Bajpai, Saumya; Swain, Debendra Kumar A priori error estimates of a three-step two-level finite element Galerkin method for a 2D-Boussinesq system of equations. (English) Zbl 07741329 Comput. Math. Appl. 146, 137-164 (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{S. Bajpai} and \textit{D. K. Swain}, Comput. Math. Appl. 146, 137--164 (2023; Zbl 07741329) Full Text: DOI
Qiu, Wenlin; Fairweather, Graeme; Yang, Xuehua; Zhang, Haixiang ADI finite element Galerkin methods for two-dimensional tempered fractional integro-differential equations. (English) Zbl 07739303 Calcolo 60, No. 3, Paper No. 41, 34 p. (2023). MSC: 65M15 65M22 65M60 45K05 PDF BibTeX XML Cite \textit{W. Qiu} et al., Calcolo 60, No. 3, Paper No. 41, 34 p. (2023; Zbl 07739303) Full Text: DOI
Brunk, Aaron; Egger, Herbert; Habrich, Oliver; Lukáčová-Medviďová, Mária Stability and discretization error analysis for the Cahn-Hilliard system via relative energy estimates. (English) Zbl 07737658 ESAIM, Math. Model. Numer. Anal. 57, No. 3, 1297-1322 (2023). MSC: 35A35 35A15 35K35 35K59 65M12 65M15 65M60 PDF BibTeX XML Cite \textit{A. Brunk} et al., ESAIM, Math. Model. Numer. Anal. 57, No. 3, 1297--1322 (2023; Zbl 07737658) Full Text: DOI
Bajpai, Saumya; Goswami, Deepjyoti; Ray, Kallol A priori error estimates of a discontinuous Galerkin method for the Navier-Stokes equations. (English) Zbl 07736714 Numer. Algorithms 94, No. 2, 937-1002 (2023). MSC: 65-XX PDF BibTeX XML Cite \textit{S. Bajpai} et al., Numer. Algorithms 94, No. 2, 937--1002 (2023; Zbl 07736714) Full Text: DOI
Yuan, Wanqiu; Zhang, Chengjian; Li, Dongfang Linearized fast time-stepping schemes for time-space fractional Schrödinger equations. (English) Zbl 07736394 Physica D 454, Article ID 133865, 15 p. (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{W. Yuan} et al., Physica D 454, Article ID 133865, 15 p. (2023; Zbl 07736394) Full Text: DOI
Li, Hengguang; Yin, Peimeng; Zhang, Zhimin A \(C^0\) finite element method for the biharmonic problem with Navier boundary conditions in a polygonal domain. (English) Zbl 07726049 IMA J. Numer. Anal. 43, No. 3, 1779-1801 (2023). MSC: 65-XX PDF BibTeX XML Cite \textit{H. Li} et al., IMA J. Numer. Anal. 43, No. 3, 1779--1801 (2023; Zbl 07726049) Full Text: DOI arXiv
Casas, Eduardo; Kunisch, Karl; Mateos, Mariano Error estimates for the numerical approximation of optimal control problems with nonsmooth pointwise-integral control constraints. (English) Zbl 07726040 IMA J. Numer. Anal. 43, No. 3, 1485-1518 (2023). MSC: 65-XX PDF BibTeX XML Cite \textit{E. Casas} et al., IMA J. Numer. Anal. 43, No. 3, 1485--1518 (2023; Zbl 07726040) Full Text: DOI
Paraschis, Panagiotis; Zouraris, Georgios E. Implicit-explicit finite difference approximations of a semilinear heat equation with logarithmic nonlinearity. (English) Zbl 1517.65074 Comput. Methods Appl. Math. 23, No. 3, 695-713 (2023). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{P. Paraschis} and \textit{G. E. Zouraris}, Comput. Methods Appl. Math. 23, No. 3, 695--713 (2023; Zbl 1517.65074) Full Text: DOI
Xiao, Wenqiang; Ling, Min Virtual element method for a history-dependent variational-hemivariational inequality in contact problems. (English) Zbl 07722602 J. Sci. Comput. 96, No. 3, Paper No. 82, 21 p. (2023). MSC: 65Nxx 74Mxx 49Jxx PDF BibTeX XML Cite \textit{W. Xiao} and \textit{M. Ling}, J. Sci. Comput. 96, No. 3, Paper No. 82, 21 p. (2023; Zbl 07722602) Full Text: DOI
Meng, Jian Discontinuous Galerkin method for the interior transmission eigenvalue problem in inverse scattering theory. (English) Zbl 07722586 J. Sci. Comput. 96, No. 3, Paper No. 66, 24 p. (2023). MSC: 65N25 65N30 65N15 65N12 35A15 35R30 PDF BibTeX XML Cite \textit{J. Meng}, J. Sci. Comput. 96, No. 3, Paper No. 66, 24 p. (2023; Zbl 07722586) Full Text: DOI
Ankur; Jiwari, Ram New multiple analytic solitonary solutions and simulation of (2+1)-dimensional generalized Benjamin-Bona-Mahony-Burgers model. (English) Zbl 07722097 Nonlinear Dyn. 111, No. 14, 13297-13325 (2023). MSC: 35C08 35Q53 65N15 65N30 PDF BibTeX XML Cite \textit{Ankur} and \textit{R. Jiwari}, Nonlinear Dyn. 111, No. 14, 13297--13325 (2023; Zbl 07722097) Full Text: DOI
Kumar, Raman; Deka, Bhupen High-order weak Galerkin scheme for \(\mathbf{H} (\mathrm{div})\)-elliptic interface problems. (English) Zbl 07715646 J. Comput. Appl. Math. 432, Article ID 115269, 20 p. (2023). MSC: 35J47 65N15 65N30 PDF BibTeX XML Cite \textit{R. Kumar} and \textit{B. Deka}, J. Comput. Appl. Math. 432, Article ID 115269, 20 p. (2023; Zbl 07715646) Full Text: DOI
Li, Qinlong; Li, Yu Unconditional optimal error estimates of a linearized mass- and energy-conservation FEM for a coupled nonlinear Schrödinger equations. (English) Zbl 07714005 Commun. Nonlinear Sci. Numer. Simul. 124, Article ID 107297, 18 p. (2023). MSC: 65-XX 35-XX 93-XX 34-XX PDF BibTeX XML Cite \textit{Q. Li} and \textit{Y. Li}, Commun. Nonlinear Sci. Numer. Simul. 124, Article ID 107297, 18 p. (2023; Zbl 07714005) Full Text: DOI
Li, Yingyuan; Yan, Wenjing; Zhu, Shengfeng; Jing, Feifei Optimal error estimates of the discrete shape gradients for shape optimizations governed by the Stokes-Brinkman equations. (English) Zbl 07710415 Appl. Numer. Math. 190, 220-253 (2023). MSC: 65Nxx 76Mxx 76Dxx PDF BibTeX XML Cite \textit{Y. Li} et al., Appl. Numer. Math. 190, 220--253 (2023; Zbl 07710415) Full Text: DOI
Kumar, Naresh; Deka, Bhupen Weak Galerkin finite element methods for parabolic problems with \(L^2\) initial data. (English) Zbl 07709139 Int. J. Numer. Anal. Model. 20, No. 2, 199-228 (2023). MSC: 65N15 65N30 PDF BibTeX XML Cite \textit{N. Kumar} and \textit{B. Deka}, Int. J. Numer. Anal. Model. 20, No. 2, 199--228 (2023; Zbl 07709139) Full Text: DOI
Otárola, Enrique Error estimates for fractional semilinear optimal control on Lipschitz polytopes. (English) Zbl 07708055 Appl. Math. Optim. 88, No. 2, Paper No. 40, 32 p. (2023). MSC: 65-XX 35R11 49J20 49M25 65K10 65N15 65N30 PDF BibTeX XML Cite \textit{E. Otárola}, Appl. Math. Optim. 88, No. 2, Paper No. 40, 32 p. (2023; Zbl 07708055) Full Text: DOI arXiv
Li, Xiaowu; Tang, Yuelong A two-layer Crank-Nicolson linear finite element methods for second-order hyperbolic optimal control problems. (English) Zbl 1517.65087 Results Appl. Math. 18, Article ID 100365, 10 p. (2023). MSC: 65M60 65M06 65N30 49M25 49M41 35L10 35B45 93C20 PDF BibTeX XML Cite \textit{X. Li} and \textit{Y. Tang}, Results Appl. Math. 18, Article ID 100365, 10 p. (2023; Zbl 1517.65087) Full Text: DOI
Jain, Riya; Pani, Amiya K.; Yadav, Sangita HDG method for linear parabolic integro-differential equations. (English) Zbl 07701072 Appl. Math. Comput. 450, Article ID 127987, 15 p. (2023). MSC: 65Rxx 65Mxx 45Kxx PDF BibTeX XML Cite \textit{R. Jain} et al., Appl. Math. Comput. 450, Article ID 127987, 15 p. (2023; Zbl 07701072) Full Text: DOI
Liu, Wenju; Zhao, Tengjin; Ito, Kazufumi; Zhang, Zhiyue Error estimates of Fourier finite volume element method for parabolic Dirichlet boundary optimal control problems on complex connected domains. (English) Zbl 1516.49028 Appl. Numer. Math. 186, 164-201 (2023). MSC: 49M25 65N30 65M60 PDF BibTeX XML Cite \textit{W. Liu} et al., Appl. Numer. Math. 186, 164--201 (2023; Zbl 1516.49028) Full Text: DOI
Qiu, Hailong Error analysis of fully discrete scheme for the Cahn-Hilliard-magneto-hydrodynamics problem. (English) Zbl 1516.65099 J. Sci. Comput. 95, No. 1, Paper No. 16, 27 p. (2023). MSC: 65M60 65M06 65N30 65M15 76M10 76W05 35R09 35Q35 PDF BibTeX XML Cite \textit{H. Qiu}, J. Sci. Comput. 95, No. 1, Paper No. 16, 27 p. (2023; Zbl 1516.65099) Full Text: DOI arXiv
Leng, Haitao A posteriori error analysis for pressure-robust HDG methods for the stationary incompressible Navier-Stokes equations. (English) Zbl 1517.35156 J. Sci. Comput. 94, No. 3, Paper No. 52, 24 p. (2023). MSC: 35Q30 76D05 49M25 35B45 65N30 65N50 65K10 65N15 47J26 PDF BibTeX XML Cite \textit{H. Leng}, J. Sci. Comput. 94, No. 3, Paper No. 52, 24 p. (2023; Zbl 1517.35156) Full Text: DOI
Hutridurga, Harsha; Kumar, Krishan; Pani, Amiya K. Discontinuous Galerkin methods with generalized numerical fluxes for the Vlasov-viscous Burgers’ system. (English) Zbl 1516.65088 J. Sci. Comput. 96, No. 1, Paper No. 7, 41 p. (2023). MSC: 65M60 65L80 65N30 65M12 65M15 35A01 35A02 35D35 76T17 35Q83 PDF BibTeX XML Cite \textit{H. Hutridurga} et al., J. Sci. Comput. 96, No. 1, Paper No. 7, 41 p. (2023; Zbl 1516.65088) Full Text: DOI arXiv
Sun, Zheng; Xing, Yulong On generalized Gauss-Radau projections and optimal error estimates of upwind-biased DG methods for the linear advection equation on special simplex meshes. (English) Zbl 07698855 J. Sci. Comput. 95, No. 2, Paper No. 40, 36 p. (2023). MSC: 65M15 65M60 PDF BibTeX XML Cite \textit{Z. Sun} and \textit{Y. Xing}, J. Sci. Comput. 95, No. 2, Paper No. 40, 36 p. (2023; Zbl 07698855) Full Text: DOI
Li, Yunzhang A high-order numerical scheme for stochastic optimal control problem. (English) Zbl 1512.65213 J. Comput. Appl. Math. 427, Article ID 115158, 20 p. (2023). MSC: 65M60 49M15 93E20 65M15 PDF BibTeX XML Cite \textit{Y. Li}, J. Comput. Appl. Math. 427, Article ID 115158, 20 p. (2023; Zbl 1512.65213) Full Text: DOI
Tran, Quyen; Antil, Harbir; Díaz, Hugo Optimal control of parameterized stationary Maxwell’s system: reduced basis, convergence analysis, and a posteriori error estimates. (English) Zbl 1512.35570 Math. Control Relat. Fields 13, No. 1, 431-449 (2023). MSC: 35Q61 35Q93 65M60 65M12 65K10 49M25 PDF BibTeX XML Cite \textit{Q. Tran} et al., Math. Control Relat. Fields 13, No. 1, 431--449 (2023; Zbl 1512.35570) Full Text: DOI
Zhang, Tong; Chu, Xiaochen; Chen, Chuanjun Unconditional stability and convergence analysis of fully discrete stabilized finite volume method for the time-dependent incompressible MHD flow. (English) Zbl 1517.65079 Discrete Contin. Dyn. Syst., Ser. B 28, No. 11, 5839-5880 (2023). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M06 65N08 65M12 65M15 76D05 76W05 35Q35 65D32 PDF BibTeX XML Cite \textit{T. Zhang} et al., Discrete Contin. Dyn. Syst., Ser. B 28, No. 11, 5839--5880 (2023; Zbl 1517.65079) Full Text: DOI
Yang, Huaijun; Shi, Dongyang A novel approach of unconditional optimal error estimate of linearized and conservative Galerkin FEM for Klein-Gordon-Schrödinger equations. (English) Zbl 07693651 Commun. Nonlinear Sci. Numer. Simul. 123, Article ID 107286, 18 p. (2023). MSC: 65-XX 93-XX 34-XX PDF BibTeX XML Cite \textit{H. Yang} and \textit{D. Shi}, Commun. Nonlinear Sci. Numer. Simul. 123, Article ID 107286, 18 p. (2023; Zbl 07693651) Full Text: DOI
Mishra, Soumyarani; Khebchareon, Morrakot; Pany, Ambit K. Second order backward difference scheme combined with finite element method for a 2D Sobolev equation with Burgers’ type non-linearity. (English) Zbl 07691975 Comput. Math. Appl. 141, 170-190 (2023). MSC: 65-XX 39-XX PDF BibTeX XML Cite \textit{S. Mishra} et al., Comput. Math. Appl. 141, 170--190 (2023; Zbl 07691975) Full Text: DOI
Bartels, Sören; Kaltenbach, Alex Explicit and efficient error estimation for convex minimization problems. (English) Zbl 07689730 Math. Comput. 92, No. 343, 2247-2279 (2023). MSC: 65K15 65N15 65N50 49M29 PDF BibTeX XML Cite \textit{S. Bartels} and \textit{A. Kaltenbach}, Math. Comput. 92, No. 343, 2247--2279 (2023; Zbl 07689730) Full Text: DOI arXiv
Cai, Wentao; Sun, Weiwei; Wang, Jilu; Yang, Zongze Optimal \(L^2\) error estimates of unconditionally stable finite element schemes for the Cahn-Hilliard-Navier-Stokes system. (English) Zbl 07688703 SIAM J. Numer. Anal. 61, No. 3, 1218-1245 (2023). MSC: 65M12 65N30 65M60 35K55 PDF BibTeX XML Cite \textit{W. Cai} et al., SIAM J. Numer. Anal. 61, No. 3, 1218--1245 (2023; Zbl 07688703) Full Text: DOI
Zhang, Yuhong; Rong, Yao; Zheng, Haibiao A study of numerical pollution of the decoupled algorithm for the convection model in superposed fluid and porous layers. (English) Zbl 1514.65138 SIAM J. Numer. Anal. 61, No. 2, 1018-1056 (2023). MSC: 65M60 65M06 65N30 65M12 65M15 76D05 76D07 76S05 35D30 76M10 76M20 PDF BibTeX XML Cite \textit{Y. Zhang} et al., SIAM J. Numer. Anal. 61, No. 2, 1018--1056 (2023; Zbl 1514.65138) Full Text: DOI
Zhang, Huifang; Zhang, Tong Unconditional stability and convergence of fully discrete FEM for the viscoelastic Oldroyd flow with an introduced auxiliary variable. (English) Zbl 1515.65304 J. Korean Math. Soc. 60, No. 2, 273-302 (2023). MSC: 65N30 65N12 76A10 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{T. Zhang}, J. Korean Math. Soc. 60, No. 2, 273--302 (2023; Zbl 1515.65304) Full Text: DOI
Lee, Walter C. Simo Tao A variational technique of mollification applied to backward heat conduction problems. (English) Zbl 1511.35009 Appl. Math. Comput. 449, Article ID 127917, 20 p. (2023). MSC: 35A15 35K05 PDF BibTeX XML Cite \textit{W. C. S. T. Lee}, Appl. Math. Comput. 449, Article ID 127917, 20 p. (2023; Zbl 1511.35009) Full Text: DOI arXiv
Shi, Dongyang; Zhang, Houchao Unconditional error estimates of linearized BDF2-Galerkin FEMs for nonlinear coupled Schrödinger-Helmholtz equations. (English) Zbl 07676498 Numer. Algorithms 92, No. 3, 1679-1705 (2023). MSC: 65N15 65N30 PDF BibTeX XML Cite \textit{D. Shi} and \textit{H. Zhang}, Numer. Algorithms 92, No. 3, 1679--1705 (2023; Zbl 07676498) Full Text: DOI
Poonepalle, Akshaya; Shi, Brent; Kang, Elly; Chin, Joseph; Singh, Mannan; Gupta, Prakhar; Malhotra, Riya; Kadiyala, Sanjana; Thadiparthi, Sirihansika; Kieu, Thinh; Kim, Yeeun Mixed finite element method based on the Crank-Nicolson scheme for Darcy flows in porous media. (English) Zbl 1508.76072 PUMP J. Undergrad. Res. 6, 40-58 (2023). MSC: 76M10 65M60 65M12 76S05 PDF BibTeX XML Cite \textit{A. Poonepalle} et al., PUMP J. Undergrad. Res. 6, 40--58 (2023; Zbl 1508.76072) Full Text: Link
Zouraris, Georgios E. Error estimation of the relaxation finite difference scheme for the nonlinear Schrödinger equation. (English) Zbl 07670868 SIAM J. Numer. Anal. 61, No. 1, 365-397 (2023). MSC: 65M12 65M06 PDF BibTeX XML Cite \textit{G. E. Zouraris}, SIAM J. Numer. Anal. 61, No. 1, 365--397 (2023; Zbl 07670868) Full Text: DOI arXiv
Ankur; Jiwari, Ram; Kumar, Naresh Analysis and simulation of Korteweg-de Vries-Rosenau-regularised long-wave model via Galerkin finite element method. (English) Zbl 07667341 Comput. Math. Appl. 135, 134-148 (2023). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{Ankur} et al., Comput. Math. Appl. 135, 134--148 (2023; Zbl 07667341) Full Text: DOI
Garg, Divay; Porwal, Kamana Mixed finite element method for a second order Dirichlet boundary control problem. (English) Zbl 07667334 Comput. Math. Appl. 135, 31-59 (2023). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{D. Garg} and \textit{K. Porwal}, Comput. Math. Appl. 135, 31--59 (2023; Zbl 07667334) Full Text: DOI arXiv
Çiloğlu, Pelin; Yücel, Hamdullah Stochastic discontinuous Galerkin methods for robust deterministic control of convection-diffusion equations with uncertain coefficients. (English) Zbl 07667232 Adv. Comput. Math. 49, No. 2, Paper No. 16, 36 p. (2023). MSC: 65-XX 35R60 49J20 60H15 60H35 PDF BibTeX XML Cite \textit{P. Çiloğlu} and \textit{H. Yücel}, Adv. Comput. Math. 49, No. 2, Paper No. 16, 36 p. (2023; Zbl 07667232) Full Text: DOI arXiv
Li, Xiaowu; Tang, Yuelong Interpolated coefficient characteristic finite element method for semilinear convection-diffusion optimal control problems. (English) Zbl 1509.65100 Results Appl. Math. 17, Article ID 100357, 10 p. (2023). MSC: 65M60 65M25 65M06 65N30 65D05 65H10 49M25 35K55 35J60 35J61 76R50 PDF BibTeX XML Cite \textit{X. Li} and \textit{Y. Tang}, Results Appl. Math. 17, Article ID 100357, 10 p. (2023; Zbl 1509.65100) Full Text: DOI
Yu, Zhiyun; Shi, Dongyang; Zhu, Huiqing A low order nonconforming mixed finite element method for non-stationary incompressible magnetohydrodynamics system. (English) Zbl 1515.65253 J. Comput. Math. 41, No. 4, 545-563 (2023). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{Z. Yu} et al., J. Comput. Math. 41, No. 4, 545--563 (2023; Zbl 1515.65253) Full Text: DOI
Shi, Dongyang; Zhang, Houchao Superconvergence analysis of a BDF-Galerkin FEM for the nonlinear Klein-Gordon-Schrödinger equations with damping mechanism. (English) Zbl 1515.65250 J. Comput. Math. 41, No. 2, 224-245 (2023). MSC: 65M60 65M15 PDF BibTeX XML Cite \textit{D. Shi} and \textit{H. Zhang}, J. Comput. Math. 41, No. 2, 224--245 (2023; Zbl 1515.65250) Full Text: DOI
Hao, Zhaopeng Optimal error estimates of spectral Galerkin method for mixed diffusion equations. (English) Zbl 1509.65121 Calcolo 60, No. 1, Paper No. 10, 28 p. (2023). MSC: 65N35 65N30 65N12 35B65 41A25 26A33 35R11 PDF BibTeX XML Cite \textit{Z. Hao}, Calcolo 60, No. 1, Paper No. 10, 28 p. (2023; Zbl 1509.65121) Full Text: DOI
Bajpai, Saumya; Goswami, Deepjyoti; Ray, Kallol Fully discrete finite element error analysis of a discontinuous Galerkin method for the Kelvin-Voigt viscoelastic fluid model. (English) Zbl 07644012 Comput. Math. Appl. 130, 69-97 (2023). MSC: 76M10 76D05 65M60 65M15 65N30 PDF BibTeX XML Cite \textit{S. Bajpai} et al., Comput. Math. Appl. 130, 69--97 (2023; Zbl 07644012) Full Text: DOI
Xie, Chun-Mei; Feng, Min-Fu; Wei, Hua-Yi An \(H^1\) weak Galerkin mixed finite element method for Sobolev equation. (English) Zbl 1502.65150 J. Comput. Appl. Math. 423, Article ID 114979, 17 p. (2023). MSC: 65M60 65M15 PDF BibTeX XML Cite \textit{C.-M. Xie} et al., J. Comput. Appl. Math. 423, Article ID 114979, 17 p. (2023; Zbl 1502.65150) Full Text: DOI
Lin, Xiuxiu; Chen, Yanping; Huang, Yunqing A priori and a posteriori error analysis of hp spectral element discretization for optimal control problems with elliptic equations. (English) Zbl 1505.49007 J. Comput. Appl. Math. 423, Article ID 114960, 15 p. (2023). MSC: 49J20 65K10 65N35 PDF BibTeX XML Cite \textit{X. Lin} et al., J. Comput. Appl. Math. 423, Article ID 114960, 15 p. (2023; Zbl 1505.49007) Full Text: DOI
Beltrán-Larrotta, Carlos M.; Rueda-Gómez, Diego A.; Villamizar-Roa, Élder J. On a chemotaxis-Navier-Stokes system with Lotka-Volterra competitive kinetics: theoretical and numerical analysis. (English) Zbl 1503.35235 Appl. Numer. Math. 184, 77-100 (2023). MSC: 35Q92 35Q30 92C17 92D25 92E20 76D05 35D30 35D35 35B65 65M60 65M06 65N30 65M12 65M15 92-08 PDF BibTeX XML Cite \textit{C. M. Beltrán-Larrotta} et al., Appl. Numer. Math. 184, 77--100 (2023; Zbl 1503.35235) Full Text: DOI
Yang, Yun-Bo; Jiang, Yao-Lin Optimal error estimates of a lowest-order Galerkin-mixed FEM for the thermoviscoelastic Joule heating equations. (English) Zbl 1500.65075 Appl. Numer. Math. 183, 86-107 (2023). MSC: 65M60 65M06 65N30 65M15 80A19 78A55 74F05 74B10 74D05 35Q79 PDF BibTeX XML Cite \textit{Y.-B. Yang} and \textit{Y.-L. Jiang}, Appl. Numer. Math. 183, 86--107 (2023; Zbl 1500.65075) Full Text: DOI
Ling, Dan; Shu, Chi-Wang; Yan, Wenjing Local discontinuous Galerkin methods for diffusive-viscous wave equations. (English) Zbl 1502.65131 J. Comput. Appl. Math. 419, Article ID 114690, 26 p. (2023). MSC: 65M60 65L06 65N30 65M12 65M15 74F10 86A15 86-08 35Q86 PDF BibTeX XML Cite \textit{D. Ling} et al., J. Comput. Appl. Math. 419, Article ID 114690, 26 p. (2023; Zbl 1502.65131) Full Text: DOI
Chung, Matthias; Krueger, Justin; Liu, Honghu Least-squares finite element method for ordinary differential equations. (English) Zbl 1502.65048 J. Comput. Appl. Math. 418, Article ID 114660, 21 p. (2023). MSC: 65L60 65L05 65L20 PDF BibTeX XML Cite \textit{M. Chung} et al., J. Comput. Appl. Math. 418, Article ID 114660, 21 p. (2023; Zbl 1502.65048) Full Text: DOI arXiv
Gong, Wei; Mateos, Mariano; Singler, John; Zhang, Yangwen Analysis and approximations of Dirichlet boundary control of Stokes flows in the energy space. (English) Zbl 07714598 SIAM J. Numer. Anal. 60, No. 1, 450-474 (2022). MSC: 49J20 65N30 49K40 PDF BibTeX XML Cite \textit{W. Gong} et al., SIAM J. Numer. Anal. 60, No. 1, 450--474 (2022; Zbl 07714598) Full Text: DOI arXiv
Mardal, Kent-Andre; Sogn, Jarle; Takacs, Stefan Robust preconditioning and error estimates for optimal control of the convection-diffusion-reaction equation with limited observation in isogeometric analysis. (English) Zbl 07714589 SIAM J. Numer. Anal. 60, No. 1, 195-221 (2022). MSC: 49K20 65F08 65N22 65N15 35K57 49K40 PDF BibTeX XML Cite \textit{K.-A. Mardal} et al., SIAM J. Numer. Anal. 60, No. 1, 195--221 (2022; Zbl 07714589) Full Text: DOI arXiv
Langer, Ulrich; Schafelner, Andreas Adaptive space-time finite element methods for parabolic optimal control problems. (English) Zbl 07632528 J. Numer. Math. 30, No. 4, 247-266 (2022). MSC: 65Mxx PDF BibTeX XML Cite \textit{U. Langer} and \textit{A. Schafelner}, J. Numer. Math. 30, No. 4, 247--266 (2022; Zbl 07632528) Full Text: DOI
Saluzzi, Luca; Alla, Alessandro; Falcone, Maurizio Error estimates for a tree structure algorithm solving finite horizon control problems. (English) Zbl 1503.49025 ESAIM, Control Optim. Calc. Var. 28, Paper No. 69, 25 p. (2022). MSC: 49L20 49J15 49J20 93B52 35F21 90C39 35D40 PDF BibTeX XML Cite \textit{L. Saluzzi} et al., ESAIM, Control Optim. Calc. Var. 28, Paper No. 69, 25 p. (2022; Zbl 1503.49025) Full Text: DOI arXiv
Shi, Dongyang; Zhang, Houchao Unconditional optimal error estimates and superconvergence analysis of energy-preserving FEM for general nonlinear Schrödinger equation with wave operator. (English) Zbl 1504.65213 Comput. Math. Appl. 128, 79-95 (2022). MSC: 65M60 35Q55 65M15 PDF BibTeX XML Cite \textit{D. Shi} and \textit{H. Zhang}, Comput. Math. Appl. 128, 79--95 (2022; Zbl 1504.65213) Full Text: DOI
Jana, Puspendu; Kumar, Naresh; Deka, Bhupen A systematic study on weak Galerkin finite-element method for second-order wave equation. (English) Zbl 1513.65364 Comput. Appl. Math. 41, No. 8, Paper No. 359, 25 p. (2022). MSC: 65M60 65M15 65L05 65N30 PDF BibTeX XML Cite \textit{P. Jana} et al., Comput. Appl. Math. 41, No. 8, Paper No. 359, 25 p. (2022; Zbl 1513.65364) Full Text: DOI
Danumjaya, P.; Balaje, K. Discontinuous Galerkin finite element methods for one-dimensional Rosenau equation. (English) Zbl 1497.65169 J. Anal. 30, No. 4, 1407-1426 (2022). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{P. Danumjaya} and \textit{K. Balaje}, J. Anal. 30, No. 4, 1407--1426 (2022; Zbl 1497.65169) Full Text: DOI arXiv
Li, Xu; Rui, Hongxing A low-order divergence-free \(H(\mathrm{div})\)-conforming finite element method for Stokes flows. (English) Zbl 1502.65210 IMA J. Numer. Anal. 42, No. 4, 3711-3734 (2022). MSC: 65N30 65N15 76D07 76M10 35Q35 PDF BibTeX XML Cite \textit{X. Li} and \textit{H. Rui}, IMA J. Numer. Anal. 42, No. 4, 3711--3734 (2022; Zbl 1502.65210) Full Text: DOI arXiv
Bir, Bikram; Goswami, Deepjyoti; Pani, Amiya K. Backward Euler method for the equations of motion arising in Oldroyd model of order one with nonsmooth initial data. (English) Zbl 1502.65114 IMA J. Numer. Anal. 42, No. 4, 3529-3570 (2022). MSC: 65M60 65M06 65N30 65M15 76A10 35Q35 PDF BibTeX XML Cite \textit{B. Bir} et al., IMA J. Numer. Anal. 42, No. 4, 3529--3570 (2022; Zbl 1502.65114) Full Text: DOI arXiv
Tao, Zhen-Zhen; Sun, Bing Galerkin spectral method for elliptic optimal control problem with \(L^2\)-norm control constraint. (English) Zbl 1500.49012 Discrete Contin. Dyn. Syst., Ser. B 27, No. 8, 4121-4141 (2022). MSC: 49K20 49M41 65M60 65N35 PDF BibTeX XML Cite \textit{Z.-Z. Tao} and \textit{B. Sun}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 8, 4121--4141 (2022; Zbl 1500.49012) Full Text: DOI
Tang, Yuelong; Hua, Yuchun A posteriori error estimates of characteristic mixed finite elements for convection-diffusion control problems. (English) Zbl 1500.65070 Open Math. 20, 629-645 (2022). MSC: 65M60 65M06 65N30 65K10 65M15 49J20 49M41 76R50 PDF BibTeX XML Cite \textit{Y. Tang} and \textit{Y. Hua}, Open Math. 20, 629--645 (2022; Zbl 1500.65070) Full Text: DOI
Chowdhury, Sudipto; Dond, Asha K.; Nataraj, Neela; Shylaja, Devika A posteriori error analysis for a distributed optimal control problem governed by the von Kármán equations. (English) Zbl 1501.65108 ESAIM, Math. Model. Numer. Anal. 56, No. 5, 1655-1686 (2022). MSC: 65N30 65N15 49M05 49M25 49M41 74K20 31A30 35Q74 PDF BibTeX XML Cite \textit{S. Chowdhury} et al., ESAIM, Math. Model. Numer. Anal. 56, No. 5, 1655--1686 (2022; Zbl 1501.65108) Full Text: DOI arXiv
Mei, Yanhua; An, Rong Error estimates of second-order BDF Galerkin finite element methods for a coupled nonlinear Schrödinger system. (English) Zbl 07585772 Comput. Math. Appl. 122, 117-125 (2022). MSC: 65M60 35Q55 65M12 65M06 65M15 PDF BibTeX XML Cite \textit{Y. Mei} and \textit{R. An}, Comput. Math. Appl. 122, 117--125 (2022; Zbl 07585772) Full Text: DOI
Jiao, Mengjiao; Jiang, Yan; Shu, Chi-Wang; Zhang, Mengping Optimal error estimates to smooth solutions of the central discontinuous Galerkin methods for nonlinear scalar conservation laws. (English) Zbl 1497.65174 ESAIM, Math. Model. Numer. Anal. 56, No. 4, 1401-1435 (2022). MSC: 65M60 65M12 65M15 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{M. Jiao} et al., ESAIM, Math. Model. Numer. Anal. 56, No. 4, 1401--1435 (2022; Zbl 1497.65174) Full Text: DOI
Wang, Wansheng; Yi, Lijun Delay-dependent elliptic reconstruction and optimal \(L^\infty (L^2)\) a posteriori error estimates for fully discrete delay parabolic problems. (English) Zbl 1506.65141 Math. Comput. 91, No. 338, 2609-2643 (2022). Reviewer: Abdullah Erdoğan (Lake Worth) MSC: 65M12 65M15 65L06 65M60 65M06 65N30 65M32 35R07 PDF BibTeX XML Cite \textit{W. Wang} and \textit{L. Yi}, Math. Comput. 91, No. 338, 2609--2643 (2022; Zbl 1506.65141) Full Text: DOI
Chu, Xiaochen; Chen, Chuanjun; Zhang, Tong Stability and convergence of spatial discrete stabilized finite volume method for the unsteady incompressible magnetohydrodynamics equations. (English) Zbl 1502.65086 Appl. Numer. Math. 181, 436-467 (2022). MSC: 65M08 65M06 65N08 65M12 65M15 76W05 76M12 35Q35 PDF BibTeX XML Cite \textit{X. Chu} et al., Appl. Numer. Math. 181, 436--467 (2022; Zbl 1502.65086) Full Text: DOI
Yang, Huaijun; Shi, Dongyang Optimal error estimates of Galerkin method for a nonlinear parabolic integro-differential equation. (English) Zbl 1502.65151 Appl. Numer. Math. 181, 403-416 (2022). MSC: 65M60 65M06 65N30 65M15 65M12 35R09 45K05 78A25 78M10 PDF BibTeX XML Cite \textit{H. Yang} and \textit{D. Shi}, Appl. Numer. Math. 181, 403--416 (2022; Zbl 1502.65151) Full Text: DOI
Casas, Eduardo; Kunisch, Karl; Tröltzsch, Fredi Optimal control of PDEs and FE-approximation. (English) Zbl 1495.49004 Trélat, Emmanuel (ed.) et al., Numerical control. Part A. Amsterdam: Elsevier/North Holland. Handb. Numer. Anal. 23, 115-163 (2022). MSC: 49J20 65K10 65M60 49M41 49K20 49M25 PDF BibTeX XML Cite \textit{E. Casas} et al., Handb. Numer. Anal. 23, 115--163 (2022; Zbl 1495.49004) Full Text: Link
Mahata, Shantiram; Sinha, Rajen Kumar Nonsmooth data optimal error estimates by energy arguments for subdiffusion equations with memory. (English) Zbl 07572766 Adv. Comput. Math. 48, No. 4, Paper No. 51, 21 p. (2022). MSC: 65-XX 35R09 35R11 65M15 65M60 PDF BibTeX XML Cite \textit{S. Mahata} and \textit{R. K. Sinha}, Adv. Comput. Math. 48, No. 4, Paper No. 51, 21 p. (2022; Zbl 07572766) Full Text: DOI
Liu, Ying; Guan, Zhen; Nie, Yufeng Unconditionally optimal error estimates of a linearized weak Galerkin finite element method for semilinear parabolic equations. (English) Zbl 1492.65321 Adv. Comput. Math. 48, No. 4, Paper No. 47, 22 p. (2022). MSC: 65N30 65N15 65N50 PDF BibTeX XML Cite \textit{Y. Liu} et al., Adv. Comput. Math. 48, No. 4, Paper No. 47, 22 p. (2022; Zbl 1492.65321) Full Text: DOI
Dong, Lixiu; Wang, Cheng; Wise, Steven M.; Zhang, Zhengru Optimal rate convergence analysis of a numerical scheme for the ternary Cahn-Hilliard system with a Flory-Huggins-deGennes energy potential. (English) Zbl 1503.65168 J. Comput. Appl. Math. 415, Article ID 114474, 18 p. (2022). MSC: 65M06 35K35 65M12 65M15 PDF BibTeX XML Cite \textit{L. Dong} et al., J. Comput. Appl. Math. 415, Article ID 114474, 18 p. (2022; Zbl 1503.65168) Full Text: DOI
Bause, Markus; Lymbery, Maria; Osthues, Kevin \(C^1\)-conforming variational discretization of the biharmonic wave equation. (English) Zbl 07566251 Comput. Math. Appl. 119, 208-219 (2022). MSC: 65N30 65M60 65M12 65M15 65N12 PDF BibTeX XML Cite \textit{M. Bause} et al., Comput. Math. Appl. 119, 208--219 (2022; Zbl 07566251) Full Text: DOI arXiv
An, Rong; Sun, Weiwei Analysis of backward Euler projection FEM for the Landau-Lifshitz equation. (English) Zbl 1502.65108 IMA J. Numer. Anal. 42, No. 3, 2336-2360 (2022). MSC: 65M60 65M06 65N30 65M15 78A55 82D40 35Q60 PDF BibTeX XML Cite \textit{R. An} and \textit{W. Sun}, IMA J. Numer. Anal. 42, No. 3, 2336--2360 (2022; Zbl 1502.65108) Full Text: DOI
Liu, Shuaijun; Huang, Pengzhan; He, Yinnian An optimal error estimate of the BDF-Galerkin FEM for the incompressible MHD system. (English) Zbl 1493.65156 J. Math. Anal. Appl. 515, No. 2, Article ID 126460, 30 p. (2022). MSC: 65M60 65M06 65N30 65M12 65M15 76W05 76M10 76M20 35Q35 PDF BibTeX XML Cite \textit{S. Liu} et al., J. Math. Anal. Appl. 515, No. 2, Article ID 126460, 30 p. (2022; Zbl 1493.65156) Full Text: DOI
Hou, Tianliang; Liu, Chunmei; Dai, Chunlei; Chen, Luoping; Yang, Yin Two-grid algorithm of \(H^1\)-Galerkin mixed finite element methods for semilinear parabolic integro-differential equations. (English) Zbl 1513.49011 J. Comput. Math. 40, No. 5, 671-689 (2022). MSC: 49J20 65N30 47G20 35R09 PDF BibTeX XML Cite \textit{T. Hou} et al., J. Comput. Math. 40, No. 5, 671--689 (2022; Zbl 1513.49011) Full Text: DOI
Fuica, Francisco; Otárola, Enrique A posteriori error estimates for an optimal control problem with a bilinear state equation. (English) Zbl 1493.49032 J. Optim. Theory Appl. 194, No. 2, 543-569 (2022). MSC: 49M25 49J20 49J10 65N15 65N30 65N50 PDF BibTeX XML Cite \textit{F. Fuica} and \textit{E. Otárola}, J. Optim. Theory Appl. 194, No. 2, 543--569 (2022; Zbl 1493.49032) Full Text: DOI arXiv
Allendes, Alejandro; Fuica, Francisco; Otárola, Enrique Error estimates for a pointwise tracking optimal control problem of a semilinear elliptic equation. (English) Zbl 1491.35196 SIAM J. Control Optim. 60, No. 3, 1763-1790 (2022). MSC: 35J61 35R06 49J20 65N15 65N30 PDF BibTeX XML Cite \textit{A. Allendes} et al., SIAM J. Control Optim. 60, No. 3, 1763--1790 (2022; Zbl 1491.35196) Full Text: DOI arXiv
Wang, Wansheng; Mao, Mengli; Huang, Yi Optimal a posteriori estimators for the variable step-size BDF2 method for linear parabolic equations. (English) Zbl 1489.65131 J. Comput. Appl. Math. 413, Article ID 114306, 21 p. (2022). MSC: 65M20 65L06 65L70 65M15 65M50 PDF BibTeX XML Cite \textit{W. Wang} et al., J. Comput. Appl. Math. 413, Article ID 114306, 21 p. (2022; Zbl 1489.65131) Full Text: DOI
Chen, Yanping; Lin, Xiuxiu; Huang, Yunqing Error analysis of spectral approximation for space-time fractional optimal control problems with control and state constraints. (English) Zbl 07542678 J. Comput. Appl. Math. 413, Article ID 114293, 15 p. (2022). MSC: 49M25 35R11 49J20 26A33 65M15 PDF BibTeX XML Cite \textit{Y. Chen} et al., J. Comput. Appl. Math. 413, Article ID 114293, 15 p. (2022; Zbl 07542678) Full Text: DOI
Mishra, Soumyarani; Pany, Ambit K. Completely discrete schemes for 2D Sobolev equations with Burgers’ type nonlinearity. (English) Zbl 07540325 Numer. Algorithms 90, No. 3, 963-987 (2022). MSC: 65Mxx PDF BibTeX XML Cite \textit{S. Mishra} and \textit{A. K. Pany}, Numer. Algorithms 90, No. 3, 963--987 (2022; Zbl 07540325) Full Text: DOI
Xu, Chao; Pei, Lifang Unconditional optimal error estimates of a modified finite element fully discrete scheme for the complex Ginzburg-Landau equation. (English) Zbl 07537410 Comput. Math. Appl. 115, 1-13 (2022). MSC: 65M60 65M12 65M06 35Q56 65M15 PDF BibTeX XML Cite \textit{C. Xu} and \textit{L. Pei}, Comput. Math. Appl. 115, 1--13 (2022; Zbl 07537410) Full Text: DOI
Gbéya, Samuel; Houédanou, Koffi Wilfrid; Nyaga, Lewis; Ahounou, Bernardin Residual-based a posteriori error estimates for the \(hp\) version of the finite element discretization of the elliptic Robin boundary control problem. (English) Zbl 1490.65272 Results Appl. Math. 14, Article ID 100278, 25 p. (2022). MSC: 65N30 65N35 65N50 65N15 65K10 49K20 35J25 35B45 PDF BibTeX XML Cite \textit{S. Gbéya} et al., Results Appl. Math. 14, Article ID 100278, 25 p. (2022; Zbl 1490.65272) Full Text: DOI
Manohar, Ram; Sinha, Rajen Kumar Elliptic reconstruction and a posteriori error estimates for fully discrete semilinear parabolic optimal control problems. (English) Zbl 1499.49020 J. Comput. Math. 40, No. 2, 147-176 (2022). MSC: 49J20 65J15 65N30 PDF BibTeX XML Cite \textit{R. Manohar} and \textit{R. K. Sinha}, J. Comput. Math. 40, No. 2, 147--176 (2022; Zbl 1499.49020) Full Text: DOI
Yang, Huaijun; Shi, Dongyang Unconditionally optimal error estimates of the bilinear-constant scheme for time-dependent Navier-Stokes equations. (English) Zbl 1499.65543 J. Comput. Math. 40, No. 1, 127-146 (2022). MSC: 65M60 65M06 65N30 65M12 65M15 76D05 PDF BibTeX XML Cite \textit{H. Yang} and \textit{D. Shi}, J. Comput. Math. 40, No. 1, 127--146 (2022; Zbl 1499.65543) Full Text: DOI
Aretaki, Aikaterini; Karatzas, Efthymios N. Random geometries for optimal control PDE problems based on fictitious domain FEMs and cut elements. (English) Zbl 1493.65187 J. Comput. Appl. Math. 412, Article ID 114286, 19 p. (2022). MSC: 65N30 65C05 65N55 65F08 65F10 65F50 65N15 49M41 60H30 35R11 PDF BibTeX XML Cite \textit{A. Aretaki} and \textit{E. N. Karatzas}, J. Comput. Appl. Math. 412, Article ID 114286, 19 p. (2022; Zbl 1493.65187) Full Text: DOI arXiv
Li, Xindong; Xu, Wenwen; Liu, Wei Unconditional stability and optimal error analysis of mass conservative characteristic mixed FEM for wormhole propagation. (English) Zbl 1510.76165 Appl. Math. Comput. 427, Article ID 127174, 20 p. (2022). MSC: 76S05 65M12 35M30 65M15 65M60 PDF BibTeX XML Cite \textit{X. Li} et al., Appl. Math. Comput. 427, Article ID 127174, 20 p. (2022; Zbl 1510.76165) Full Text: DOI
Ern, Alexandre; Gudi, Thirupathi; Smears, Iain; Vohralík, Martin Equivalence of local- and global-best approximations, a simple stable local commuting projector, and optimal \(hp\) approximation estimates in \(\boldsymbol{H}(\operatorname{div})\). (English) Zbl 1517.65108 IMA J. Numer. Anal. 42, No. 2, 1023-1049 (2022). MSC: 65N30 65N50 65N15 65N12 35B65 35B45 PDF BibTeX XML Cite \textit{A. Ern} et al., IMA J. Numer. Anal. 42, No. 2, 1023--1049 (2022; Zbl 1517.65108) Full Text: DOI arXiv
Pérez-López, Jhean E.; Rueda-Gómez, Diego A.; Villamizar-Roa, Élder J. Numerical analysis of a chemotaxis model for tumor invasion. (English) Zbl 1492.35376 Adv. Comput. Math. 48, No. 3, Paper No. 26, 28 p. (2022). MSC: 35Q92 92C17 92C50 92C15 35B09 35B36 65M60 65M22 65N30 65M15 65M12 92-08 PDF BibTeX XML Cite \textit{J. E. Pérez-López} et al., Adv. Comput. Math. 48, No. 3, Paper No. 26, 28 p. (2022; Zbl 1492.35376) Full Text: DOI
Gantner, Gregor; Praetorius, Dirk Adaptive BEM for elliptic PDE systems. I: Abstract framework, for weakly-singular integral equations. (English) Zbl 1490.65248 Appl. Anal. 101, No. 6, 2085-2118 (2022). MSC: 65N15 45P05 65N30 65N38 65N50 65R20 PDF BibTeX XML Cite \textit{G. Gantner} and \textit{D. Praetorius}, Appl. Anal. 101, No. 6, 2085--2118 (2022; Zbl 1490.65248) Full Text: DOI arXiv
Bir, Bikram; Goswami, Deepjyoti; Pani, Amiya K. Finite element penalty method for the Oldroyd model of order one with non-smooth initial data. (English) Zbl 1485.65101 Comput. Methods Appl. Math. 22, No. 2, 297-325 (2022). MSC: 65M60 65M15 35Q35 PDF BibTeX XML Cite \textit{B. Bir} et al., Comput. Methods Appl. Math. 22, No. 2, 297--325 (2022; Zbl 1485.65101) Full Text: DOI
Hirn, Adrian; Wollner, Winnifried An optimal control problem for equations with p-structure and its finite element discretization. (English) Zbl 1487.49025 Herzog, Roland (ed.) et al., Optimization and control for partial differential equations. Uncertainty quantification, open and closed-loop control, and shape optimization. Berlin: De Gruyter. Radon Ser. Comput. Appl. Math. 29, 137-165 (2022). MSC: 49K20 49M25 65N30 65N12 PDF BibTeX XML Cite \textit{A. Hirn} and \textit{W. Wollner}, Radon Ser. Comput. Appl. Math. 29, 137--165 (2022; Zbl 1487.49025) Full Text: DOI
Du, Shaohong; Cai, Zhiqiang A finite element method for Dirichlet boundary control of elliptic partial differential equations. (English) Zbl 1486.49032 Commun. Math. Sci. 20, No. 4, 1081-1102 (2022). MSC: 49K20 49M25 65K10 65N21 65N30 PDF BibTeX XML Cite \textit{S. Du} and \textit{Z. Cai}, Commun. Math. Sci. 20, No. 4, 1081--1102 (2022; Zbl 1486.49032) Full Text: DOI
Liu, Wenjie; Wu, Boying Unconditional stability and optimal error estimates of a Crank-Nicolson Legendre-Galerkin method for the two-dimensional second-order wave equation. (English) Zbl 07512658 Numer. Algorithms 90, No. 1, 137-158 (2022). MSC: 65Mxx PDF BibTeX XML Cite \textit{W. Liu} and \textit{B. Wu}, Numer. Algorithms 90, No. 1, 137--158 (2022; Zbl 07512658) Full Text: DOI
Zhang, Hongjuan; Wu, Boying; Meng, Xiong A local discontinuous Galerkin method with generalized alternating fluxes for 2D nonlinear Schrödinger equations. (English) Zbl 1499.65545 Commun. Appl. Math. Comput. 4, No. 1, 84-107 (2022). MSC: 65M60 65L06 65N30 65M12 65M15 35Q55 35Q41 PDF BibTeX XML Cite \textit{H. Zhang} et al., Commun. Appl. Math. Comput. 4, No. 1, 84--107 (2022; Zbl 1499.65545) Full Text: DOI
Ge, Liang; Sun, Tongjun An adaptive hp-version stochastic Galerkin method for constrained optimal control problem governed by random reaction diffusion equations. (English) Zbl 1499.65661 Comput. Appl. Math. 41, No. 3, Paper No. 104, 30 p. (2022). MSC: 65N30 65N15 65N50 65C20 65N75 60H30 49M41 49J55 PDF BibTeX XML Cite \textit{L. Ge} and \textit{T. Sun}, Comput. Appl. Math. 41, No. 3, Paper No. 104, 30 p. (2022; Zbl 1499.65661) Full Text: DOI
Tushar, Jai; Kumar, Anil; Kumar, Sarvesh Variational and virtual discretizations of optimal control problems governed by diffusion problems. (English) Zbl 1486.49042 Appl. Math. Optim. 85, No. 2, Paper No. 2, 36 p. (2022). MSC: 49M25 PDF BibTeX XML Cite \textit{J. Tushar} et al., Appl. Math. Optim. 85, No. 2, Paper No. 2, 36 p. (2022; Zbl 1486.49042) Full Text: DOI
Manohar, Ram; Sinha, Rajen Kumar Local a posteriori error estimates for boundary control problems governed by nonlinear parabolic equations. (English) Zbl 1503.49029 J. Comput. Appl. Math. 409, Article ID 114146, 29 p. (2022). MSC: 49M41 35K57 49M25 65M15 65M60 PDF BibTeX XML Cite \textit{R. Manohar} and \textit{R. K. Sinha}, J. Comput. Appl. Math. 409, Article ID 114146, 29 p. (2022; Zbl 1503.49029) Full Text: DOI
Gong, Wei; Tan, Zhiyu; Zhou, Zhaojie Optimal convergence of finite element approximation to an optimization problem with PDE constraint. (English) Zbl 1493.65202 Inverse Probl. 38, No. 4, Article ID 045004, 45 p. (2022). MSC: 65N30 49M41 65N12 65N21 65J20 35B45 35B65 35J15 PDF BibTeX XML Cite \textit{W. Gong} et al., Inverse Probl. 38, No. 4, Article ID 045004, 45 p. (2022; Zbl 1493.65202) Full Text: DOI
Langer, Ulrich; Steinbach, Olaf; Yang, Huidong Robust discretization and solvers for elliptic optimal control problems with energy regularization. (English) Zbl 1484.49048 Comput. Methods Appl. Math. 22, No. 1, 97-111 (2022). MSC: 49K20 49M41 35J25 65N12 65N30 65N55 PDF BibTeX XML Cite \textit{U. Langer} et al., Comput. Methods Appl. Math. 22, No. 1, 97--111 (2022; Zbl 1484.49048) Full Text: DOI arXiv
Ahmed, Tazuddin; Dutta, Jogen Finite element method for hyperbolic heat conduction model with discontinuous coefficients in one dimension. (English) Zbl 1490.65188 Proc. Indian Acad. Sci., Math. Sci. 132, No. 1, Paper No. 6, 21 p. (2022). MSC: 65M60 65M12 65M15 78M30 PDF BibTeX XML Cite \textit{T. Ahmed} and \textit{J. Dutta}, Proc. Indian Acad. Sci., Math. Sci. 132, No. 1, Paper No. 6, 21 p. (2022; Zbl 1490.65188) Full Text: DOI