDF BibTeX XML Cite \textit{Ö. Öztürk}, Math. Inequal. Appl. 20, No. 2, 377--387 (2017; Zbl 1367.34107) Full Text: DOI
Wu, Fentao; Sugie, Jitsuro A new application method for nonoscillation criteria of Hille-Wintner type. (English) Zbl 1365.34066 Monatsh. Math. 183, No. 1, 201-218 (2017). MSC: 34C10 PDF BibTeX XML Cite \textit{F. Wu} and \textit{J. Sugie}, Monatsh. Math. 183, No. 1, 201--218 (2017; Zbl 1365.34066) Full Text: DOI
Akın, Elvan; Öztürk, Özkan Limiting behaviors of nonoscillatory solutions for two-dimensional nonlinear time scale systems. (English) Zbl 1365.34152 Mediterr. J. Math. 14, No. 1, Paper No. 34, 10 p. (2017). MSC: 34N05 34C10 34D05 PDF BibTeX XML Cite \textit{E. Akın} and \textit{Ö. Öztürk}, Mediterr. J. Math. 14, No. 1, Paper No. 34, 10 p. (2017; Zbl 1365.34152) Full Text: DOI
Tripathy, A. K.; Santra, S. S. Characterization of a class of second order neutral impulsive systems via pulsatile constant. (English) Zbl 1367.34090 Differ. Equ. Appl. 9, No. 1, 87-98 (2017). Reviewer: Fatma Karakoc (Ankara) MSC: 34K11 34K40 34K45 PDF BibTeX XML Cite \textit{A. K. Tripathy} and \textit{S. S. Santra}, Differ. Equ. Appl. 9, No. 1, 87--98 (2017; Zbl 1367.34090) Full Text: DOI
Sugie, Jitsuro; Tanaka, Masahiko Nonoscillation theorems for second-order linear difference equations via the Riccati-type transformation. (English) Zbl 1358.39006 Proc. Am. Math. Soc. 145, No. 5, 2059-2073 (2017). MSC: 39A21 39A06 PDF BibTeX XML Cite \textit{J. Sugie} and \textit{M. Tanaka}, Proc. Am. Math. Soc. 145, No. 5, 2059--2073 (2017; Zbl 1358.39006) Full Text: DOI
Ishibashi, Kazuki; Sugie, Jitsuro Simple conditions for parametrically excited oscillations of generalized Mathieu equations. (English) Zbl 1367.34033 J. Math. Anal. Appl. 446, No. 1, 233-247 (2017). Reviewer: Qiru Wang (Guangzhou) MSC: 34C10 PDF BibTeX XML Cite \textit{K. Ishibashi} and \textit{J. Sugie}, J. Math. Anal. Appl. 446, No. 1, 233--247 (2017; Zbl 1367.34033) Full Text: DOI