Brenner, Susanne C.; Sung, Li-yeng; Zhang, Yi \(C^0\) interior penalty methods for an elliptic state-constrained optimal control problem with Neumann boundary condition. (English) Zbl 07006472 J. Comput. Appl. Math. 350, 212-232 (2019). MSC: 65K15 65N30 PDF BibTeX XML Cite \textit{S. C. Brenner} et al., J. Comput. Appl. Math. 350, 212--232 (2019; Zbl 07006472) Full Text: DOI
Brenner, Susanne C.; Gudi, Thirupathi; Porwal, Kamana; Sung, Li-Yeng A Morley finite element method for an elliptic distributed optimal control problem with pointwise state and control constraints. (English) Zbl 1412.49025 ESAIM, Control Optim. Calc. Var. 24, No. 3, 1181-1206 (2018). Reviewer: Costică Moroşanu (Iaşi) MSC: 49J40 65K15 65N30 49M25 PDF BibTeX XML Cite \textit{S. C. Brenner} et al., ESAIM, Control Optim. Calc. Var. 24, No. 3, 1181--1206 (2018; Zbl 1412.49025) Full Text: DOI
Schütz, Lineia; Ziebell, Juliana S.; Zingano, Janaína P.; Zingano, Paulo R. Sharp pointwise estimates for functions in the Sobolev spaces \(H^s(\mathbb R^n)\). (English) Zbl 1357.46033 Adv. Differ. Equ. Control Process. 16, No. 1, 45-53 (2015). MSC: 46E35 35A23 26D10 PDF BibTeX XML Cite \textit{L. Schütz} et al., Adv. Differ. Equ. Control Process. 16, No. 1, 45--53 (2015; Zbl 1357.46033) Full Text: DOI Link
Brenner, S. C.; Sung, L.-Y.; Zhang, Y. A quadratic \(C^0\) interior penalty method for an elliptic optimal control problem with state constraints. (English) Zbl 1282.65074 Feng, Xiaobing (ed.) et al., Recent developments in discontinuous Galerkin finite element methods for partial differential equations. Papers based on the 2012 John H. Barrett memorial lectures, Knoxville, TN, USA, May 9–11, 2012. Cham: Springer (ISBN 978-3-319-01817-1/hbk; 978-3-319-01818-8/ebook). The IMA Volumes in Mathematics and its Applications 157, 97-132 (2014). MSC: 65K10 65K15 49J20 49J40 49M25 PDF BibTeX XML Cite \textit{S. C. Brenner} et al., IMA Vol. Math. Appl. 157, 97--132 (2014; Zbl 1282.65074) Full Text: DOI
Kanar Seymen, Z.; Yücel, H.; Karasözen, B. Distributed optimal control of time-dependent diffusion-convection-reaction equations using space-time discretization. (English) Zbl 1278.49036 J. Comput. Appl. Math. 261, 146-157 (2014). MSC: 49M25 35K57 PDF BibTeX XML Cite \textit{Z. Kanar Seymen} et al., J. Comput. Appl. Math. 261, 146--157 (2014; Zbl 1278.49036) Full Text: DOI
Lorenz, Dirk A.; Rösch, Arnd Error estimates for joint Tikhonov and Lavrentiev regularization of constrained control problems. (English) Zbl 1203.49027 Appl. Anal. 89, No. 11, 1679-1691 (2010). MSC: 49K20 49K40 49N45 PDF BibTeX XML Cite \textit{D. A. Lorenz} and \textit{A. Rösch}, Appl. Anal. 89, No. 11, 1679--1691 (2010; Zbl 1203.49027) Full Text: DOI arXiv
Fu, Hongfei A characteristic finite element method for optimal control problems governed by convection-diffusion equations. (English) Zbl 1251.65093 J. Comput. Appl. Math. 235, No. 3, 825-836 (2010). MSC: 65K10 49J20 49M25 PDF BibTeX XML Cite \textit{H. Fu}, J. Comput. Appl. Math. 235, No. 3, 825--836 (2010; Zbl 1251.65093) Full Text: DOI
Meidner, Dominik; Vexler, Boris A priori error estimates for space-time finite element discretization of parabolic optimal control problems. II: Problems with control constraints. (English) Zbl 1161.49035 SIAM J. Control Optim. 47, No. 3, 1301-1329 (2008). MSC: 49N10 49M25 65M15 65M60 PDF BibTeX XML Cite \textit{D. Meidner} and \textit{B. Vexler}, SIAM J. Control Optim. 47, No. 3, 1301--1329 (2008; Zbl 1161.49035) Full Text: DOI
Vexler, B.; Wollner, W. Adaptive finite elements for elliptic optimization problems with control constraints. (English) Zbl 1169.65068 SIAM J. Control Optim. 47, No. 1, 509-534 (2008). Reviewer: Dinh Nho Hao (Hanoi) MSC: 65K10 49M15 PDF BibTeX XML Cite \textit{B. Vexler} and \textit{W. Wollner}, SIAM J. Control Optim. 47, No. 1, 509--534 (2008; Zbl 1169.65068) Full Text: DOI
Becker, Roland; Vexler, Boris Optimal control of the convection-diffusion equation using stabilized finite element methods. (English) Zbl 1133.65037 Numer. Math. 106, No. 3, 349-367 (2007). Reviewer: Viorel Arnăutu (Iaşi) MSC: 65K10 49J20 49M15 PDF BibTeX XML Cite \textit{R. Becker} and \textit{B. Vexler}, Numer. Math. 106, No. 3, 349--367 (2007; Zbl 1133.65037) Full Text: DOI