Dambrine, Marc; Karnaev, Viacheslav Robust obstacle reconstruction in an elastic medium. (English) Zbl 07770108 Discrete Contin. Dyn. Syst., Ser. B 29, No. 1, 151-173 (2024). MSC: 49N45 49J20 49J55 49M41 PDF BibTeX XML Cite \textit{M. Dambrine} and \textit{V. Karnaev}, Discrete Contin. Dyn. Syst., Ser. B 29, No. 1, 151--173 (2024; Zbl 07770108) Full Text: DOI
Liu, Jinxuan; Wang, Yong On a class of obstacle problem for Hessian equations on Riemannian manifolds. (English) Zbl 07772797 J. Inequal. Appl. 2023, Paper No. 17, 13 p. (2023). MSC: 35Jxx 58Jxx 49Qxx PDF BibTeX XML Cite \textit{J. Liu} and \textit{Y. Wang}, J. Inequal. Appl. 2023, Paper No. 17, 13 p. (2023; Zbl 07772797) Full Text: DOI
Jeon, Seongmin; Petrosyan, Arshak Regularity of almost minimizers for the parabolic thin obstacle problem. (English) Zbl 07768281 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 237, Article ID 113386, 29 p. (2023). MSC: 35B65 35K85 35R35 PDF BibTeX XML Cite \textit{S. Jeon} and \textit{A. Petrosyan}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 237, Article ID 113386, 29 p. (2023; Zbl 07768281) Full Text: DOI arXiv
Serra, Joaquim From branching singularities in minimal surfaces to non-smoothness points in ice-water interfaces. (English) Zbl 07763408 Hujdurović, Ademir (ed.) et al., European congress of mathematics. Proceedings of the 8th congress, 8ECM, Portorož, Slovenia, June 20–26, 2021. Berlin: European Mathematical Society (EMS). 607-641 (2023). MSC: 35R35 35B65 PDF BibTeX XML Cite \textit{J. Serra}, in: European congress of mathematics. Proceedings of the 8th congress, 8ECM, Portorož, Slovenia, June 20--26, 2021. Berlin: European Mathematical Society (EMS). 607--641 (2023; Zbl 07763408) Full Text: DOI
Matei, Andaluzia Three weak formulations for an obstacle model and their relationship. (English) Zbl 07762612 Ann. Acad. Rom. Sci., Math. Appl. 15, No. 1-2, 408-426 (2023). MSC: 35J65 49J40 74M15 PDF BibTeX XML Cite \textit{A. Matei}, Ann. Acad. Rom. Sci., Math. Appl. 15, No. 1--2, 408--426 (2023; Zbl 07762612) Full Text: DOI
Byun, Sun-Sig; Song, Kyeong; Youn, Yeonghun Fractional differentiability for elliptic double obstacle problems with measure data. (English) Zbl 07761219 Z. Anal. Anwend. 42, No. 1-2, 37-64 (2023). MSC: 35B65 35D30 35J87 35R06 PDF BibTeX XML Cite \textit{S.-S. Byun} et al., Z. Anal. Anwend. 42, No. 1--2, 37--64 (2023; Zbl 07761219) Full Text: DOI
Fernández-Real, Xavier; Torres-Latorre, Clara Generic regularity of free boundaries for the thin obstacle problem. (English) Zbl 07759063 Adv. Math. 433, Article ID 109323, 29 p. (2023). MSC: 35R35 35B65 35J86 PDF BibTeX XML Cite \textit{X. Fernández-Real} and \textit{C. Torres-Latorre}, Adv. Math. 433, Article ID 109323, 29 p. (2023; Zbl 07759063) Full Text: DOI arXiv
Logioti, Anna; Niethammer, Barbara; Röger, Matthias; Velázquez, Juan J. L. Qualitative properties of solutions to a mass-conserving free boundary problem modeling cell polarization. (English) Zbl 07755401 Commun. Partial Differ. Equations 48, No. 7-8, 1065-1101 (2023). MSC: 35R35 35R37 35R70 35K85 35Q92 PDF BibTeX XML Cite \textit{A. Logioti} et al., Commun. Partial Differ. Equations 48, No. 7--8, 1065--1101 (2023; Zbl 07755401) Full Text: DOI arXiv
Danielli, Donatella; Ognibene, Roberto On a weighted two-phase boundary obstacle problem. (English) Zbl 07754555 Indiana Univ. Math. J. 72, No. 4, 1627-1666 (2023). MSC: 35R35 35B40 35B44 35J25 35R11 PDF BibTeX XML Cite \textit{D. Danielli} and \textit{R. Ognibene}, Indiana Univ. Math. J. 72, No. 4, 1627--1666 (2023; Zbl 07754555) Full Text: DOI arXiv
El Bahja, Hamid Obstacle problem of a nonlinear anisotropic parabolic equation. (English) Zbl 07754359 Ric. Mat. 72, No. 2, 625-651 (2023). MSC: 35K86 35K20 49J40 PDF BibTeX XML Cite \textit{H. El Bahja}, Ric. Mat. 72, No. 2, 625--651 (2023; Zbl 07754359) Full Text: DOI
Schoof, R.; Castelli, G. F.; Dörfler, W. Simulation of the deformation for cycling chemo-mechanically coupled battery active particles with mechanical constraints. (English) Zbl 07750313 Comput. Math. Appl. 149, 135-149 (2023). MSC: 74-XX 82-XX PDF BibTeX XML Cite \textit{R. Schoof} et al., Comput. Math. Appl. 149, 135--149 (2023; Zbl 07750313) Full Text: DOI arXiv
Klimsiak, Tomasz Uniqueness for an obstacle problem arising from logistic-type equations with fractional Laplacian. (English) Zbl 07749895 Potential Anal. 59, No. 3, 897-916 (2023). MSC: 35R35 35A02 35J86 35R11 PDF BibTeX XML Cite \textit{T. Klimsiak}, Potential Anal. 59, No. 3, 897--916 (2023; Zbl 07749895) Full Text: DOI arXiv OA License
Karakhanyan, Aram L. A nonlocal free boundary problem with Wasserstein distance. (English) Zbl 07748714 Calc. Var. Partial Differ. Equ. 62, No. 9, Paper No. 240, 22 p. (2023). MSC: 35R35 35A15 35J60 35J87 49Q20 PDF BibTeX XML Cite \textit{A. L. Karakhanyan}, Calc. Var. Partial Differ. Equ. 62, No. 9, Paper No. 240, 22 p. (2023; Zbl 07748714) Full Text: DOI arXiv OA License
Fernández-Real, Xavier; Tione, Riccardo Improved regularity of second derivatives for subharmonic functions. (English) Zbl 07748564 Proc. Am. Math. Soc. 151, No. 12, 5283-5297 (2023). MSC: 31B05 35B65 35R35 PDF BibTeX XML Cite \textit{X. Fernández-Real} and \textit{R. Tione}, Proc. Am. Math. Soc. 151, No. 12, 5283--5297 (2023; Zbl 07748564) Full Text: DOI arXiv
Zhang, Xiaolin; Zheng, Shenzhou \(W^{1, \gamma(\cdot )}\)-estimate to non-uniformly elliptic obstacle problems with borderline growth. (English) Zbl 07742040 Complex Var. Elliptic Equ. 68, No. 10, 1833-1856 (2023). MSC: 35B45 35D30 35B65 35J62 35J87 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{S. Zheng}, Complex Var. Elliptic Equ. 68, No. 10, 1833--1856 (2023; Zbl 07742040) Full Text: DOI
Audrito, Alessandro; Kukuljan, Teo Regularity theory for fully nonlinear parabolic obstacle problems. (English) Zbl 07740617 J. Funct. Anal. 285, No. 10, Article ID 110116, 57 p. (2023). MSC: 35B65 35B44 35K85 35R35 PDF BibTeX XML Cite \textit{A. Audrito} and \textit{T. Kukuljan}, J. Funct. Anal. 285, No. 10, Article ID 110116, 57 p. (2023; Zbl 07740617) Full Text: DOI arXiv
Ndiaye, Cheikh Birahim Optimal control for the Paneitz obstacle problem. (English) Zbl 07734414 ESAIM, Control Optim. Calc. Var. 29, Paper No. 42, 24 p. (2023). MSC: 53C21 58J60 55N10 PDF BibTeX XML Cite \textit{C. B. Ndiaye}, ESAIM, Control Optim. Calc. Var. 29, Paper No. 42, 24 p. (2023; Zbl 07734414) Full Text: DOI arXiv
Danielli, Donatella; Haj Ali, Alaa; Petrosyan, Arshak The obstacle problem for a higher order fractional Laplacian. (English) Zbl 07733760 Calc. Var. Partial Differ. Equ. 62, No. 8, Paper No. 218, 22 p. (2023). MSC: 35B65 35J35 35J86 35R11 35R35 PDF BibTeX XML Cite \textit{D. Danielli} et al., Calc. Var. Partial Differ. Equ. 62, No. 8, Paper No. 218, 22 p. (2023; Zbl 07733760) Full Text: DOI arXiv
Eberle, Simon; Shahgholian, Henrik; Weiss, Georg S. On global solutions of the obstacle problem. (English) Zbl 07732804 Duke Math. J. 172, No. 11, 2149-2193 (2023). MSC: 35R35 35J86 PDF BibTeX XML Cite \textit{S. Eberle} et al., Duke Math. J. 172, No. 11, 2149--2193 (2023; Zbl 07732804) Full Text: DOI arXiv Link
Lee, Ki-Ahm; Park, Jinwan The regularity theory for the double obstacle problem for fully nonlinear operator. (English) Zbl 07726151 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 235, Article ID 113332, 24 p. (2023). Reviewer: Patrick Winkert (Berlin) MSC: 35R35 35B65 35J87 PDF BibTeX XML Cite \textit{K.-A. Lee} and \textit{J. Park}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 235, Article ID 113332, 24 p. (2023; Zbl 07726151) Full Text: DOI arXiv
Ran, Qinghua; Cheng, Xiaoliang; Gong, Rongfang; Zhang, Ye A dynamical method for optimal control of the obstacle problem. (English) Zbl 07726083 J. Inverse Ill-Posed Probl. 31, No. 4, 577-594 (2023). MSC: 65K15 35J86 49J20 49M05 70G60 PDF BibTeX XML Cite \textit{Q. Ran} et al., J. Inverse Ill-Posed Probl. 31, No. 4, 577--594 (2023; Zbl 07726083) Full Text: DOI
Ikehata, Masaru Extracting discontinuity using the probe and enclosure methods. (English) Zbl 1521.35207 J. Inverse Ill-Posed Probl. 31, No. 4, 487-575 (2023). MSC: 35R30 35J25 PDF BibTeX XML Cite \textit{M. Ikehata}, J. Inverse Ill-Posed Probl. 31, No. 4, 487--575 (2023; Zbl 1521.35207) Full Text: DOI arXiv
Ayuso de Dios, Blanca; Gudi, Thirupathi; Porwal, Kamana Pointwise a posteriori error analysis of a discontinuous Galerkin method for the elliptic obstacle problem. (English) Zbl 07726066 IMA J. Numer. Anal. 43, No. 4, 2377-2412 (2023). MSC: 65Nxx PDF BibTeX XML Cite \textit{B. Ayuso de Dios} et al., IMA J. Numer. Anal. 43, No. 4, 2377--2412 (2023; Zbl 07726066) Full Text: DOI arXiv
Zeng, Shengda; Bai, Yunru; Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D. Double phase implicit obstacle problems with convection term and multivalued operator. (English) Zbl 07721451 Anal. Appl., Singap. 21, No. 4, 1013-1038 (2023). MSC: 35J20 35J25 35J60 PDF BibTeX XML Cite \textit{S. Zeng} et al., Anal. Appl., Singap. 21, No. 4, 1013--1038 (2023; Zbl 07721451) Full Text: DOI
Lin, Sitan Obstacle problems on \(\mathrm{RCD}(K, N)\) metric measure spaces. (English) Zbl 07713392 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 5, 1925-1944 (2023). MSC: 51K10 35R35 PDF BibTeX XML Cite \textit{S. Lin}, Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 5, 1925--1944 (2023; Zbl 07713392) Full Text: DOI
Ding, Rui; Ding, Chaoren; Shen, Quan The interpolating element-free Galerkin method for the \(p\)-Laplace double obstacle mixed complementarity problem. (English) Zbl 07712385 J. Glob. Optim. 86, No. 3, 781-820 (2023). MSC: 90Cxx PDF BibTeX XML Cite \textit{R. Ding} et al., J. Glob. Optim. 86, No. 3, 781--820 (2023; Zbl 07712385) Full Text: DOI
Akagi, Goro; Sato, Kotaro Evolution equations with complete irreversibility and energy conservation. (English) Zbl 1518.35219 J. Math. Anal. Appl. 527, No. 1, Part 2, Article ID 127348, 31 p. (2023). MSC: 35D35 35B51 35K85 35J86 PDF BibTeX XML Cite \textit{G. Akagi} and \textit{K. Sato}, J. Math. Anal. Appl. 527, No. 1, Part 2, Article ID 127348, 31 p. (2023; Zbl 1518.35219) Full Text: DOI arXiv
Biswas, Imran H.; Tahraoui, Yassine; Vallet, Guy Obstacle problem for a stochastic conservation law and Lewy Stampacchia inequality. (English) Zbl 1518.35488 J. Math. Anal. Appl. 527, No. 1, Part 1, Article ID 127356, 39 p. (2023). MSC: 35L65 35L86 35R60 PDF BibTeX XML Cite \textit{I. H. Biswas} et al., J. Math. Anal. Appl. 527, No. 1, Part 1, Article ID 127356, 39 p. (2023; Zbl 1518.35488) Full Text: DOI
He, Youzi; Liu, Hongyu; Wang, Xianchao A novel quantitative inverse scattering scheme using interior resonant modes. (English) Zbl 1518.35674 Inverse Probl. 39, No. 8, Article ID 085002, 24 p. (2023). MSC: 35R30 35J25 35P25 78A46 PDF BibTeX XML Cite \textit{Y. He} et al., Inverse Probl. 39, No. 8, Article ID 085002, 24 p. (2023; Zbl 1518.35674) Full Text: DOI arXiv
Núñez, Manuel Stability of an hypersonic magnetohydrodynamic shock wave. (English) Zbl 1517.76030 Phys. Lett., A 479, Article ID 128939, 6 p. (2023). MSC: 76E17 76E25 76L05 76W05 76K05 PDF BibTeX XML Cite \textit{M. Núñez}, Phys. Lett., A 479, Article ID 128939, 6 p. (2023; Zbl 1517.76030) Full Text: DOI
Feng, Fang; Huang, Jianguo The virtual element method for a nonhomogeneous double obstacle problem of Kirchhoff plate. (English) Zbl 07698242 Nonlinear Anal., Real World Appl. 71, Article ID 103831, 16 p. (2023). MSC: 65Nxx 74Sxx 74Kxx PDF BibTeX XML Cite \textit{F. Feng} and \textit{J. Huang}, Nonlinear Anal., Real World Appl. 71, Article ID 103831, 16 p. (2023; Zbl 07698242) Full Text: DOI
Korobkov, Mikhail; Ren, Xiao Stationary solutions to the Navier-Stokes system in an exterior plane domain: 90 years of search, mysteries and insights. (English) Zbl 1517.76018 J. Math. Fluid Mech. 25, No. 3, Paper No. 55, 22 p. (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 76D03 35Q30 PDF BibTeX XML Cite \textit{M. Korobkov} and \textit{X. Ren}, J. Math. Fluid Mech. 25, No. 3, Paper No. 55, 22 p. (2023; Zbl 1517.76018) Full Text: DOI
Zeng, Shengda; Bai, Yunru; Rădulescu, Vicenţiu D. Inverse problems for anisotropic obstacle problems with multivalued convection and unbalanced growth. (English) Zbl 1517.35270 Evol. Equ. Control Theory 12, No. 3, 790-822 (2023). MSC: 35R30 35J20 35J25 35J87 35J92 49N45 65J20 PDF BibTeX XML Cite \textit{S. Zeng} et al., Evol. Equ. Control Theory 12, No. 3, 790--822 (2023; Zbl 1517.35270) Full Text: DOI
Shahsavari, Samira; Ketabchi, Saeed Applications of the proximal difference-of-convex algorithm with extrapolation in optimal correction. (English) Zbl 07695067 J. Math. Model. 11, No. 1, 35-54 (2023). MSC: 90C26 90C32 90C25 34A34 15A39 PDF BibTeX XML Cite \textit{S. Shahsavari} and \textit{S. Ketabchi}, J. Math. Model. 11, No. 1, 35--54 (2023; Zbl 07695067) Full Text: DOI
Kim, Takwon; Lee, Ki-Ahm; Park, Jinwan A double obstacle problem in an optimal investment problem. (English) Zbl 1516.35554 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 232, Article ID 113282, 40 p. (2023). MSC: 35R35 35K86 35Q91 PDF BibTeX XML Cite \textit{T. Kim} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 232, Article ID 113282, 40 p. (2023; Zbl 1516.35554) Full Text: DOI
Christof, Constantin; Wachsmuth, Gerd Semismoothness for solution operators of obstacle-type variational inequalities with applications in optimal control. (English) Zbl 1518.35379 SIAM J. Control Optim. 61, No. 3, 1162-1186 (2023). MSC: 35J86 35J87 PDF BibTeX XML Cite \textit{C. Christof} and \textit{G. Wachsmuth}, SIAM J. Control Optim. 61, No. 3, 1162--1186 (2023; Zbl 1518.35379) Full Text: DOI arXiv
Niakh, Idrissa; Drouet, Guillaume; Ehrlacher, Virginie; Ern, Alexandre Stable model reduction for linear variational inequalities with parameter-dependent constraints. (English) Zbl 1515.65299 ESAIM, Math. Model. Numer. Anal. 57, No. 1, 167-189 (2023). MSC: 65N30 65N12 65N22 35A23 35A01 35A02 49M41 74M15 74S05 PDF BibTeX XML Cite \textit{I. Niakh} et al., ESAIM, Math. Model. Numer. Anal. 57, No. 1, 167--189 (2023; Zbl 1515.65299) Full Text: DOI
Song, Kyeong; Youn, Yeonghun A note on comparison principle for elliptic obstacle problems with \(L^1\)-data. (English) Zbl 1514.35072 Bull. Korean Math. Soc. 60, No. 2, 495-505 (2023). MSC: 35B51 35B65 35J87 35R05 PDF BibTeX XML Cite \textit{K. Song} and \textit{Y. Youn}, Bull. Korean Math. Soc. 60, No. 2, 495--505 (2023; Zbl 1514.35072) Full Text: DOI
Zeng, Shengda; Bai, Yunru; Rădulescu, Vicenţiu D.; Winkert, Patrick An inverse problem for a double phase implicit obstacle problem with multivalued terms. (English) Zbl 1518.35273 ESAIM, Control Optim. Calc. Var. 29, Paper No. 30, 23 p. (2023). Reviewer: Calogero Vetro (Palermo) MSC: 35J20 35J25 35J60 35R30 49N45 PDF BibTeX XML Cite \textit{S. Zeng} et al., ESAIM, Control Optim. Calc. Var. 29, Paper No. 30, 23 p. (2023; Zbl 1518.35273) Full Text: DOI
Khandelwal, Rohit; Porwal, Kamana; Singla, Ritesh Supremum-norm a posteriori error control of quadratic discontinuous Galerkin methods for the obstacle problem. (English) Zbl 07674331 Comput. Math. Appl. 137, 147-171 (2023). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{R. Khandelwal} et al., Comput. Math. Appl. 137, 147--171 (2023; Zbl 07674331) Full Text: DOI arXiv
Solera, Marcos; Toledo, Julián Nonlocal doubly nonlinear diffusion problems with nonlinear boundary conditions. (English) Zbl 1511.35226 J. Evol. Equ. 23, No. 2, Paper No. 24, 83 p. (2023). MSC: 35K92 35K61 47H06 47J35 PDF BibTeX XML Cite \textit{M. Solera} and \textit{J. Toledo}, J. Evol. Equ. 23, No. 2, Paper No. 24, 83 p. (2023; Zbl 1511.35226) Full Text: DOI arXiv
Grimaldi, Antonio Giuseppe Higher differentiability for bounded solutions to a class of obstacle problems with \((p, q)\)-growth. (English) Zbl 1512.35324 Forum Math. 35, No. 2, 457-485 (2023). MSC: 35J87 47J20 49J40 PDF BibTeX XML Cite \textit{A. G. Grimaldi}, Forum Math. 35, No. 2, 457--485 (2023; Zbl 1512.35324) Full Text: DOI arXiv
Dendani, Yazid; Ghanem, Radouen A priori error estimates for obstacle optimal control problem, where the obstacle is the control itself. (English) Zbl 07661758 J. Comput. Math. 41, No. 4, 693-716 (2023). MSC: 65M60 49J20 35R35 PDF BibTeX XML Cite \textit{Y. Dendani} and \textit{R. Ghanem}, J. Comput. Math. 41, No. 4, 693--716 (2023; Zbl 07661758) Full Text: DOI
Zeng, Shengda; Migórski, Stanisław; Khan, Akhtar A.; Yao, Jen-Chih Inverse problems for a class of elliptic obstacle problems involving multivalued convection term and weighted \((p,q)\)-Laplacian. (English) Zbl 1509.35385 Optimization 72, No. 1, 321-349 (2023). MSC: 35R30 35J20 35J25 35J87 35J92 49N45 65J20 PDF BibTeX XML Cite \textit{S. Zeng} et al., Optimization 72, No. 1, 321--349 (2023; Zbl 1509.35385) Full Text: DOI
Liu, Hao; Wang, Dong Fast operator splitting methods for obstacle problems. (English) Zbl 07652823 J. Comput. Phys. 477, Article ID 111941, 21 p. (2023). MSC: 35Jxx 65Kxx 49Jxx PDF BibTeX XML Cite \textit{H. Liu} and \textit{D. Wang}, J. Comput. Phys. 477, Article ID 111941, 21 p. (2023; Zbl 07652823) Full Text: DOI arXiv
Harrach, Bastian; Lin, Yi-Hsuan Simultaneous recovery of piecewise analytic coefficients in a semilinear elliptic equation. (English) Zbl 1507.35341 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 228, Article ID 113188, 14 p. (2023). MSC: 35R30 35J25 35J61 PDF BibTeX XML Cite \textit{B. Harrach} and \textit{Y.-H. Lin}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 228, Article ID 113188, 14 p. (2023; Zbl 1507.35341) Full Text: DOI arXiv
Boyana, Satyajith Bommana; Lewis, Thomas; Rapp, Aaron; Zhang, Yi Convergence analysis of a symmetric dual-wind discontinuous Galerkin method for a parabolic variational inequality. (English) Zbl 1499.65645 J. Comput. Appl. Math. 422, Article ID 114922, 18 p. (2023). MSC: 65N30 65N12 65K15 49J40 PDF BibTeX XML Cite \textit{S. B. Boyana} et al., J. Comput. Appl. Math. 422, Article ID 114922, 18 p. (2023; Zbl 1499.65645) Full Text: DOI
Zeng, Shengda; Rădulescu, Vicenţiu D.; Winkert, Patrick Double phase obstacle problems with multivalued convection and mixed boundary value conditions. (English) Zbl 1505.35126 Discrete Contin. Dyn. Syst., Ser. B 28, No. 2, 999-1023 (2023). Reviewer: Calogero Vetro (Palermo) MSC: 35J20 35J25 35J60 PDF BibTeX XML Cite \textit{S. Zeng} et al., Discrete Contin. Dyn. Syst., Ser. B 28, No. 2, 999--1023 (2023; Zbl 1505.35126) Full Text: DOI arXiv
Andreucci, Giovanna; Focardi, Matteo The classical obstacle problem with Hölder continuous coefficients. (English) Zbl 1501.35222 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 226, Article ID 113139, 17 p. (2023). MSC: 35J86 35R35 49N60 PDF BibTeX XML Cite \textit{G. Andreucci} and \textit{M. Focardi}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 226, Article ID 113139, 17 p. (2023; Zbl 1501.35222) Full Text: DOI arXiv
Laurençot, Philippe; Walker, Christoph Stationary states to a free boundary transmission problem for an electrostatically actuated plate. (English) Zbl 1500.35316 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 1, Paper No. 2, 17 p. (2023). MSC: 35R35 49Q10 49J40 35J50 35J57 35Q74 PDF BibTeX XML Cite \textit{P. Laurençot} and \textit{C. Walker}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 1, Paper No. 2, 17 p. (2023; Zbl 1500.35316) Full Text: DOI arXiv
Li, Zhilin; Mikayelyan, Hayk Numerical analysis of a free boundary problem with non-local obstacles. (English) Zbl 1500.65029 Appl. Math. Lett. 135, Article ID 108414, 6 p. (2023). MSC: 65K10 35Q49 65N06 PDF BibTeX XML Cite \textit{Z. Li} and \textit{H. Mikayelyan}, Appl. Math. Lett. 135, Article ID 108414, 6 p. (2023; Zbl 1500.65029) Full Text: DOI
Zeng, Shengda; Bai, Yunru; Winkert, Patrick; Yao, Jen-Chih Identification of discontinuous parameters in double phase obstacle problems. (English) Zbl 1500.35124 Adv. Nonlinear Anal. 12, 1-22 (2023). Reviewer: Calogero Vetro (Palermo) MSC: 35J20 35J25 35J60 35R30 PDF BibTeX XML Cite \textit{S. Zeng} et al., Adv. Nonlinear Anal. 12, 1--22 (2023; Zbl 1500.35124) Full Text: DOI
Schlegel, Luka; Schulz, Volker Shape optimization for the mitigation of coastal erosion via porous shallow water equations. (English) Zbl 07769283 Int. J. Numer. Methods Eng. 123, No. 22, 5416-5441 (2022). MSC: 76Mxx 65Mxx 86Axx PDF BibTeX XML Cite \textit{L. Schlegel} and \textit{V. Schulz}, Int. J. Numer. Methods Eng. 123, No. 22, 5416--5441 (2022; Zbl 07769283) Full Text: DOI arXiv OA License
Oh, Jehan; Woo, Namgwang Time-dependent double obstacle problem arising from European option pricing with transaction costs. (English) Zbl 1514.35438 Kyungpook Math. J. 62, No. 4, 615-640 (2022). MSC: 35Q91 49J40 91G20 PDF BibTeX XML Cite \textit{J. Oh} and \textit{N. Woo}, Kyungpook Math. J. 62, No. 4, 615--640 (2022; Zbl 1514.35438) Full Text: DOI
Fernández-Real, Xavier; Ros-Oton, Xavier Regularity theory for elliptic PDE. (English) Zbl 07643646 Zurich Lectures in Advanced Mathematics. Berlin: European Mathematical Society (EMS) (ISBN 978-3-98547-028-0/pbk; 978-3-98547-528-5/ebook). viii, 228 p. (2022). Reviewer: Mohammad Safdari (Tehran) MSC: 35-02 35B65 35Jxx 35R35 PDF BibTeX XML Cite \textit{X. Fernández-Real} and \textit{X. Ros-Oton}, Regularity theory for elliptic PDE. Berlin: European Mathematical Society (EMS) (2022; Zbl 07643646) Full Text: DOI arXiv
Générau, François; Oudet, Édouard; Velichkov, Bozhidar Cut locus on compact manifolds and uniform semiconcavity estimates for a variational inequality. (English) Zbl 1506.35074 Arch. Ration. Mech. Anal. 246, No. 2-3, 561-602 (2022). MSC: 35J60 35R01 35R35 PDF BibTeX XML Cite \textit{F. Générau} et al., Arch. Ration. Mech. Anal. 246, No. 2--3, 561--602 (2022; Zbl 1506.35074) Full Text: DOI arXiv
Lee, Ki-Ahm; Lee, Se-Chan Random homogenization of \(\varphi\)-Laplacian equations with highly oscillating obstacles. (English) Zbl 1507.35020 Indiana Univ. Math. J. 71, No. 6, 2377-2410 (2022). Reviewer: Adrian Muntean (Karlstad) MSC: 35B27 35B05 35J87 35R60 74Q10 PDF BibTeX XML Cite \textit{K.-A. Lee} and \textit{S.-C. Lee}, Indiana Univ. Math. J. 71, No. 6, 2377--2410 (2022; Zbl 1507.35020) Full Text: DOI
Neitzel, Ira; Wachsmuth, Gerd First-order conditions for the optimal control of the obstacle problem with state constraints. (English) Zbl 1505.49019 Pure Appl. Funct. Anal. 7, No. 5, 1881-1911 (2022). MSC: 49K21 35J86 PDF BibTeX XML Cite \textit{I. Neitzel} and \textit{G. Wachsmuth}, Pure Appl. Funct. Anal. 7, No. 5, 1881--1911 (2022; Zbl 1505.49019) Full Text: arXiv Link
Keshavarz-Kohjerdi, Fatemeh Off-line exploration of rectangular cellular environments with a rectangular obstacle. (English) Zbl 07634900 Optim. Methods Softw. 37, No. 5, 1805-1819 (2022). MSC: 68R10 05C38 05C12 PDF BibTeX XML Cite \textit{F. Keshavarz-Kohjerdi}, Optim. Methods Softw. 37, No. 5, 1805--1819 (2022; Zbl 07634900) Full Text: DOI
Armstrong, Scott; Serfaty, Sylvia Thermal approximation of the equilibrium measure and obstacle problem. (English. French summary) Zbl 07632637 Ann. Fac. Sci. Toulouse, Math. (6) 31, No. 4, 1085-1110 (2022). MSC: 82B05 82D05 82C31 60B10 PDF BibTeX XML Cite \textit{S. Armstrong} and \textit{S. Serfaty}, Ann. Fac. Sci. Toulouse, Math. (6) 31, No. 4, 1085--1110 (2022; Zbl 07632637) Full Text: DOI arXiv
Park, Jinwan Properties of the free boundary near the fixed boundary of the double obstacle problems. (English) Zbl 1511.35387 Bull. Math. Sci. 12, No. 3, Article ID 2150009, 30 p. (2022). Reviewer: Emanuel Indrei (West Lafayette) MSC: 35R35 35B65 35J86 PDF BibTeX XML Cite \textit{J. Park}, Bull. Math. Sci. 12, No. 3, Article ID 2150009, 30 p. (2022; Zbl 1511.35387) Full Text: DOI
Hertlein, Lukas; Rauls, Anne-Therese; Ulbrich, Michael; Ulbrich, Stefan An inexact bundle method and subgradient computations for optimal control of deterministic and stochastic obstacle problems. (English) Zbl 1505.49014 Hintermüller, Michael (ed.) et al., Non-smooth and complementarity-based distributed parameter systems. Simulation and hierarchical optimization. Cham: Birkhäuser. ISNM, Int. Ser. Numer. Math. 172, 467-497 (2022). Reviewer: Fabio Vito Difonzo (Bari) MSC: 49J52 26A24 49J40 65K05 49K20 90C56 PDF BibTeX XML Cite \textit{L. Hertlein} et al., ISNM, Int. Ser. Numer. Math. 172, 467--497 (2022; Zbl 1505.49014) Full Text: DOI
Schulz, Volker H.; Welker, Kathrin Shape optimization for variational inequalities of obstacle type: regularized and unregularized computational approaches. (English) Zbl 1506.49005 Hintermüller, Michael (ed.) et al., Non-smooth and complementarity-based distributed parameter systems. Simulation and hierarchical optimization. Cham: Birkhäuser. ISNM, Int. Ser. Numer. Math. 172, 397-420 (2022). Reviewer: Ankit Gupta (Delhi) MSC: 49J40 49Q10 65K15 49M29 PDF BibTeX XML Cite \textit{V. H. Schulz} and \textit{K. Welker}, ISNM, Int. Ser. Numer. Math. 172, 397--420 (2022; Zbl 1506.49005) Full Text: DOI
Cohen, Daniel C.; Farber, Michael; Weinberger, Shmuel Parametrized topological complexity of collision-free motion planning in the plane. (English) Zbl 1509.55011 Ann. Math. Artif. Intell. 90, No. 10, 999-1015 (2022). Reviewer: Enrique Torres-Giese (Langley) MSC: 55S40 55M30 55R80 70Q05 PDF BibTeX XML Cite \textit{D. C. Cohen} et al., Ann. Math. Artif. Intell. 90, No. 10, 999--1015 (2022; Zbl 1509.55011) Full Text: DOI arXiv
Magnani, Valentino; Minne, Andreas Optimal regularity of solutions to no-sign obstacle-type problems for the sub-Laplacian. (English) Zbl 1502.35035 Anal. PDE 15, No. 6, 1429-1456 (2022). MSC: 35B65 35H20 35R35 PDF BibTeX XML Cite \textit{V. Magnani} and \textit{A. Minne}, Anal. PDE 15, No. 6, 1429--1456 (2022; Zbl 1502.35035) Full Text: DOI arXiv
Gavhale, Siddharth; Švadlenka, Karel Dewetting dynamics of anisotropic particles: a level set numerical approach. (English) Zbl 07613012 Appl. Math., Praha 67, No. 5, 543-571 (2022). MSC: 53E10 65K10 74P20 PDF BibTeX XML Cite \textit{S. Gavhale} and \textit{K. Švadlenka}, Appl. Math., Praha 67, No. 5, 543--571 (2022; Zbl 07613012) Full Text: DOI arXiv
Dautov, Rafail Z. On exact penalty operators and penalization methods for elliptic unilateral problems with piecewise smooth obstacles. (English) Zbl 1514.35216 Badriev, Ildar B. (ed.) et al., Mesh methods for boundary-value problems and applications. 13th international conference, Kazan, Russia, October 20–25, 2020. Cham: Springer. Lect. Notes Comput. Sci. Eng. 141, 57-68 (2022). MSC: 35J86 49J40 PDF BibTeX XML Cite \textit{R. Z. Dautov}, Lect. Notes Comput. Sci. Eng. 141, 57--68 (2022; Zbl 1514.35216) Full Text: DOI
Byun, Sun-Sig; Namkyeong, Cho Higher differentiability for solutions of a general class of nonlinear elliptic obstacle problems with Orlicz growth. (English) Zbl 1501.35105 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 6, Paper No. 73, 25 p. (2022). Reviewer: Patrick Winkert (Berlin) MSC: 35B65 35J62 35J87 35R06 PDF BibTeX XML Cite \textit{S.-S. Byun} and \textit{C. Namkyeong}, NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 6, Paper No. 73, 25 p. (2022; Zbl 1501.35105) Full Text: DOI
Hishida, Toshiaki Spatial pointwise behavior of time-periodic Navier-Stokes flow induced by oscillation of a moving obstacle. (English) Zbl 1498.35389 J. Math. Fluid Mech. 24, No. 4, Paper No. 102, 26 p. (2022). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 76D05 35B10 35B05 35D30 35A02 PDF BibTeX XML Cite \textit{T. Hishida}, J. Math. Fluid Mech. 24, No. 4, Paper No. 102, 26 p. (2022; Zbl 1498.35389) Full Text: DOI arXiv
Shan, Yanan; Gao, Hongya Global integrability for solutions to obstacle problems. (English) Zbl 1513.35207 J. Partial Differ. Equations 35, No. 4, 320-330 (2022). MSC: 35J25 PDF BibTeX XML Cite \textit{Y. Shan} and \textit{H. Gao}, J. Partial Differ. Equations 35, No. 4, 320--330 (2022; Zbl 1513.35207) Full Text: DOI
Moring, Kristian; Schätzler, Leah On the Hölder regularity for obstacle problems to porous medium type equations. (English) Zbl 1498.35136 J. Evol. Equ. 22, No. 4, Paper No. 81, 46 p. (2022). MSC: 35B65 35D30 35K65 35K67 35K86 47J20 PDF BibTeX XML Cite \textit{K. Moring} and \textit{L. Schätzler}, J. Evol. Equ. 22, No. 4, Paper No. 81, 46 p. (2022; Zbl 1498.35136) Full Text: DOI arXiv
Ayadi, Hocine; Mokhtari, Fares; Souilah, Rezak The obstacle problem for noncoercive elliptic equations with variable growth and \(L^1\)-data. (English) Zbl 1497.35249 Port. Math. 79, No. 1-2, 61-83 (2022). MSC: 35J87 35J70 35B65 PDF BibTeX XML Cite \textit{H. Ayadi} et al., Port. Math. 79, No. 1--2, 61--83 (2022; Zbl 1497.35249) Full Text: DOI
Grimaldi, Antonio Giuseppe; Ipocoana, Erica Higher differentiability results in the scale of Besov spaces to a class of double-phase obstacle problems. (English) Zbl 1495.49007 ESAIM, Control Optim. Calc. Var. 28, Paper No. 51, 35 p. (2022). MSC: 49J40 49J21 26A27 47J20 PDF BibTeX XML Cite \textit{A. G. Grimaldi} and \textit{E. Ipocoana}, ESAIM, Control Optim. Calc. Var. 28, Paper No. 51, 35 p. (2022; Zbl 1495.49007) Full Text: DOI arXiv
Rozkosz, Andrzej On perpetual American options in a multidimensional Black-Scholes model. (English) Zbl 1492.91386 Stochastics 94, No. 5, 723-744 (2022). MSC: 91G20 60G40 60H10 60H30 PDF BibTeX XML Cite \textit{A. Rozkosz}, Stochastics 94, No. 5, 723--744 (2022; Zbl 1492.91386) Full Text: DOI arXiv
Takahashi, Tomoki Attainability of a stationary Navier-Stokes flow around a rigid body rotating from rest. (English) Zbl 1492.35186 Funkc. Ekvacioj, Ser. Int. 65, No. 1, 111-138 (2022). MSC: 35Q30 76D05 PDF BibTeX XML Cite \textit{T. Takahashi}, Funkc. Ekvacioj, Ser. Int. 65, No. 1, 111--138 (2022; Zbl 1492.35186) Full Text: DOI arXiv
Banerjee, Agnid; Buseghin, Federico; Garofalo, Nicola The thin obstacle problem for some variable coefficient degenerate elliptic operators. (English) Zbl 1500.35071 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 223, Article ID 113052, 42 p. (2022). Reviewer: Wenhui Shi (Clayton) MSC: 35B65 35J25 35J70 35J86 35R35 PDF BibTeX XML Cite \textit{A. Banerjee} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 223, Article ID 113052, 42 p. (2022; Zbl 1500.35071) Full Text: DOI arXiv
Alphonse, Amal; Hintermüller, Michael; Rautenberg, Carlos N. Optimal control and directional differentiability for elliptic quasi-variational inequalities. (English) Zbl 07563231 Set-Valued Var. Anal. 30, No. 3, 873-922 (2022). MSC: 47J20 49J21 49J40 49K21 46G05 PDF BibTeX XML Cite \textit{A. Alphonse} et al., Set-Valued Var. Anal. 30, No. 3, 873--922 (2022; Zbl 07563231) Full Text: DOI arXiv
Dong, Heping; Zhang, Deyue; Chi, Yingwei An iterative scheme for imaging acoustic obstacle from phaseless total-field data. (English) Zbl 1494.65093 Inverse Probl. Imaging 16, No. 4, 925-942 (2022). MSC: 65N21 65N20 76Q05 78A46 65K10 65F20 65F22 65R20 35J05 65J20 35R30 35R25 35Q35 PDF BibTeX XML Cite \textit{H. Dong} et al., Inverse Probl. Imaging 16, No. 4, 925--942 (2022; Zbl 1494.65093) Full Text: DOI
Hettlich, Frank The domain derivative for semilinear elliptic inverse obstacle problems. (English) Zbl 1494.35185 Inverse Probl. Imaging 16, No. 4, 691-702 (2022). MSC: 35R30 35J25 35J61 PDF BibTeX XML Cite \textit{F. Hettlich}, Inverse Probl. Imaging 16, No. 4, 691--702 (2022; Zbl 1494.35185) Full Text: DOI
Duan, Yarui; Wu, Pengcheng; Zhou, Yuying An approximating approach to an optimal control problem for an elliptic variational inequality on a mixed boundary. (English) Zbl 1493.49010 Numer. Funct. Anal. Optim. 43, No. 9, 1095-1113 (2022). MSC: 49J40 49K20 49J20 PDF BibTeX XML Cite \textit{Y. Duan} et al., Numer. Funct. Anal. Optim. 43, No. 9, 1095--1113 (2022; Zbl 1493.49010) Full Text: DOI
Focardi, Matteo; Spadaro, Emanuele The local structure of the free boundary in the fractional obstacle problem. (English) Zbl 1501.35463 Adv. Calc. Var. 15, No. 3, 323-349 (2022). Reviewer: Wenhui Shi (Clayton) MSC: 35R35 35J25 35J65 35R11 PDF BibTeX XML Cite \textit{M. Focardi} and \textit{E. Spadaro}, Adv. Calc. Var. 15, No. 3, 323--349 (2022; Zbl 1501.35463) Full Text: DOI arXiv
Zeng, Shengda; Rădulescu, Vicențiu D.; Winkert, Patrick Double phase obstacle problems with variable exponent. (English) Zbl 1497.35146 Adv. Differ. Equ. 27, No. 9-10, 611-645 (2022). Reviewer: Calogero Vetro (Palermo) MSC: 35J20 35J25 35J60 35R70 PDF BibTeX XML Cite \textit{S. Zeng} et al., Adv. Differ. Equ. 27, No. 9--10, 611--645 (2022; Zbl 1497.35146) Full Text: Link
Byun, Sun-Sig; Han, Jeongmin; Oh, Jehan On \(W^{2, p}\)-estimates for solutions of obstacle problems for fully nonlinear elliptic equations with oblique boundary conditions. (English) Zbl 1492.35112 Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 162, 15 p. (2022). Reviewer: Said El Manouni (Riyadh) MSC: 35J60 35J25 35A01 35B65 PDF BibTeX XML Cite \textit{S.-S. Byun} et al., Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 162, 15 p. (2022; Zbl 1492.35112) Full Text: DOI arXiv
Piccinini, Mirco The obstacle problem and the Perron method for nonlinear fractional equations in the Heisenberg group. (English) Zbl 1491.35435 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112966, 31 p. (2022). MSC: 35R11 35J87 35R03 35R09 35B45 47G20 47J20 PDF BibTeX XML Cite \textit{M. Piccinini}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112966, 31 p. (2022; Zbl 1491.35435) Full Text: DOI arXiv
Ikehata, Masaru Revisiting the probe and enclosure methods. (English) Zbl 1491.35461 Inverse Probl. 38, No. 7, Article ID 075009, 33 p. (2022). MSC: 35R30 35J10 35J25 35J86 PDF BibTeX XML Cite \textit{M. Ikehata}, Inverse Probl. 38, No. 7, Article ID 075009, 33 p. (2022; Zbl 1491.35461) Full Text: DOI arXiv
Kow, Pu-Zhao; Kimura, Masato The Lewy-Stampacchia inequality for the fractional Laplacian and its application to anomalous unidirectional diffusion equations. (English) Zbl 1490.35520 Discrete Contin. Dyn. Syst., Ser. B 27, No. 6, 2935-2957 (2022). MSC: 35R11 35K20 35K86 PDF BibTeX XML Cite \textit{P.-Z. Kow} and \textit{M. Kimura}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 6, 2935--2957 (2022; Zbl 1490.35520) Full Text: DOI arXiv
Khandelwal, Rohit; Porwal, Kamana Pointwise a posteriori error analysis of quadratic finite element method for the elliptic obstacle problem. (English) Zbl 1486.65250 J. Comput. Appl. Math. 412, Article ID 114364, 16 p. (2022). MSC: 65N30 65N15 PDF BibTeX XML Cite \textit{R. Khandelwal} and \textit{K. Porwal}, J. Comput. Appl. Math. 412, Article ID 114364, 16 p. (2022; Zbl 1486.65250) Full Text: DOI
Tam, Vo Minh Upper-bound error estimates for double phase obstacle problems with Clarke’s subdifferential. (English) Zbl 1491.35159 Numer. Funct. Anal. Optim. 43, No. 4, 463-485 (2022). MSC: 35J20 35J60 PDF BibTeX XML Cite \textit{V. M. Tam}, Numer. Funct. Anal. Optim. 43, No. 4, 463--485 (2022; Zbl 1491.35159) Full Text: DOI
Mezabia, M. E.; Chacha, D. A.; Bensayah, A. Modelling of frictionless Signorini problem for a linear elastic membrane shell. (English) Zbl 1491.74077 Appl. Anal. 101, No. 6, 2295-2315 (2022). MSC: 74M15 74K25 74G10 35Q74 PDF BibTeX XML Cite \textit{M. E. Mezabia} et al., Appl. Anal. 101, No. 6, 2295--2315 (2022; Zbl 1491.74077) Full Text: DOI
Apushkinskaya, Darya; Repin, Sergey Functional a posteriori error estimates for the parabolic obstacle problem. (English) Zbl 1487.35455 Comput. Methods Appl. Math. 22, No. 2, 259-276 (2022). MSC: 35R35 35K20 35K85 PDF BibTeX XML Cite \textit{D. Apushkinskaya} and \textit{S. Repin}, Comput. Methods Appl. Math. 22, No. 2, 259--276 (2022; Zbl 1487.35455) Full Text: DOI arXiv
Alnashri, Yahya A general error estimate for parabolic variational inequalities. (English) Zbl 07516743 Comput. Methods Appl. Math. 22, No. 2, 245-258 (2022). MSC: 65-XX 35K86 65N12 76S05 PDF BibTeX XML Cite \textit{Y. Alnashri}, Comput. Methods Appl. Math. 22, No. 2, 245--258 (2022; Zbl 07516743) Full Text: DOI arXiv
Di Fazio, Luca; Spadaro, Emanuele Regularity of solutions to nonlinear thin and boundary obstacle problems. (English) Zbl 1494.35198 Adv. Math. 401, Article ID 108263, 39 p. (2022). Reviewer: Wenhui Shi (Clayton) MSC: 35R35 35B65 35J87 49Q05 PDF BibTeX XML Cite \textit{L. Di Fazio} and \textit{E. Spadaro}, Adv. Math. 401, Article ID 108263, 39 p. (2022; Zbl 1494.35198) Full Text: DOI arXiv
Eiter, Thomas On the Stokes-type resolvent problem associated with time-periodic flow around a rotating obstacle. (English) Zbl 1490.76081 J. Math. Fluid Mech. 24, No. 2, Paper No. 52, 17 p. (2022). MSC: 76D07 76U05 47A10 35B10 76D05 35Q30 PDF BibTeX XML Cite \textit{T. Eiter}, J. Math. Fluid Mech. 24, No. 2, Paper No. 52, 17 p. (2022; Zbl 1490.76081) Full Text: DOI arXiv
Alnashri, Yahya Convergence analysis for a nonlinear system of parabolic variational inequalities. (English) Zbl 1506.65083 J. Inequal. Appl. 2022, Paper No. 16, 18 p. (2022). MSC: 65K15 35K86 PDF BibTeX XML Cite \textit{Y. Alnashri}, J. Inequal. Appl. 2022, Paper No. 16, 18 p. (2022; Zbl 1506.65083) Full Text: DOI arXiv
Le Louër, F.; Rapún, M.-L. Topological imaging methods for the iterative detection of multiple impedance obstacles. (English) Zbl 07510346 J. Math. Imaging Vis. 64, No. 3, 321-340 (2022). MSC: 68-XX 94-XX 65N21 65K10 35J05 PDF BibTeX XML Cite \textit{F. Le Louër} and \textit{M. L. Rapún}, J. Math. Imaging Vis. 64, No. 3, 321--340 (2022; Zbl 07510346) Full Text: DOI
Tahraoui, Yassine; Vallet, Guy Lewy-Stampacchia’s inequality for a stochastic T-monotone obstacle problem. (English) Zbl 1486.35041 Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 90-125 (2022). MSC: 35B35 35K86 35R35 35R60 60H15 47J20 PDF BibTeX XML Cite \textit{Y. Tahraoui} and \textit{G. Vallet}, Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 90--125 (2022; Zbl 1486.35041) Full Text: DOI
Akagi, Goro; Kuehn, Christian; Nakamura, Ken-Ichi Traveling wave dynamics for Allen-Cahn equations with strong irreversibility. (English) Zbl 1490.35083 Trans. Am. Math. Soc. 375, No. 5, 3173-3238 (2022). Reviewer: Kelei Wang (Wuhan) MSC: 35C07 35B40 35R35 47J35 PDF BibTeX XML Cite \textit{G. Akagi} et al., Trans. Am. Math. Soc. 375, No. 5, 3173--3238 (2022; Zbl 1490.35083) Full Text: DOI arXiv
Hu, Xi; Tang, Lin \(H^{1+ \alpha}\) estimates for the fully nonlinear parabolic thin obstacle problem. (English) Zbl 1495.35054 J. Differ. Equations 321, 40-65 (2022). Reviewer: Wenhui Shi (Clayton) MSC: 35B45 35K86 35K20 35R35 35B65 PDF BibTeX XML Cite \textit{X. Hu} and \textit{L. Tang}, J. Differ. Equations 321, 40--65 (2022; Zbl 1495.35054) Full Text: DOI arXiv
Chatzigeorgiou, Georgiana Regularity for the fully nonlinear parabolic thin obstacle problem. (English) Zbl 1487.35150 Commun. Contemp. Math. 24, No. 3, Article ID 2150011, 22 p. (2022). Reviewer: Wenhui Shi (Clayton) MSC: 35B65 35K55 35K86 35R35 PDF BibTeX XML Cite \textit{G. Chatzigeorgiou}, Commun. Contemp. Math. 24, No. 3, Article ID 2150011, 22 p. (2022; Zbl 1487.35150) Full Text: DOI arXiv
Sun, Meiman; Yan, Guozheng The factorization method to reconstruct a combination of penetrable obstacle and arc. (English) Zbl 1490.35486 Appl. Anal. 101, No. 3, 773-795 (2022). MSC: 35Q74 35C15 78A45 PDF BibTeX XML Cite \textit{M. Sun} and \textit{G. Yan}, Appl. Anal. 101, No. 3, 773--795 (2022; Zbl 1490.35486) Full Text: DOI