×

zbMATH — the first resource for mathematics

Agent-based global energy management systems for the process industry. (English) Zbl 1359.90051
Rebennack, Steffen (ed.) et al., Handbook of power systems. I. Berlin: Springer (ISBN 978-3-642-02492-4/hbk; 978-3-642-02493-1/ebook). Energy Systems, 429-450 (2010).
Summary: Energy utility systems are typically responsible for satisfying internal customers (e.g., the various process plants in the industrial complex). The increasing independence of business units in the complex matches an emerging trend in the utility systems to operate for own economic viability and for the encouragement to trade with both internal and external customers. The paper presents a dynamic management system supporting autonomy and the optimal operation of the utility system. The management system comprises three functional components, which support negotiation, short-term (tactical) and long-term (strategic) optimisation. The negotiation component involves an agent-based system exploiting the knowledge base established with real-time and historical data, whereas the optimisation provides a primal front (operational changes) and background front (structural changes) to account for the tactical and strategic decisions.
For the entire collection see [Zbl 1201.00002].
MSC:
90B50 Management decision making, including multiple objectives
90B15 Stochastic network models in operations research
Software:
JADE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Papoulias SA, Grossmann IE (1983a) A structural optimization approach in process synthesis-I utility systems. Comput Chem Eng 7:695-706 · doi:10.1016/0098-1354(83)85022-4
[2] Papoulias SA, Grossmann IE (1983b) A structural optimization approach in process synthesis. III. Total processing systems. Comput Chem Eng 7:723
[3] Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis 5:199-220 · doi:10.1006/knac.1993.1008
[4] Dhole VR, Linnhoff B (1993) Total site targets for fuel, co-generation, emissions and cooling. Comput Chem Eng 17:S101 · doi:10.1016/0098-1354(93)80214-8
[5] Wooldridge M, Jennings NR (1995) Intelligent agents: theory and practices. Knowl Eng Rev 10(2):115-152 · doi:10.1017/S0269888900008122
[6] Hui CW, Natori Y (1996) An industrial application using mixed integer-programming technique: a multi-period utility system model. Comput Chem Eng 20:s1577-s1582 · doi:10.1016/0098-1354(96)00268-2
[7] Mavromatis SP, Kokossis AC (1998b) Conceptual optimisation of utility networks for operational variations-2: network development and optimisation. Chem Eng Sci 53:1609-1630 · doi:10.1016/S0009-2509(97)00432-6
[8] Iyer RR, Grossmann IE (1998) Synthesis and operational planning of utility systems for multiperiod operation. Comput Chem Eng 22:979-993 · doi:10.1016/S0098-1354(97)00270-6
[9] Mavromatis SP, Kokossis AC (1998a) Conceptual optimisation of utility networks for operational variations-1: targets and level optimisation. Chem Eng Sci 53:1585-1608 · doi:10.1016/S0009-2509(97)00431-4
[10] Wooldridge MJ (2002) An introduction to multi-agent systems. Wiley, NY
[11] FIPA (2002) FIPA ACL message structure specification. Published by Foundation of Intelligent Physical Agents (FIPA).
[12] Batres R, Chatterjee R, Garcia-Flores R, Krobb C, Wang XZ, Yang A, Braunschweig B (2002) Software agents, In: Braunschweig B, Gani R (eds) Software architectures and tools for computer aided process engineering. Elsevier, Amsterdam, pp. 455-484 · doi:10.1016/S1570-7946(02)80021-9
[13] Varbanov PS, Doyle S, Smith R (2004) Modelling and optimization of utility systems, Institution of chemical engineers, Trans IchemE, Part A, May 2004, Chem Eng Res Design 82(A5):561-578
[14] Shang Z, Kokossis AC (2004) A transhipment model for the optimization of steam levels of total site utilitysy stem for multiperiod operation. Comput Chem Eng 28:1673-1688 · doi:10.1016/j.compchemeng.2004.01.010
[15] Shang Z, Kokossis A (2005) A systematic approach to the synthesis and design of flexible site utility systems. Chem Eng Sci 60:4431-4451 · doi:10.1016/j.ces.2005.03.015
[16] Bellifemin e F, Bergenti F, Caire G, Poggi A (2005) Jade - a java agent development framework. In: Bordini RH, Dastani M, Dix J, Seghrouchni AEF (eds) Multi-agent programming languages, platforms and applications. Springer US, pp. 125-147
[17] Mohan T, El-Halwagi MM (2007) An algebraic targeting approach for effective utilization of biomass in combined heat and power systems through process integration. Clean Technologies and Environmental Policy 9(1):13-25 · doi:10.1007/s10098-006-0051-x
[18] Zhang BJ, Hua B (2007) Effective MILP model for oil refinery-wide production planning and better energy utilization. J Cleaner Prod 15(5):439-448 · doi:10.1016/j.jclepro.2005.08.004
[19] Aguilar O, Perry SJ, Kim J-K, Smith R (2007a) Design and optimization of flexible utility systems subject to variable conditions. Part 1: Modelling Framework. Chem Eng Res Design 85(A8):1136-1148
[20] Micheletto SR, Carvalho MCA, Pinto JM (2007). Operational optimization of the utility system of an oil refinery. Comput Chem Eng 32(1-2):170-185
[21] Savola T, Fogelholm CJ (2007) MINLP optimisation model for increased power production in small-scale CHP plants. Appl Therm Eng 27(1):89-99 · doi:10.1016/j.applthermaleng.2006.05.002
[22] Aguilar O, Perry SJ, Kim J-K, Smith R (2007b) Design and optimization of flexible utility systems subject to variable conditions. Part 2: Methodology and applications. Chem Eng Res Design 85(A8):1149-1168
[23] Dunn AC, Du YY (2009) Optimal load allocation of multiple fuel boilers. ISA Trans 48(2): 190-195 · doi:10.1016/j.isatra.2008.10.009
[24] Martinez P, Eliceche A (2009) Minimization of life cycle CO2 emissions in steam and power plants. Clean Technologies and Environmental 11(1):49-57 · doi:10.1007/s10098-008-0165-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.