Hirsch, Christian; Jansen, Sabine; Jung, Paul Large deviations in the quantum quasi-1D jellium. (English) Zbl 07560161 Probab. Math. Phys. 3, No. 2, 381-429 (2022). MSC: 60F10 60K35 82B21 82B10 PDF BibTeX XML Cite \textit{C. Hirsch} et al., Probab. Math. Phys. 3, No. 2, 381--429 (2022; Zbl 07560161) Full Text: DOI OpenURL
Malicet, Dominique Lyapunov exponent of random dynamical systems on the circle. (English) Zbl 07543355 Ergodic Theory Dyn. Syst. 42, No. 6, 2080-2107 (2022). MSC: 37C05 37C75 37E10 37H12 37H15 PDF BibTeX XML Cite \textit{D. Malicet}, Ergodic Theory Dyn. Syst. 42, No. 6, 2080--2107 (2022; Zbl 07543355) Full Text: DOI OpenURL
Muştu, Erkan Dynamical behavior of a parametrized family of one-dimensional maps. (English) Zbl 07541810 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 25, 35 p. (2022). MSC: 37E05 34C37 37B10 37D45 PDF BibTeX XML Cite \textit{E. Muştu}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 25, 35 p. (2022; Zbl 07541810) Full Text: DOI OpenURL
Grines, Vyacheslav; Mints, Dmitrii On decomposition of ambient surfaces admitting \(A\)-diffeomorphisms with non-trivial attractors and repellers. (English) Zbl 07535668 Discrete Contin. Dyn. Syst. 42, No. 7, 3557-3568 (2022). MSC: 37D20 PDF BibTeX XML Cite \textit{V. Grines} and \textit{D. Mints}, Discrete Contin. Dyn. Syst. 42, No. 7, 3557--3568 (2022; Zbl 07535668) Full Text: DOI OpenURL
Zhang, Jiali; Hu, Taotao; Ren, Hang; Xue, Kang; Ni, Shuangyuan; Li, Xiaodan; Lu, Shuang; Gu, Xiaoxuan The behavior of many-body localization of quasi-disordered spin-\(1/2\) chains. (English) Zbl 07532984 Int. J. Theor. Phys. 61, No. 4, Paper No. 122, 9 p. (2022). MSC: 82B44 82B26 82B27 82B10 81V70 PDF BibTeX XML Cite \textit{J. Zhang} et al., Int. J. Theor. Phys. 61, No. 4, Paper No. 122, 9 p. (2022; Zbl 07532984) Full Text: DOI OpenURL
Moll, Salvador; Pallardó, Vicent An augmented Lagrangian model for signal segmentation. (English) Zbl 1487.94046 Mediterr. J. Math. 19, No. 3, Paper No. 117, 20 p. (2022). MSC: 94A12 94A08 92C55 35G60 35Q68 35J92 PDF BibTeX XML Cite \textit{S. Moll} and \textit{V. Pallardó}, Mediterr. J. Math. 19, No. 3, Paper No. 117, 20 p. (2022; Zbl 1487.94046) Full Text: DOI OpenURL
Cong, Hongzi; Mi, Lufang; Wu, Xiaoqing; Zhang, Qidi Exponential stability estimate for the derivative nonlinear Schrödinger equation. (English) Zbl 07515326 Nonlinearity 35, No. 5, 2385-2423 (2022). MSC: 37K55 37J40 35B35 35Q35 PDF BibTeX XML Cite \textit{H. Cong} et al., Nonlinearity 35, No. 5, 2385--2423 (2022; Zbl 07515326) Full Text: DOI OpenURL
Rodriguez, Charlotte Networks of geometrically exact beams: well-posedness and stabilization. (English) Zbl 1486.35289 Math. Control Relat. Fields 12, No. 1, 49-80 (2022). MSC: 35L50 35B40 35L60 35R02 74K10 93D15 PDF BibTeX XML Cite \textit{C. Rodriguez}, Math. Control Relat. Fields 12, No. 1, 49--80 (2022; Zbl 1486.35289) Full Text: DOI OpenURL
Mohr, J. Product type potential on the one-dimensional lattice systems: selection of maximizing probability and a large deviation principle. (English) Zbl 07489709 Qual. Theory Dyn. Syst. 21, No. 2, Paper No. 44, 13 p. (2022). MSC: 37A50 37L60 60F10 82B20 PDF BibTeX XML Cite \textit{J. Mohr}, Qual. Theory Dyn. Syst. 21, No. 2, Paper No. 44, 13 p. (2022; Zbl 07489709) Full Text: DOI OpenURL
Lois-Prados, Cristina; Hilker, Frank M. Bifurcation sequences in a discontinuous piecewise-smooth map combining constant-catch and threshold-based harvesting strategies. (English) Zbl 1484.92077 SIAM J. Appl. Dyn. Syst. 21, No. 1, 470-499 (2022). MSC: 92D25 37E05 39A28 39A60 PDF BibTeX XML Cite \textit{C. Lois-Prados} and \textit{F. M. Hilker}, SIAM J. Appl. Dyn. Syst. 21, No. 1, 470--499 (2022; Zbl 1484.92077) Full Text: DOI OpenURL
Alfonso Santiesteban, Daniel; Abreu Blaya, Ricardo Isomorphisms of partial differential equations in Clifford analysis. (English) Zbl 07477161 Adv. Appl. Clifford Algebr. 32, No. 1, Paper No. 10, 18 p. (2022). Reviewer: Eckhard Hitzer (Tokyo) MSC: 30G35 34L40 35E99 PDF BibTeX XML Cite \textit{D. Alfonso Santiesteban} and \textit{R. Abreu Blaya}, Adv. Appl. Clifford Algebr. 32, No. 1, Paper No. 10, 18 p. (2022; Zbl 07477161) Full Text: DOI OpenURL
Krivovichev, Gerasim V. Comparison of inviscid and viscid one-dimensional models of blood flow in arteries. (English) Zbl 07465294 Appl. Math. Comput. 418, Article ID 126856, 19 p. (2022). MSC: 76Z05 35L40 65Z05 76A05 PDF BibTeX XML Cite \textit{G. V. Krivovichev}, Appl. Math. Comput. 418, Article ID 126856, 19 p. (2022; Zbl 07465294) Full Text: DOI OpenURL
Shtern, A. I. Groups of one-dimensional pure pseudo representations of groups. (English) Zbl 07540138 Adv. Stud. Contemp. Math., Kyungshang 31, No. 3, 389-393 (2021). MSC: 22E99 22A99 PDF BibTeX XML Cite \textit{A. I. Shtern}, Adv. Stud. Contemp. Math., Kyungshang 31, No. 3, 389--393 (2021; Zbl 07540138) Full Text: DOI OpenURL
Talhaoui, Mohamed Zakariya; Wang, Xingyuan A new fractional one dimensional chaotic map and its application in high-speed image encryption. (English) Zbl 07508133 Inf. Sci. 550, 13-26 (2021). MSC: 37D45 26A33 94A08 94A60 PDF BibTeX XML Cite \textit{M. Z. Talhaoui} and \textit{X. Wang}, Inf. Sci. 550, 13--26 (2021; Zbl 07508133) Full Text: DOI OpenURL
Efremova, Lyudmila S.; Makhrova, Elena N. One-dimensional dynamical systems. (English. Russian original) Zbl 07505220 Russ. Math. Surv. 76, No. 5, 821-881 (2021); translation from Usp. Mat. Nauk 76, No. 5, 81-146 (2021). MSC: 37B45 37E05 37E10 37E25 37E99 37B40 37E45 PDF BibTeX XML Cite \textit{L. S. Efremova} and \textit{E. N. Makhrova}, Russ. Math. Surv. 76, No. 5, 821--881 (2021; Zbl 07505220); translation from Usp. Mat. Nauk 76, No. 5, 81--146 (2021) Full Text: DOI OpenURL
Zheng, Yangdong Exact spin states and analytic formulas for nonequilibrium spin transport in a three-site one-dimensional system with interacting electrons. (English. Russian original) Zbl 1486.82024 Theor. Math. Phys. 209, No. 3, 1758-1781 (2021); translation from Teor. Mat. Fiz. 209, No. 3, 515-542 (2021). MSC: 82C20 82C70 PDF BibTeX XML Cite \textit{Y. Zheng}, Theor. Math. Phys. 209, No. 3, 1758--1781 (2021; Zbl 1486.82024); translation from Teor. Mat. Fiz. 209, No. 3, 515--542 (2021) Full Text: DOI OpenURL
Bjerklöv, Kristian; Krikorian, Raphaël Coexistence of absolutely continuous and pure point spectrum for kicked quasiperiodic potentials. (English) Zbl 07481666 J. Spectr. Theory 11, No. 3, 1215-1254 (2021). MSC: 37H15 37M25 34L05 34L40 47A11 PDF BibTeX XML Cite \textit{K. Bjerklöv} and \textit{R. Krikorian}, J. Spectr. Theory 11, No. 3, 1215--1254 (2021; Zbl 07481666) Full Text: DOI arXiv OpenURL
Trogdon, Thomas Scattering and inverse scattering for the AKNS system: A rational function approach. (English) Zbl 1485.81055 Stud. Appl. Math. 147, No. 4, 1443-1480 (2021). MSC: 81U40 81U05 26C15 35G16 37K15 35Q15 34L40 PDF BibTeX XML Cite \textit{T. Trogdon}, Stud. Appl. Math. 147, No. 4, 1443--1480 (2021; Zbl 1485.81055) Full Text: DOI arXiv OpenURL
Kagalovsky, V.; Lowe, A.; Yurkevich, D.; Yurkevich, I. V. Disorder-induced phase transitions in a spinful one-dimensional system. (English) Zbl 1486.82007 Ann. Phys. 435, Article ID 168482, 10 p. (2021). MSC: 82B26 82B28 82B44 PDF BibTeX XML Cite \textit{V. Kagalovsky} et al., Ann. Phys. 435, Article ID 168482, 10 p. (2021; Zbl 1486.82007) Full Text: DOI OpenURL
Antil, Harbir; Kubota, Shodai; Shirakawa, Ken; Yamazaki, Noriaki Optimal control problems governed by 1-D Kobayashi-Warren-Carter type systems. (English) Zbl 1483.35297 Math. Control Relat. Fields 11, No. 2, 253-289 (2021). MSC: 35Q93 35Q74 35B65 35K61 49J20 49J45 49K20 74N05 74N20 PDF BibTeX XML Cite \textit{H. Antil} et al., Math. Control Relat. Fields 11, No. 2, 253--289 (2021; Zbl 1483.35297) Full Text: DOI arXiv OpenURL
Shmatkov, A. M. Control of a moving mass with the initial and final position on the boundary of the area of motion in order to achieve the fastest rotation of a solid body. (English. Russian original) Zbl 1476.93126 J. Comput. Syst. Sci. Int. 60, No. 4, 559-575 (2021); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upravl. 2021, No. 4, 57-73 (2021). MSC: 93C85 49N90 70Q05 PDF BibTeX XML Cite \textit{A. M. Shmatkov}, J. Comput. Syst. Sci. Int. 60, No. 4, 559--575 (2021; Zbl 1476.93126); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upravl. 2021, No. 4, 57--73 (2021) Full Text: DOI OpenURL
de Oliveira, L. L. A.; Travaglia, M. V. Optimizing the spring constants of forced, damped and circular spring-mass systems – characterization of the discrete and periodic bi-Laplacian operator. (English) Zbl 07413622 IMA J. Appl. Math. 86, No. 4, 785-807 (2021). MSC: 70J99 74P10 34C26 PDF BibTeX XML Cite \textit{L. L. A. de Oliveira} and \textit{M. V. Travaglia}, IMA J. Appl. Math. 86, No. 4, 785--807 (2021; Zbl 07413622) Full Text: DOI OpenURL
Melikyan, A.; Weber, G. The Lax pair for the fermionic Bazhanov-Stroganov \(R\)-operator. (English) Zbl 1476.81103 Phys. Lett., B 812, Article ID 136005, 7 p. (2021). MSC: 81T35 81Q80 81V74 81T27 16T25 82B20 81R20 PDF BibTeX XML Cite \textit{A. Melikyan} and \textit{G. Weber}, Phys. Lett., B 812, Article ID 136005, 7 p. (2021; Zbl 1476.81103) Full Text: DOI arXiv OpenURL
Assal, Marouane; Fujiié, Setsuro Eigenvalue splitting of polynomial order for a system of Schrödinger operators with energy-level crossing. (English) Zbl 1471.81025 Commun. Math. Phys. 386, No. 3, 1519-1550 (2021). MSC: 81Q10 81Q20 34L40 81V45 70H03 37D30 34A30 81Q15 34L15 PDF BibTeX XML Cite \textit{M. Assal} and \textit{S. Fujiié}, Commun. Math. Phys. 386, No. 3, 1519--1550 (2021; Zbl 1471.81025) Full Text: DOI OpenURL
Yu, Xiao; Lan, Kunquan; Wu, Jianhong Green’s functions, linear second-order differential equations, and one-dimensional diffusion advection models. (English) Zbl 07387814 Stud. Appl. Math. 147, No. 1, 319-362 (2021). Reviewer: Tatuana Badokina (Saransk) MSC: 34B27 34B15 34A30 PDF BibTeX XML Cite \textit{X. Yu} et al., Stud. Appl. Math. 147, No. 1, 319--362 (2021; Zbl 07387814) Full Text: DOI OpenURL
Lan, Kunquan Coexistence fixed point theorems in product Banach spaces and applications. (English) Zbl 07376894 Math. Methods Appl. Sci. 44, No. 5, 3960-3984 (2021). MSC: 47H10 45G15 47H30 92B05 PDF BibTeX XML Cite \textit{K. Lan}, Math. Methods Appl. Sci. 44, No. 5, 3960--3984 (2021; Zbl 07376894) Full Text: DOI OpenURL
Goldstein, S.; Lebowitz, J. L.; Speer, E. R. The discrete-time facilitated totally asymmetric simple exclusion process. (English) Zbl 1469.60331 Pure Appl. Funct. Anal. 6, No. 1, 177-203 (2021). MSC: 60K35 82C22 82C23 82C26 PDF BibTeX XML Cite \textit{S. Goldstein} et al., Pure Appl. Funct. Anal. 6, No. 1, 177--203 (2021; Zbl 1469.60331) Full Text: arXiv Link OpenURL
Sun, Yingte Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. (English) Zbl 1482.37063 Discrete Contin. Dyn. Syst. 41, No. 10, 4531-4543 (2021). Reviewer: Ekin Uğurlu (Ankara) MSC: 37J40 34D05 34L40 PDF BibTeX XML Cite \textit{Y. Sun}, Discrete Contin. Dyn. Syst. 41, No. 10, 4531--4543 (2021; Zbl 1482.37063) Full Text: DOI OpenURL
Feola, Roberto; Iandoli, Felice Long time existence for fully nonlinear NLS with small Cauchy data on the circle. (English) Zbl 1475.37081 Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 22, No. 1, 109-182 (2021). MSC: 37K55 35S50 35Q55 PDF BibTeX XML Cite \textit{R. Feola} and \textit{F. Iandoli}, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 22, No. 1, 109--182 (2021; Zbl 1475.37081) Full Text: DOI arXiv OpenURL
Wilson, Dan Data-driven inference of high-accuracy isostable-based dynamical models in response to external inputs. (English) Zbl 1475.37096 Chaos 31, No. 6, 063137, 21 p. (2021). MSC: 37M99 PDF BibTeX XML Cite \textit{D. Wilson}, Chaos 31, No. 6, 063137, 21 p. (2021; Zbl 1475.37096) Full Text: DOI arXiv OpenURL
Przytycki, Feliks Thermodynamic formalism methods in the theory of iteration of mappings in dimension one, real and complex. (English) Zbl 1476.37053 Ann. Math. Sil. 35, No. 1, 1-20 (2021). Reviewer: Tao Chen (New York) MSC: 37D35 37E05 37F10 37F15 37F35 31A20 PDF BibTeX XML Cite \textit{F. Przytycki}, Ann. Math. Sil. 35, No. 1, 1--20 (2021; Zbl 1476.37053) Full Text: DOI OpenURL
Geng, Wenmeng; Tao, Kai Lyapunov exponents of discrete quasi-periodic Gevrey Schrödinger equations. (English) Zbl 1471.37031 Discrete Contin. Dyn. Syst., Ser. B 26, No. 6, 2977-2996 (2021). MSC: 37C55 37C40 37D25 34L40 PDF BibTeX XML Cite \textit{W. Geng} and \textit{K. Tao}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 6, 2977--2996 (2021; Zbl 1471.37031) Full Text: DOI OpenURL
Sakhnovich, Alexander On the class of canonical systems corresponding to matrix string equations: general-type and explicit fundamental solutions and Weyl-Titchmarsh theory. (English) Zbl 1471.34008 Doc. Math. 26, 583-615 (2021). MSC: 34A05 34B09 34B20 34L40 37J06 46N20 81Q05 PDF BibTeX XML Cite \textit{A. Sakhnovich}, Doc. Math. 26, 583--615 (2021; Zbl 1471.34008) Full Text: DOI arXiv OpenURL
Kwon, Younghak; Lee, Jaehun; Menz, Georg Equivalence of the grand canonical ensemble and the canonical ensemble of 1d-lattice systems. (English) Zbl 1467.82033 Markov Process. Relat. Fields 27, No. 1, 63-109 (2021). MSC: 82B26 82B05 82B20 PDF BibTeX XML Cite \textit{Y. Kwon} et al., Markov Process. Relat. Fields 27, No. 1, 63--109 (2021; Zbl 1467.82033) Full Text: arXiv OpenURL
Malkin, M.; Safonov, K. Entropy charts and bifurcations for Lorenz maps with infinite derivatives. (English) Zbl 1471.37045 Chaos 31, No. 4, 043107, 17 p. (2021). Reviewer: Cristian Lăzureanu (Timişoara) MSC: 37E05 37G35 37D45 37C70 37B40 PDF BibTeX XML Cite \textit{M. Malkin} and \textit{K. Safonov}, Chaos 31, No. 4, 043107, 17 p. (2021; Zbl 1471.37045) Full Text: DOI OpenURL
Boumaza, H.; Lafitte, O. Integrated density of states: from the finite range to the periodic Airy-Schrödinger operator. (English) Zbl 1462.81086 J. Math. Phys. 62, No. 4, 043503, 22 p. (2021). MSC: 81Q10 81Q20 34L40 34L05 81Q80 82D25 82B30 PDF BibTeX XML Cite \textit{H. Boumaza} and \textit{O. Lafitte}, J. Math. Phys. 62, No. 4, 043503, 22 p. (2021; Zbl 1462.81086) Full Text: DOI OpenURL
Cai, Ao; Wang, Xueyin Polynomial decay of the gap length for \(C^k\) quasi-periodic Schrödinger operators and spectral application. (English) Zbl 1466.37022 J. Funct. Anal. 281, No. 3, Article ID 109035, 30 p. (2021). MSC: 37C40 37C30 37J40 37K55 34L40 PDF BibTeX XML Cite \textit{A. Cai} and \textit{X. Wang}, J. Funct. Anal. 281, No. 3, Article ID 109035, 30 p. (2021; Zbl 1466.37022) Full Text: DOI arXiv OpenURL
Liang, Jinhao Large coupling asymptotics for the Lyapunov exponent of finitely smooth quasi-periodic Schrödinger operators. (English) Zbl 1473.37042 Nonlinearity 34, No. 4, 2116-2154 (2021). Reviewer: Nicolae Lupa (Timişoara) MSC: 37D25 39A70 34L40 PDF BibTeX XML Cite \textit{J. Liang}, Nonlinearity 34, No. 4, 2116--2154 (2021; Zbl 1473.37042) Full Text: DOI OpenURL
Forrester, Peter J.; Li, Shi-Hao Classical skew orthogonal polynomials in a two-component log-gas with charges \(+1\) and \(+2\). (English) Zbl 1467.82091 Adv. Math. 383, Article ID 107678, 27 p. (2021). MSC: 82D10 82C22 33C47 33C45 33E20 15B52 15A18 60B20 PDF BibTeX XML Cite \textit{P. J. Forrester} and \textit{S.-H. Li}, Adv. Math. 383, Article ID 107678, 27 p. (2021; Zbl 1467.82091) Full Text: DOI arXiv OpenURL
Di Francesco, Marco; Esposito, Antonio; Schmidtchen, Markus Many-particle limit for a system of interaction equations driven by Newtonian potentials. (English) Zbl 1462.35017 Calc. Var. Partial Differ. Equ. 60, No. 2, Paper No. 68, 44 p. (2021). MSC: 35A24 35F55 35Q70 35R09 82C22 35A35 PDF BibTeX XML Cite \textit{M. Di Francesco} et al., Calc. Var. Partial Differ. Equ. 60, No. 2, Paper No. 68, 44 p. (2021; Zbl 1462.35017) Full Text: DOI arXiv OpenURL
Breuer, Jonathan Scaling limits of Jacobi matrices and the Christoffel-Darboux kernel. (English) Zbl 1486.47059 Constr. Approx. 53, No. 2, 349-379 (2021). Reviewer: Leonid Golinskii (Kharkov) MSC: 47B36 34L40 47E05 PDF BibTeX XML Cite \textit{J. Breuer}, Constr. Approx. 53, No. 2, 349--379 (2021; Zbl 1486.47059) Full Text: DOI arXiv OpenURL
Grines, Vyacheslav; Mints, Dmitrii On interrelations between trivial and nontrivial basic sets of structurally stable diffeomorphisms of surfaces. (English) Zbl 1466.37020 Chaos 31, No. 2, 023132, 7 p. (2021). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37C20 37C75 37C05 37C25 37C70 37E30 PDF BibTeX XML Cite \textit{V. Grines} and \textit{D. Mints}, Chaos 31, No. 2, 023132, 7 p. (2021; Zbl 1466.37020) Full Text: DOI OpenURL
Tanaka, Yohei A constructive approach to topological invariants for one-dimensional strictly local operators. (English) Zbl 1460.81029 J. Math. Anal. Appl. 500, No. 1, Article ID 125072, 22 p. (2021). MSC: 81Q10 34L40 34C14 81Q35 82C20 47A53 34L05 PDF BibTeX XML Cite \textit{Y. Tanaka}, J. Math. Anal. Appl. 500, No. 1, Article ID 125072, 22 p. (2021; Zbl 1460.81029) Full Text: DOI arXiv OpenURL
Fuhrmann, Gabriel; Gröger, Maik; Passeggi, Alejandro The bifurcation set as a topological invariant for one-dimensional dynamics. (English) Zbl 1469.37031 Nonlinearity 34, No. 3, 1366-1388 (2021). Reviewer: Zdzisław Dzedzej (Gdańsk) MSC: 37E05 37E10 37C15 37B40 37G10 37G15 PDF BibTeX XML Cite \textit{G. Fuhrmann} et al., Nonlinearity 34, No. 3, 1366--1388 (2021; Zbl 1469.37031) Full Text: DOI arXiv OpenURL
Rybkin, Alexei The effect of a positive bound state on the KdV solution: a case study. (English) Zbl 1462.35340 Nonlinearity 34, No. 2, 1238-1261 (2021). MSC: 35Q53 35Q55 35A09 35P10 34L40 37K15 47B35 PDF BibTeX XML Cite \textit{A. Rybkin}, Nonlinearity 34, No. 2, 1238--1261 (2021; Zbl 1462.35340) Full Text: DOI arXiv OpenURL
Lan, Kunquan; Lin, Wei Steady-state solutions of one-dimensional competition models in an unstirred chemostat via the fixed point index theory. (English) Zbl 1468.45004 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 240-264 (2021). Reviewer: Alexander N. Tynda (Penza) MSC: 45G15 34B18 47H10 47H30 92B05 PDF BibTeX XML Cite \textit{K. Lan} and \textit{W. Lin}, Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 240--264 (2021; Zbl 1468.45004) Full Text: DOI OpenURL
Boni, Filippo; Dovetta, Simone Prescribed mass ground states for a doubly nonlinear Schrödinger equation in dimension one. (English) Zbl 1458.81017 J. Math. Anal. Appl. 496, No. 1, Article ID 124797, 17 p. (2021). MSC: 81Q05 35Q55 34L40 35G55 35P30 35A01 35A02 35B38 PDF BibTeX XML Cite \textit{F. Boni} and \textit{S. Dovetta}, J. Math. Anal. Appl. 496, No. 1, Article ID 124797, 17 p. (2021; Zbl 1458.81017) Full Text: DOI arXiv OpenURL
Blanes, Sergio; Casas, Fernando; González, Cesáreo; Thalhammer, Mechthild Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear Schrödinger equations. (English) Zbl 1460.65087 IMA J. Numer. Anal. 41, No. 1, 594-617 (2021). MSC: 65L05 65L20 65P10 34L40 PDF BibTeX XML Cite \textit{S. Blanes} et al., IMA J. Numer. Anal. 41, No. 1, 594--617 (2021; Zbl 1460.65087) Full Text: DOI OpenURL
Goyal, Prashant Global attractor for weakly damped, forced mKdV equation below energy space. (English) Zbl 1458.35063 Nagoya Math. J. 241, 171-203 (2021). MSC: 35B41 35Q53 37L50 PDF BibTeX XML Cite \textit{P. Goyal}, Nagoya Math. J. 241, 171--203 (2021; Zbl 1458.35063) Full Text: DOI arXiv OpenURL
Hryniv, Rostyslav; Melnyk, Bohdan; Mykytyuk, Yaroslav Inverse scattering for reflectionless Schrödinger operators with integrable potentials and generalized soliton solutions for the KdV equation. (English) Zbl 07303662 Ann. Henri Poincaré 22, No. 2, 487-527 (2021). MSC: 47A40 34L25 34L40 35C08 81U40 37K15 37K40 37K60 37J35 37K10 PDF BibTeX XML Cite \textit{R. Hryniv} et al., Ann. Henri Poincaré 22, No. 2, 487--527 (2021; Zbl 07303662) Full Text: DOI arXiv OpenURL
Korotyaev, Evgeny; Mokeev, Dmitrii Inverse resonance scattering for Dirac operators on the half-line. (English) Zbl 1459.37058 Anal. Math. Phys. 11, No. 1, Paper No. 32, 26 p. (2021). MSC: 37K15 35R30 34L40 34A55 PDF BibTeX XML Cite \textit{E. Korotyaev} and \textit{D. Mokeev}, Anal. Math. Phys. 11, No. 1, Paper No. 32, 26 p. (2021; Zbl 1459.37058) Full Text: DOI arXiv OpenURL
Jitomirskaya, Svetlana; Yang, Fan Pure point spectrum for the Maryland model: a constructive proof. (English) Zbl 1456.37053 Ergodic Theory Dyn. Syst. 41, No. 1, 283-294 (2021). MSC: 37H15 37D25 34L40 PDF BibTeX XML Cite \textit{S. Jitomirskaya} and \textit{F. Yang}, Ergodic Theory Dyn. Syst. 41, No. 1, 283--294 (2021; Zbl 1456.37053) Full Text: DOI arXiv OpenURL
Triestino, Michele On James Hyde’s example of non-orderable subgroup of \(\text{Homeo}(D,\partial D)\). (English) Zbl 07461689 Enseign. Math. (2) 66, No. 3-4, 409-418 (2020). MSC: 37E30 37C85 37E20 06F15 20F60 PDF BibTeX XML Cite \textit{M. Triestino}, Enseign. Math. (2) 66, No. 3--4, 409--418 (2020; Zbl 07461689) Full Text: DOI arXiv OpenURL
Boulechfar, Selma; Zitouni, Salah; Djebabla, Abdelhak; Guesmia, Amar Energy decay of the Bresse system by two thermo-viscoelastic dampings. (English) Zbl 1478.35031 Nonlinear Stud. 27, No. 4, 957-974 (2020). MSC: 35B40 35L45 35L50 74F05 74H40 93D20 PDF BibTeX XML Cite \textit{S. Boulechfar} et al., Nonlinear Stud. 27, No. 4, 957--974 (2020; Zbl 1478.35031) Full Text: Link OpenURL
Zakharov, V. E.; Zakharov, D. V. Generalized primitive potentials. (English. Russian original) Zbl 1479.35755 Dokl. Math. 101, No. 2, 117-121 (2020); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 491, 47-52 (2020). MSC: 35Q53 37K10 34L40 PDF BibTeX XML Cite \textit{V. E. Zakharov} and \textit{D. V. Zakharov}, Dokl. Math. 101, No. 2, 117--121 (2020; Zbl 1479.35755); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 491, 47--52 (2020) Full Text: DOI arXiv OpenURL
Kapçak, Sinan A note on non-hyperbolic fixed points of one-dimensional maps. (English) Zbl 1472.39027 Baigent, Steve (ed.) et al., Progress on difference equations and discrete dynamical systems. ICDEA 25, London, UK, June 24–28, 2019. Proceedings of the 25th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 341, 257-267 (2020). MSC: 39A30 39A21 PDF BibTeX XML Cite \textit{S. Kapçak}, Springer Proc. Math. Stat. 341, 257--267 (2020; Zbl 1472.39027) Full Text: DOI OpenURL
Zhang, Zhenghe Uniform hyperbolicity and its relation with spectral analysis of 1D discrete Schrödinger operators. (English) Zbl 1482.37030 J. Spectr. Theory 10, No. 4, 1471-1517 (2020). Reviewer: Lennard Bakker (Provo) MSC: 37D20 47A10 47A11 47A25 34L40 39A70 PDF BibTeX XML Cite \textit{Z. Zhang}, J. Spectr. Theory 10, No. 4, 1471--1517 (2020; Zbl 1482.37030) Full Text: DOI arXiv OpenURL
Han, Rui; Lemm, Marius; Schlag, Wilhelm Weyl sums and the Lyapunov exponent for the skew-shift Schrödinger cocycle. (English) Zbl 1476.37074 J. Spectr. Theory 10, No. 4, 1139-1172 (2020). MSC: 37H15 37C30 34L40 PDF BibTeX XML Cite \textit{R. Han} et al., J. Spectr. Theory 10, No. 4, 1139--1172 (2020; Zbl 1476.37074) Full Text: DOI arXiv OpenURL
Kielstra, Paul M.; Lemm, Marius On the finite-size Lyapunov exponent for the Schrödinger operator with skew-shift potential. (English) Zbl 1466.81019 Commun. Math. Sci. 18, No. 5, 1305-1314 (2020). MSC: 81Q10 47B36 37H15 39A06 37A20 34L40 34D08 PDF BibTeX XML Cite \textit{P. M. Kielstra} and \textit{M. Lemm}, Commun. Math. Sci. 18, No. 5, 1305--1314 (2020; Zbl 1466.81019) Full Text: DOI arXiv OpenURL
Ayzenberg, Anton Space of isospectral periodic tridiagonal matrices. (English) Zbl 1477.57030 Algebr. Geom. Topol. 20, No. 6, 2957-2994 (2020). Reviewer: Michael J. Falk (Flagstaff) MSC: 57R91 57S12 34L40 52B70 52C22 55N91 05E45 13F55 14H70 15A18 37C81 37K10 51M20 55R80 55T10 PDF BibTeX XML Cite \textit{A. Ayzenberg}, Algebr. Geom. Topol. 20, No. 6, 2957--2994 (2020; Zbl 1477.57030) Full Text: DOI arXiv OpenURL
Rahimi, Mahboobeh; Adibi, Hojatollah Solving one dimensional nonlinear coupled Burger’s equations using high accuracy multiquadric quasi-interpolation. (English) Zbl 1474.35500 Comput. Methods Differ. Equ. 8, No. 2, 347-363 (2020). MSC: 35M99 35C99 PDF BibTeX XML Cite \textit{M. Rahimi} and \textit{H. Adibi}, Comput. Methods Differ. Equ. 8, No. 2, 347--363 (2020; Zbl 1474.35500) Full Text: DOI OpenURL
Ge, Lingrui; Zhao, Xin Exponential dynamical localization in expectation for the one dimensional Anderson model. (English) Zbl 1460.81027 J. Spectr. Theory 10, No. 3, 887-904 (2020). MSC: 81Q10 34D08 47B39 81Q35 82B20 PDF BibTeX XML Cite \textit{L. Ge} and \textit{X. Zhao}, J. Spectr. Theory 10, No. 3, 887--904 (2020; Zbl 1460.81027) Full Text: DOI OpenURL
Texier, Christophe Fluctuations of the product of random matrices and generalized Lyapunov exponent. (English) Zbl 1460.60008 J. Stat. Phys. 181, No. 3, 990-1051 (2020). MSC: 60B20 15B52 PDF BibTeX XML Cite \textit{C. Texier}, J. Stat. Phys. 181, No. 3, 990--1051 (2020; Zbl 1460.60008) Full Text: DOI arXiv OpenURL
Koch, Hans; Kocić, Saša Renormalization and universality of the Hofstadter spectrum. (English) Zbl 1464.37049 Nonlinearity 33, No. 9, 4381-4389 (2020). MSC: 37E20 37E10 37C27 34L40 47A10 PDF BibTeX XML Cite \textit{H. Koch} and \textit{S. Kocić}, Nonlinearity 33, No. 9, 4381--4389 (2020; Zbl 1464.37049) Full Text: DOI arXiv OpenURL
Jitomirskaya, Svetlana; Krüger, Helge; Liu, Wencai Exact dynamical decay rate for the almost Mathieu operator. (English) Zbl 1461.37029 Math. Res. Lett. 27, No. 3, 789-808 (2020). Reviewer: Erdogan Sen (Tekirdağ) MSC: 37C40 37A50 37D25 34B30 34L40 PDF BibTeX XML Cite \textit{S. Jitomirskaya} et al., Math. Res. Lett. 27, No. 3, 789--808 (2020; Zbl 1461.37029) Full Text: DOI arXiv OpenURL
Rugamba, Jean; Zeng, Yanni Pointwise asymptotic behavior of a chemotaxis model. (English) Zbl 1460.35357 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS). AIMS Ser. Appl. Math. 10, 621-629 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35M31 35B40 92C17 PDF BibTeX XML Cite \textit{J. Rugamba} and \textit{Y. Zeng}, AIMS Ser. Appl. Math. 10, 621--629 (2020; Zbl 1460.35357) OpenURL
Aptekarev, A. I.; Denisov, S. A.; Yattselev, M. L. Discrete Schrödinger operator on a tree, Angelesco potentials, and their perturbations. (English. Russian original) Zbl 1458.39015 Proc. Steklov Inst. Math. 311, 1-9 (2020); translation from Tr. Mat. Inst. Steklova 311, 5-13 (2020). MSC: 39A70 39A12 37E25 34L40 33C45 PDF BibTeX XML Cite \textit{A. I. Aptekarev} et al., Proc. Steklov Inst. Math. 311, 1--9 (2020; Zbl 1458.39015); translation from Tr. Mat. Inst. Steklova 311, 5--13 (2020) Full Text: DOI OpenURL
Aguillon, Nina; Guihéneuf, Pierre-Antoine Dynamical behavior of a nondiffusive scheme for the advection equation. (English) Zbl 1459.37067 Confluentes Math. 12, No. 1, 3-29 (2020). MSC: 37M05 35Q49 65M15 65P40 PDF BibTeX XML Cite \textit{N. Aguillon} and \textit{P.-A. Guihéneuf}, Confluentes Math. 12, No. 1, 3--29 (2020; Zbl 1459.37067) Full Text: DOI arXiv OpenURL
Rodriguez, Charlotte; Leugering, Günter Boundary feedback stabilization for the intrinsic geometrically exact beam model. (English) Zbl 1458.35260 SIAM J. Control Optim. 58, No. 6, 3533-3558 (2020). Reviewer: Kaïs Ammari (Monastir) MSC: 35L50 93D15 74K10 PDF BibTeX XML Cite \textit{C. Rodriguez} and \textit{G. Leugering}, SIAM J. Control Optim. 58, No. 6, 3533--3558 (2020; Zbl 1458.35260) Full Text: DOI arXiv OpenURL
Kwon, Younghak; Menz, Georg Uniform LSI for the canonical ensemble on the 1D-lattice with strong, finite-range interaction. (English) Zbl 1453.82012 ESAIM, Probab. Stat. 24, 341-373 (2020). Reviewer: Hasan Akin (Gaziantep) MSC: 82B20 26D10 82B05 60K35 82C22 PDF BibTeX XML Cite \textit{Y. Kwon} and \textit{G. Menz}, ESAIM, Probab. Stat. 24, 341--373 (2020; Zbl 1453.82012) Full Text: DOI arXiv OpenURL
Grines, Vyacheslav Z.; Kurenkov, Evgeny D. Diffeomorphisms of 2-manifolds with one-dimensional spaciously situated basic sets. (English. Russian original) Zbl 1456.37033 Izv. Math. 84, No. 5, 862-909 (2020); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 5, 40-97 (2020). Reviewer: Vladimir P. Kostov (Nice) MSC: 37D20 37C70 37C15 PDF BibTeX XML Cite \textit{V. Z. Grines} and \textit{E. D. Kurenkov}, Izv. Math. 84, No. 5, 862--909 (2020; Zbl 1456.37033); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 5, 40--97 (2020) Full Text: DOI OpenURL
Golmakani, A.; Koudjinan, C. E.; Luzzatto, S.; Pilarczyk, P. Rigorous numerics for critical orbits in the quadratic family. (English) Zbl 1453.37077 Chaos 30, No. 7, 073143, 20 p. (2020). MSC: 37M25 37C25 37C35 PDF BibTeX XML Cite \textit{A. Golmakani} et al., Chaos 30, No. 7, 073143, 20 p. (2020; Zbl 1453.37077) Full Text: DOI arXiv OpenURL
Tombuloglu, S.; Yuce, C. Nonlinear waves in an anti-Hermitian lattice with cubic nonlinearity. (English) Zbl 1451.82037 Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105106, 7 p. (2020). MSC: 82C20 34L40 PDF BibTeX XML Cite \textit{S. Tombuloglu} and \textit{C. Yuce}, Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105106, 7 p. (2020; Zbl 1451.82037) Full Text: DOI arXiv OpenURL
Liz, Eduardo Clark’s equation: a useful difference equation for population models, predictive control, and numerical approximations. (English) Zbl 1448.37122 Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 71, 11 p. (2020). MSC: 37N25 39A60 39A30 92D25 PDF BibTeX XML Cite \textit{E. Liz}, Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 71, 11 p. (2020; Zbl 1448.37122) Full Text: DOI OpenURL
Akbergenov, A. A.; Romanenko, O. Yu. Visualization of the simplest scenarios of ideal turbulence. (English. Ukrainian original) Zbl 1448.76092 J. Math. Sci., New York 247, No. 2, 223-237 (2020); translation from Neliniĭni Kolyvannya 22, No. 1, 3-17 (2019). MSC: 76F20 76M27 37N10 PDF BibTeX XML Cite \textit{A. A. Akbergenov} and \textit{O. Yu. Romanenko}, J. Math. Sci., New York 247, No. 2, 223--237 (2020; Zbl 1448.76092); translation from Neliniĭni Kolyvannya 22, No. 1, 3--17 (2019) Full Text: DOI OpenURL
Anikin, A. Yu.; Dobrokhotov, S. Yu. Diophantine tori and pragmatic calculation of quasimodes for operators with integrable principal symbol. (English) Zbl 1452.37071 Russ. J. Math. Phys. 27, No. 3, 299-308 (2020). Reviewer: Luigi Rodino (Torino) MSC: 37K55 37J40 35J10 35S05 35S10 34L40 68W30 PDF BibTeX XML Cite \textit{A. Yu. Anikin} and \textit{S. Yu. Dobrokhotov}, Russ. J. Math. Phys. 27, No. 3, 299--308 (2020; Zbl 1452.37071) Full Text: DOI OpenURL
De Roeck, Wojciech; Huveneers, Francois; Olla, Stefano Subdiffusion in one-dimensional Hamiltonian chains with sparse interactions. (English) Zbl 1448.81320 J. Stat. Phys. 180, No. 1-6, 678-698 (2020). MSC: 81Q10 82C20 82C44 82C70 80A19 PDF BibTeX XML Cite \textit{W. De Roeck} et al., J. Stat. Phys. 180, No. 1--6, 678--698 (2020; Zbl 1448.81320) Full Text: DOI arXiv OpenURL
Levin, Genadi; Shen, Weixiao; van Strien, Sebastian Positive transversality via transfer operators and holomorphic motions with applications to monotonicity for interval maps. (English) Zbl 1453.37044 Nonlinearity 33, No. 8, 3970-4012 (2020). Reviewer: Mohammad Sajid (Buraidah) MSC: 37F44 37E05 37F10 37C30 PDF BibTeX XML Cite \textit{G. Levin} et al., Nonlinearity 33, No. 8, 3970--4012 (2020; Zbl 1453.37044) Full Text: DOI arXiv OpenURL
Masoero, Davide; Raimondo, Andrea Opers for higher states of quantum KdV models. (English) Zbl 1448.17028 Commun. Math. Phys. 378, No. 1, 1-74 (2020). MSC: 17B67 17B80 34L40 37K10 81R10 PDF BibTeX XML Cite \textit{D. Masoero} and \textit{A. Raimondo}, Commun. Math. Phys. 378, No. 1, 1--74 (2020; Zbl 1448.17028) Full Text: DOI arXiv OpenURL
Gesztesy, Fritz; Sakhnovich, Alexander The inverse approach to Dirac-type systems based on the \(A\)-function concept. (English) Zbl 1470.34053 J. Funct. Anal. 279, No. 6, Article ID 108609, 39 p. (2020). Reviewer: Natalia Bondarenko (Saratov) MSC: 34A55 34B20 34L40 34B24 PDF BibTeX XML Cite \textit{F. Gesztesy} and \textit{A. Sakhnovich}, J. Funct. Anal. 279, No. 6, Article ID 108609, 39 p. (2020; Zbl 1470.34053) Full Text: DOI arXiv OpenURL
Xue, Nina; Zhao, Wencai On the reducibility of quasiperiodic linear Hamiltonian systems and its applications in Schrödinger equation. (English) Zbl 1444.37045 J. Funct. Spaces 2020, Article ID 6260253, 11 p. (2020). MSC: 37J06 34C20 34L40 PDF BibTeX XML Cite \textit{N. Xue} and \textit{W. Zhao}, J. Funct. Spaces 2020, Article ID 6260253, 11 p. (2020; Zbl 1444.37045) Full Text: DOI OpenURL
Bjerklöv, Kristian Some remarks on the dynamics of the almost Mathieu equation at critical coupling. (English) Zbl 1443.37026 Nonlinearity 33, No. 6, 2707-2722 (2020). MSC: 37C40 37H15 34L40 47B36 39A70 PDF BibTeX XML Cite \textit{K. Bjerklöv}, Nonlinearity 33, No. 6, 2707--2722 (2020; Zbl 1443.37026) Full Text: DOI OpenURL
Crawford, Nicholas; Kozma, Gady The toom interface via coupling. (English) Zbl 1437.60040 J. Stat. Phys. 179, No. 2, 408-447 (2020). MSC: 60J10 60K35 60K40 PDF BibTeX XML Cite \textit{N. Crawford} and \textit{G. Kozma}, J. Stat. Phys. 179, No. 2, 408--447 (2020; Zbl 1437.60040) Full Text: DOI arXiv OpenURL
Dmitruk, A. V.; Vdovina, A. K. Study of a one-dimensional optimal control problem with a purely state-dependent cost. (English) Zbl 1437.49036 Differ. Equ. Dyn. Syst. 28, No. 1, 133-151 (2020). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49K21 49K15 90C30 93C10 PDF BibTeX XML Cite \textit{A. V. Dmitruk} and \textit{A. K. Vdovina}, Differ. Equ. Dyn. Syst. 28, No. 1, 133--151 (2020; Zbl 1437.49036) Full Text: DOI OpenURL
Kazakov, Konstantin V. Integrable anharmonic potentials for stretching and bending molecular vibrations. (English) Zbl 1433.81094 Ann. Phys. 414, Article ID 168096, 16 p. (2020). MSC: 81Q80 81Q05 34L40 PDF BibTeX XML Cite \textit{K. V. Kazakov}, Ann. Phys. 414, Article ID 168096, 16 p. (2020; Zbl 1433.81094) Full Text: DOI OpenURL
Aliyev, Z. S.; Manafova, P. R. Oscillation properties for the Dirac equation with spectral parameter in the boundary condition. (English) Zbl 1432.34035 Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1449-1463 (2020). MSC: 34B24 34A55 34A30 34B05 34B09 34C10 34K11 PDF BibTeX XML Cite \textit{Z. S. Aliyev} and \textit{P. R. Manafova}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1449--1463 (2020; Zbl 1432.34035) Full Text: DOI OpenURL
Dartois, Stéphane; Evnin, Oleg; Lionni, Luca; Rivasseau, Vincent; Valette, Guillaume Melonic turbulence. (English) Zbl 1436.81095 Commun. Math. Phys. 374, No. 2, 1179-1228 (2020). Reviewer: Akira Asada (Takarazuka) MSC: 81T15 81T18 81T20 35Q55 35B34 81T32 81V73 78A37 82B26 34L40 46E36 PDF BibTeX XML Cite \textit{S. Dartois} et al., Commun. Math. Phys. 374, No. 2, 1179--1228 (2020; Zbl 1436.81095) Full Text: DOI arXiv OpenURL
Martel, Yvan; Nguyến, Tiễn Vinh Construction of 2-solitons with logarithmic distance for the one-dimensional cubic Schrödinger system. (English) Zbl 1439.35442 Discrete Contin. Dyn. Syst. 40, No. 3, 1595-1620 (2020). MSC: 35Q55 37K40 35B40 37K10 35Q41 35C08 PDF BibTeX XML Cite \textit{Y. Martel} and \textit{T. V. Nguyến}, Discrete Contin. Dyn. Syst. 40, No. 3, 1595--1620 (2020; Zbl 1439.35442) Full Text: DOI arXiv OpenURL
Chen, Zhijie; Lin, Chang-Shou On algebro-geometric simply-periodic solutions of the KdV hierarchy. (English) Zbl 1439.35425 Commun. Math. Phys. 374, No. 1, 111-144 (2020). MSC: 35Q53 35G20 35C05 35B10 34L40 33E10 37K35 PDF BibTeX XML Cite \textit{Z. Chen} and \textit{C.-S. Lin}, Commun. Math. Phys. 374, No. 1, 111--144 (2020; Zbl 1439.35425) Full Text: DOI OpenURL
Zhao, Xin Continuity of the spectrum of quasi-periodic Schrödinger operators with finitely differentiable potentials. (English) Zbl 1452.37038 Ergodic Theory Dyn. Syst. 40, No. 2, 564-576 (2020). Reviewer: Meirong Zhang (Beijing) MSC: 37D25 37C40 47A10 34L40 35J10 PDF BibTeX XML Cite \textit{X. Zhao}, Ergodic Theory Dyn. Syst. 40, No. 2, 564--576 (2020; Zbl 1452.37038) Full Text: DOI OpenURL
Howard, Peter; Sukhtayev, Alim The Maslov and Morse indices for Sturm-Liouville systems on the half-line. (English) Zbl 1448.34065 Discrete Contin. Dyn. Syst. 40, No. 2, 983-1012 (2020). Reviewer: Natalia Bondarenko (Saratov) MSC: 34B24 34B45 34L15 34B40 34L40 PDF BibTeX XML Cite \textit{P. Howard} and \textit{A. Sukhtayev}, Discrete Contin. Dyn. Syst. 40, No. 2, 983--1012 (2020; Zbl 1448.34065) Full Text: DOI arXiv OpenURL
Odake, Satoru Exactly solvable discrete quantum mechanical systems and multi-indexed orthogonal polynomials of the continuous Hahn and Meixner-Pollaczek types. (English) Zbl 1477.81044 PTEP, Prog. Theor. Exper. Phys. 2019, No. 12, Article ID 123A01, 20 p. (2019). MSC: 81Q80 34L40 42C05 42A65 PDF BibTeX XML Cite \textit{S. Odake}, PTEP, Prog. Theor. Exper. Phys. 2019, No. 12, Article ID 123A01, 20 p. (2019; Zbl 1477.81044) Full Text: DOI arXiv OpenURL
Pastukhov, Volodymyr Mean-field properties of impurity in Bose gas with three-body forces. (English) Zbl 1476.81172 Phys. Lett., A 383, No. 22, 2610-2614 (2019). MSC: 81V73 82B40 82B23 35Q89 PDF BibTeX XML Cite \textit{V. Pastukhov}, Phys. Lett., A 383, No. 22, 2610--2614 (2019; Zbl 1476.81172) Full Text: DOI arXiv OpenURL
Pastukhov, Volodymyr Ground-state properties of dilute one-dimensional Bose gas with three-body repulsion. (English) Zbl 1472.81331 Phys. Lett., A 383, No. 9, 894-897 (2019). MSC: 81V73 82D05 82B40 82B30 81U10 PDF BibTeX XML Cite \textit{V. Pastukhov}, Phys. Lett., A 383, No. 9, 894--897 (2019; Zbl 1472.81331) Full Text: DOI arXiv OpenURL
Qiu, Wenlin; Chen, Hongbin; Zheng, Xuan An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations. (English) Zbl 07316773 Math. Comput. Simul. 166, 298-314 (2019). MSC: 65Mxx 35Rxx 35Kxx PDF BibTeX XML Cite \textit{W. Qiu} et al., Math. Comput. Simul. 166, 298--314 (2019; Zbl 07316773) Full Text: DOI OpenURL
Kong, Linghua; Zhu, Pengfei; Wang, Yushun; Zeng, Zhankuan Efficient and accurate numerical methods for the multidimensional convection-diffusion equations. (English) Zbl 07316695 Math. Comput. Simul. 162, 179-194 (2019). MSC: 65Pxx 78Mxx 65Lxx PDF BibTeX XML Cite \textit{L. Kong} et al., Math. Comput. Simul. 162, 179--194 (2019; Zbl 07316695) Full Text: DOI OpenURL
Rahul, O. R.; Murugesh, S. Rogue breather modes: topological sectors, and the ‘belt-trick’, in a one-dimensional ferromagnetic spin chain. (English) Zbl 1448.82026 Chaos Solitons Fractals 122, 262-269 (2019). MSC: 82C20 82C10 35C08 35Q82 PDF BibTeX XML Cite \textit{O. R. Rahul} and \textit{S. Murugesh}, Chaos Solitons Fractals 122, 262--269 (2019; Zbl 1448.82026) Full Text: DOI arXiv OpenURL
Vlase, S.; Marin, M.; Öchsner, A.; Scutaru, M. L. Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system. (English) Zbl 1442.70006 Contin. Mech. Thermodyn. 31, No. 3, 715-724 (2019). MSC: 70E55 PDF BibTeX XML Cite \textit{S. Vlase} et al., Contin. Mech. Thermodyn. 31, No. 3, 715--724 (2019; Zbl 1442.70006) Full Text: DOI OpenURL
Rajchel, Kazimierz Solutions of the time-independent Schrödinger equation by uniformization on the unit circle. (English) Zbl 1478.34096 Ann. Univ. Paedagog. Crac., Stud. Math. 277(18), 157-165 (2019). MSC: 34L40 81Q05 34C20 34A34 PDF BibTeX XML Cite \textit{K. Rajchel}, Ann. Univ. Paedagog. Crac., Stud. Math. 277(18), 157--165 (2019; Zbl 1478.34096) Full Text: DOI OpenURL
Artigue, Alfonso; Cousillas, Gonzalo Generic homeomorphisms with shadowing of one-dimensional continua. (English) Zbl 1432.37066 Axioms 8, No. 2, Paper No. 66, 6 p. (2019). MSC: 37E05 37C50 37C20 PDF BibTeX XML Cite \textit{A. Artigue} and \textit{G. Cousillas}, Axioms 8, No. 2, Paper No. 66, 6 p. (2019; Zbl 1432.37066) Full Text: DOI arXiv OpenURL