Baklouti, Ali; Fujiwara, Hidenori; Ludwig, Jean A proof of the polynomial conjecture for nilpotent Lie groups monomial representations. (English) Zbl 07731979 Trans. Am. Math. Soc. 376, No. 9, 6015-6032 (2023). MSC: 22E27 43A85 PDF BibTeX XML Cite \textit{A. Baklouti} et al., Trans. Am. Math. Soc. 376, No. 9, 6015--6032 (2023; Zbl 07731979) Full Text: DOI
Sarenhu Indices of some meromorphic functions of degree \(3\) on tori. (English) Zbl 07713969 Tokyo J. Math. 46, No. 1, 231-253 (2023). MSC: 22E27 PDF BibTeX XML Cite \textit{Sarenhu}, Tokyo J. Math. 46, No. 1, 231--253 (2023; Zbl 07713969) Full Text: DOI arXiv Link
Chen, Zongbin Truncated affine Springer fibers and Arthur’s weighted orbital integrals. (English) Zbl 07708868 J. Inst. Math. Jussieu 22, No. 4, 1757-1818 (2023). MSC: 22E67 14M15 11F85 PDF BibTeX XML Cite \textit{Z. Chen}, J. Inst. Math. Jussieu 22, No. 4, 1757--1818 (2023; Zbl 07708868) Full Text: DOI arXiv
Aib, Aziza; Bensalem, Naceurdine Optimal control problem governed by an infinite dimensional two-nilpotent bilinear system. (Optimal control problem governed by an infinite dimensional two-nilpotent bilinear systems.) (English) Zbl 07704119 Numer. Algebra Control Optim. 13, No. 2, 314-327 (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 49J21 47A07 22E27 PDF BibTeX XML Cite \textit{A. Aib} and \textit{N. Bensalem}, Numer. Algebra Control Optim. 13, No. 2, 314--327 (2023; Zbl 07704119) Full Text: DOI
Song, Yanli; Tang, Xiang Cartan motion group and orbital integrals. (English) Zbl 07675044 Connes, A. (ed.) et al., Cyclic cohomology at 40. Achievements and future prospects. Proceedings of the conference, virtual, Toronto, ON, Canada, September 27 – October 1, 2021. Providence, RI: American Mathematical Society (AMS). Proc. Symp. Pure Math. 105, 477-489 (2023). MSC: 43A80 58B34 PDF BibTeX XML Cite \textit{Y. Song} and \textit{X. Tang}, Proc. Symp. Pure Math. 105, 477--489 (2023; Zbl 07675044) Full Text: DOI arXiv
Piazza, Paolo; Tang, Xiang Primary and secondary invariants of Dirac operators on \(G\)-proper manifolds. (English) Zbl 07675038 Connes, A. (ed.) et al., Cyclic cohomology at 40. Achievements and future prospects. Proceedings of the conference, virtual, Toronto, ON, Canada, September 27 – October 1, 2021. Providence, RI: American Mathematical Society (AMS). Proc. Symp. Pure Math. 105, 311-351 (2023). Reviewer: Sergiu Moroianu (Bucureşti) MSC: 58J20 58B34 58J22 58J42 19K56 53C27 PDF BibTeX XML Cite \textit{P. Piazza} and \textit{X. Tang}, Proc. Symp. Pure Math. 105, 311--351 (2023; Zbl 07675038) Full Text: DOI arXiv
Beltiţă, Ingrid; Beltiţă, Daniel On stably finiteness for \(C^*\)-algebras of exponential solvable Lie groups. (English) Zbl 07673775 Math. Z. 304, No. 1, Paper No. 2, 36 p. (2023). MSC: 22D25 22E27 PDF BibTeX XML Cite \textit{I. Beltiţă} and \textit{D. Beltiţă}, Math. Z. 304, No. 1, Paper No. 2, 36 p. (2023; Zbl 07673775) Full Text: DOI arXiv
Baklouti, Ali; Bejar, Souhail; Fendri, Ramzi A criterion of proper action on some compact extensions of \(\mathbb{R}^n\) and applications. (English) Zbl 07668717 Int. J. Math. 34, No. 3, Article ID 2350010, 23 p. (2023). MSC: 22E27 22E40 57S30 PDF BibTeX XML Cite \textit{A. Baklouti} et al., Int. J. Math. 34, No. 3, Article ID 2350010, 23 p. (2023; Zbl 07668717) Full Text: DOI
Rahali, Aymen Branching rule and coadjoint orbit for Heisenberg Gelfand pairs. (English) Zbl 07658551 Int. J. Math. 34, No. 2, Article ID 2350004, 11 p. (2023). Reviewer: Le Anh Vu (Ho Chi Minh City) MSC: 22E45 17B08 22D10 22E27 PDF BibTeX XML Cite \textit{A. Rahali}, Int. J. Math. 34, No. 2, Article ID 2350004, 11 p. (2023; Zbl 07658551) Full Text: DOI
Rahali, Aymen; Chenni, Ibtissem Ben; Selmi, Zeineb Orbit method and dual topology for certain Lie groups. (English) Zbl 1506.22011 Banach J. Math. Anal. 17, No. 1, Paper No. 8, 29 p. (2023). MSC: 22E27 22E45 22D10 PDF BibTeX XML Cite \textit{A. Rahali} et al., Banach J. Math. Anal. 17, No. 1, Paper No. 8, 29 p. (2023; Zbl 1506.22011) Full Text: DOI
Alves, Giovana; Natali, Fábio Periodic waves for the cubic-quintic nonlinear Schrödinger equation: existence and orbital stability. (English) Zbl 1501.35359 Discrete Contin. Dyn. Syst., Ser. B 28, No. 2, 854-871 (2023). MSC: 35Q55 35Q41 37K45 37K40 35A01 35B35 35B10 33E05 PDF BibTeX XML Cite \textit{G. Alves} and \textit{F. Natali}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 2, 854--871 (2023; Zbl 1501.35359) Full Text: DOI arXiv
Cahen, Benjamin Berezin correspondence and unitary representations. (English) Zbl 07742217 Yokohama Math. J. 68, 45-67 (2022). MSC: 43A65 46E22 22E46 22E27 PDF BibTeX XML Cite \textit{B. Cahen}, Yokohama Math. J. 68, 45--67 (2022; Zbl 07742217) Full Text: DOI
Uhlířová, T.; Zamastil, J.; Benda, J. Calculation of atomic integrals between relativistic functions by means of algebraic methods. (English) Zbl 07682158 Comput. Phys. Commun. 280, Article ID 108490, 15 p. (2022). MSC: 81P55 81R20 68W30 47A10 81V60 46E30 70M20 PDF BibTeX XML Cite \textit{T. Uhlířová} et al., Comput. Phys. Commun. 280, Article ID 108490, 15 p. (2022; Zbl 07682158) Full Text: DOI
Rottensteiner, David; Ruzhansky, Michael Harmonic and anharmonic oscillators on the Heisenberg group. (English) Zbl 1508.35199 J. Math. Phys. 63, No. 11, Article ID 111509, 23 p. (2022). MSC: 35R03 35P20 22E30 43A80 22E27 PDF BibTeX XML Cite \textit{D. Rottensteiner} and \textit{M. Ruzhansky}, J. Math. Phys. 63, No. 11, Article ID 111509, 23 p. (2022; Zbl 1508.35199) Full Text: DOI arXiv
Kim, Minsung Effective equidistribution for generalized higher-step nilflows. (English) Zbl 1510.37006 Ergodic Theory Dyn. Syst. 42, No. 12, 3656-3715 (2022). Reviewer: Thomas B. Ward (Durham) MSC: 37A17 37A30 37A46 37A25 22E27 PDF BibTeX XML Cite \textit{M. Kim}, Ergodic Theory Dyn. Syst. 42, No. 12, 3656--3715 (2022; Zbl 1510.37006) Full Text: DOI arXiv
Baklouti, Ali; Chaabouni, Mouna; Lahiani, Raza Müntz-Szász theorem for connected nilpotent Lie groups. (English) Zbl 1507.22028 J. Ramanujan Math. Soc. 37, No. 3, 287-300 (2022). Reviewer: Jonathan Rosenberg (College Park) MSC: 22E27 43A80 PDF BibTeX XML Cite \textit{A. Baklouti} et al., J. Ramanujan Math. Soc. 37, No. 3, 287--300 (2022; Zbl 1507.22028) Full Text: Link
van Velthoven, Jordy Timo Integrability properties of quasi-regular representations of \(NA\) groups. (English) Zbl 07600081 C. R., Math., Acad. Sci. Paris 360, 1125-1134 (2022). MSC: 22E15 22E27 43A80 44A35 PDF BibTeX XML Cite \textit{J. T. van Velthoven}, C. R., Math., Acad. Sci. Paris 360, 1125--1134 (2022; Zbl 07600081) Full Text: DOI arXiv
Regeiba, Hedi The \(C^\ast\)-algebra of the variable Mautner group. (English) Zbl 1507.22022 Banach J. Math. Anal. 16, No. 4, Paper No. 65, 16 p. (2022). Reviewer: Takahiro Sudo (Nishihara) MSC: 22D25 22D20 22D30 22E27 46L05 PDF BibTeX XML Cite \textit{H. Regeiba}, Banach J. Math. Anal. 16, No. 4, Paper No. 65, 16 p. (2022; Zbl 1507.22022) Full Text: DOI arXiv
Monod, Nicolas Lie groups as permutation groups: Ulam’s problem in the nilpotent case. (English) Zbl 1510.22004 J. Group Theory 25, No. 5, 851-865 (2022). Reviewer: V. V. Gorbatsevich (Moskva) MSC: 22E25 22E27 20B07 PDF BibTeX XML Cite \textit{N. Monod}, J. Group Theory 25, No. 5, 851--865 (2022; Zbl 1510.22004) Full Text: DOI arXiv
Enstad, Ulrik; van Velthoven, Jordy Timo On sufficient density conditions for lattice orbits of relative discrete series. (English) Zbl 1506.22009 Arch. Math. 119, No. 3, 279-291 (2022). Reviewer: Milan Niestijl (Delft) MSC: 22D25 22E27 42C30 42C40 PDF BibTeX XML Cite \textit{U. Enstad} and \textit{J. T. van Velthoven}, Arch. Math. 119, No. 3, 279--291 (2022; Zbl 1506.22009) Full Text: DOI arXiv
Baklouti, Ali Deformation theory of discontinuous groups. (English) Zbl 07572542 De Gruyter Expositions in Mathematics 72. Berlin: De Gruyter (ISBN 978-3-11-076529-8/hbk; 978-3-11-076530-4/ebook). xiv, 481 p. (2022). MSC: 22-02 22E25 22E27 22E40 32G07 57K10 57S30 81S10 PDF BibTeX XML Cite \textit{A. Baklouti}, Deformation theory of discontinuous groups. Berlin: De Gruyter (2022; Zbl 07572542) Full Text: DOI
Adili, Samir; Baklouti, Ali; Bejar, Souhail Criterion of proper actions of abelian affine discontinuous groups for \(\mathbb{R}^n\). (English) Zbl 1495.22004 Int. J. Math. 33, No. 7, Article ID 2250048, 26 p. (2022). MSC: 22E27 22E40 57S30 PDF BibTeX XML Cite \textit{S. Adili} et al., Int. J. Math. 33, No. 7, Article ID 2250048, 26 p. (2022; Zbl 1495.22004) Full Text: DOI
Slevinsky, Richard M.; Safouhi, Hassan Compact formulae for three-center nuclear attraction integrals over exponential type functions. (English) Zbl 1498.81142 J. Math. Chem. 60, No. 7, 1337-1355 (2022). MSC: 81V55 92E10 22E27 33C10 PDF BibTeX XML Cite \textit{R. M. Slevinsky} and \textit{H. Safouhi}, J. Math. Chem. 60, No. 7, 1337--1355 (2022; Zbl 1498.81142) Full Text: DOI arXiv
van Velthoven, Jordy Timo Completeness of coherent state subsystems for nilpotent Lie groups. (English) Zbl 1497.22008 C. R., Math., Acad. Sci. Paris 360, 799-808 (2022). Reviewer: Laure Gouba (Trieste) MSC: 22E27 22E25 81R30 42C30 PDF BibTeX XML Cite \textit{J. T. van Velthoven}, C. R., Math., Acad. Sci. Paris 360, 799--808 (2022; Zbl 1497.22008) Full Text: DOI arXiv
Baklouti, Ali; Fujiwara, Hidenori; Ludwig, Jean A proof of the polynomial conjecture for restrictions of nilpotent Lie groups representations. (English) Zbl 07553288 Represent. Theory 26, 616-634 (2022). MSC: 22E27 PDF BibTeX XML Cite \textit{A. Baklouti} et al., Represent. Theory 26, 616--634 (2022; Zbl 07553288) Full Text: DOI
Abdelmoula, L.; Bouaziz, Y. Separation of coadjoint orbits of generalized diamond Lie groups. (English. Russian original) Zbl 1494.22008 Math. Notes 111, No. 5, 659-675 (2022); translation from Mat. Zametki 111, No. 5, 643-662 (2022). MSC: 22E27 PDF BibTeX XML Cite \textit{L. Abdelmoula} and \textit{Y. Bouaziz}, Math. Notes 111, No. 5, 659--675 (2022; Zbl 1494.22008); translation from Mat. Zametki 111, No. 5, 643--662 (2022) Full Text: DOI
Bédos, Erik; Enstad, Ulrik; van Velthoven, Jordy Timo Smooth lattice orbits of nilpotent groups and strict comparison of projections. (English) Zbl 1511.22008 J. Funct. Anal. 283, No. 6, Article ID 109572, 48 p. (2022). Reviewer: Milan Niestijl (Delft) MSC: 22D25 22E27 42C30 42C40 46L08 46L35 PDF BibTeX XML Cite \textit{E. Bédos} et al., J. Funct. Anal. 283, No. 6, Article ID 109572, 48 p. (2022; Zbl 1511.22008) Full Text: DOI arXiv
Rahali, Aymen Heisenberg motion groups and their cortex. (English) Zbl 1489.22007 Indian J. Pure Appl. Math. 53, No. 2, 570-577 (2022). MSC: 22E27 17B08 22D10 22E45 PDF BibTeX XML Cite \textit{A. Rahali}, Indian J. Pure Appl. Math. 53, No. 2, 570--577 (2022; Zbl 1489.22007) Full Text: DOI
Shtern, A. I. Continuity criterion for locally bounded finite-dimensional representations of simply connected solvable Lie groups. (English) Zbl 07542713 Russ. J. Math. Phys. 29, No. 2, 238-239 (2022). MSC: 22E27 PDF BibTeX XML Cite \textit{A. I. Shtern}, Russ. J. Math. Phys. 29, No. 2, 238--239 (2022; Zbl 07542713) Full Text: DOI
Chen, Huizhan Super Hirota bilinear equations for the super modified BKP hierarchy. (English) Zbl 1496.81112 Phys. Lett., B 829, Article ID 137036, 10 p. (2022). MSC: 81V72 81Q60 37K10 17B10 11D09 22E27 33E15 PDF BibTeX XML Cite \textit{H. Chen}, Phys. Lett., B 829, Article ID 137036, 10 p. (2022; Zbl 1496.81112) Full Text: DOI
Hochs, Peter; Song, Yanli; Tang, Xiang An index theorem for higher orbital integrals. (English) Zbl 1492.19007 Math. Ann. 382, No. 1-2, 169-202 (2022). Reviewer: Pierre Clare (Williamsburg) MSC: 19K56 58J20 22E46 46L80 PDF BibTeX XML Cite \textit{P. Hochs} et al., Math. Ann. 382, No. 1--2, 169--202 (2022; Zbl 1492.19007) Full Text: DOI arXiv
Merino, Allan Characters of irreducible unitary representations of \(\mathrm{U}(n, n+1)\) via double lifting from \(\mathrm{U}(1)\). (English) Zbl 1502.22009 Represent. Theory 26, 325-369 (2022). Reviewer: Jia-Jun Ma (Singapura) MSC: 22E45 22E46 22E30 PDF BibTeX XML Cite \textit{A. Merino}, Represent. Theory 26, 325--369 (2022; Zbl 1502.22009) Full Text: DOI arXiv
Regeiba, Hedi; Ben Chenni, Ibtissem; Rahali, Aymen Fell topology and its application for some semidirect products. (English) Zbl 1515.22003 Ann. Funct. Anal. 13, No. 2, Paper No. 28, 18 p. (2022). Reviewer: E. K. Narayanan (Bangalore) MSC: 22D10 22E27 22E45 PDF BibTeX XML Cite \textit{H. Regeiba} et al., Ann. Funct. Anal. 13, No. 2, Paper No. 28, 18 p. (2022; Zbl 1515.22003) Full Text: DOI
Wang, Jing Inspiraling corrugation-induced quantum effects on neutron star binary plane. (English) Zbl 1487.85005 Phys. Lett., B 827, Article ID 136980, 7 p. (2022). MSC: 85A05 83F05 81S40 70M20 81V35 70F05 14D15 47A10 81P55 83C35 PDF BibTeX XML Cite \textit{J. Wang}, Phys. Lett., B 827, Article ID 136980, 7 p. (2022; Zbl 1487.85005) Full Text: DOI arXiv
Oruc, Goksu; Natali, Fábio; Borluk, Handan; Muslu, Gulcin M. On the stability of solitary wave solutions for a generalized fractional Benjamin-Bona-Mahony equation. (English) Zbl 1482.76055 Nonlinearity 35, No. 3, 1152-1169 (2022). MSC: 76E99 76B25 35Q51 26A33 PDF BibTeX XML Cite \textit{G. Oruc} et al., Nonlinearity 35, No. 3, 1152--1169 (2022; Zbl 1482.76055) Full Text: DOI arXiv
Berge, Eirik A primer on coorbit theory. (English) Zbl 1489.43004 J. Fourier Anal. Appl. 28, No. 1, Paper No. 2, 61 p. (2022). MSC: 43A25 22D10 22E27 42B35 43A65 PDF BibTeX XML Cite \textit{E. Berge}, J. Fourier Anal. Appl. 28, No. 1, Paper No. 2, 61 p. (2022; Zbl 1489.43004) Full Text: DOI
Shtern, A. I. A generalization of Lieś theorem to certain non-Lie solvable groups. (English) Zbl 07683393 Proc. Jangjeon Math. Soc. 24, No. 2, 263-267 (2021). MSC: 22E27 22E10 PDF BibTeX XML Cite \textit{A. I. Shtern}, Proc. Jangjeon Math. Soc. 24, No. 2, 263--267 (2021; Zbl 07683393) Full Text: DOI
Nguyen, Tuyen; Le, Vu Foliations formed by generic coadjoint orbits of a class of real seven-dimensional solvable Lie groups. (English) Zbl 1507.53021 J. Geom. Symmetry Phys. 61, 79-104 (2021). MSC: 53C12 17B08 22E27 57R30 17B30 22E45 PDF BibTeX XML Cite \textit{T. Nguyen} and \textit{V. Le}, J. Geom. Symmetry Phys. 61, 79--104 (2021; Zbl 1507.53021) Full Text: DOI
Johannessen, Kim The exact solution to the general relativistic differential equation describing planetary orbits. (English) Zbl 1499.70016 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 79, 11 p. (2021). MSC: 70H40 70M20 83C10 33E05 34A34 PDF BibTeX XML Cite \textit{K. Johannessen}, Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 79, 11 p. (2021; Zbl 1499.70016) Full Text: DOI
Rahali, Aymen On the cortex of the groups \(\mathbb{T}^n\ltimes\mathbb{H}_n\). (English) Zbl 1482.22009 Asian-Eur. J. Math. 14, No. 9, Article ID 2150149, 10 p. (2021). MSC: 22D10 22E27 22E45 PDF BibTeX XML Cite \textit{A. Rahali}, Asian-Eur. J. Math. 14, No. 9, Article ID 2150149, 10 p. (2021; Zbl 1482.22009) Full Text: DOI
Beltiţă, Ingrid; Beltiţă, Daniel; Galé, José E. Transference for Banach space representations of nilpotent Lie groups. II. Pedersen multipliers. (English) Zbl 1490.43006 J. Geom. Anal. 31, No. 12, 12568-12593 (2021). Reviewer: Takeshi Kawazoe (Yokohama) MSC: 43A65 43A15 22E25 22E27 PDF BibTeX XML Cite \textit{I. Beltiţă} et al., J. Geom. Anal. 31, No. 12, 12568--12593 (2021; Zbl 1490.43006) Full Text: DOI
Beltiţă, Ingrid; Beltiţă, Daniel On the isomorphism problem for \(C^{\ast}\)-algebras of nilpotent Lie groups. (English) Zbl 1507.22021 J. Topol. Anal. 13, No. 3, 753-782 (2021). MSC: 22D25 22E27 22E25 17B30 PDF BibTeX XML Cite \textit{I. Beltiţă} and \textit{D. Beltiţă}, J. Topol. Anal. 13, No. 3, 753--782 (2021; Zbl 1507.22021) Full Text: DOI arXiv
Beltiţă, Ingrid; Beltiţă, Daniel Linear dynamical systems of nilpotent Lie groups. (English) Zbl 1487.22009 J. Fourier Anal. Appl. 27, No. 5, Paper No. 74, 29 p. (2021). MSC: 22E27 22E25 22D25 37A99 PDF BibTeX XML Cite \textit{I. Beltiţă} and \textit{D. Beltiţă}, J. Fourier Anal. Appl. 27, No. 5, Paper No. 74, 29 p. (2021; Zbl 1487.22009) Full Text: DOI arXiv
Baklouti, Ali; Fujiwara, Hidenori; Ludwig, Jean Representation theory of solvable Lie groups and related topics. (English) Zbl 1480.22001 Springer Monographs in Mathematics. Cham: Springer (ISBN 978-3-030-82043-5/hbk; 978-3-030-82046-6/pbk; 978-3-030-82044-2/ebook). xv, 610 p. (2021). Reviewer: Do Ngoc Diep (Hanoi) MSC: 22-02 22E25 22E27 PDF BibTeX XML Cite \textit{A. Baklouti} et al., Representation theory of solvable Lie groups and related topics. Cham: Springer (2021; Zbl 1480.22001) Full Text: DOI
Beltiţă, Ingrid; Beltiţă, Daniel AF-embeddability for Lie groups with \(T_1\) primitive ideal spaces. (English) Zbl 1504.22006 J. Lond. Math. Soc., II. Ser. 104, No. 1, 320-340 (2021). MSC: 22D25 22E27 PDF BibTeX XML Cite \textit{I. Beltiţă} and \textit{D. Beltiţă}, J. Lond. Math. Soc., II. Ser. 104, No. 1, 320--340 (2021; Zbl 1504.22006) Full Text: DOI arXiv
Tanimura, Yoshinori A splitting of local rigidity of Clifford-Klein forms of homogeneous spaces of completely solvable Lie groups. (English) Zbl 1489.22005 Int. J. Math. 32, No. 8, Article ID 2150058, 14 p. (2021). Reviewer: Andreas Arvanitoyeorgos (Patras) MSC: 22E25 22E27 PDF BibTeX XML Cite \textit{Y. Tanimura}, Int. J. Math. 32, No. 8, Article ID 2150058, 14 p. (2021; Zbl 1489.22005) Full Text: DOI arXiv
Sun, Wen-Rong; Deconinck, Bernard Stability of elliptic solutions to the sinh-Gordon equation. (English) Zbl 1472.35040 J. Nonlinear Sci. 31, No. 4, Paper No. 63, 23 p. (2021). MSC: 35B35 35C07 35L71 37K45 33E05 PDF BibTeX XML Cite \textit{W.-R. Sun} and \textit{B. Deconinck}, J. Nonlinear Sci. 31, No. 4, Paper No. 63, 23 p. (2021; Zbl 1472.35040) Full Text: DOI arXiv
He, Hongyu Representations of \(ax+b\) group and Dirichlet series. (English) Zbl 1471.22007 J. Ramanujan Math. Soc. 36, No. 1, 73-84 (2021). Reviewer: Chao-Ping Dong (Changsha) MSC: 22E27 11M41 22E30 PDF BibTeX XML Cite \textit{H. He}, J. Ramanujan Math. Soc. 36, No. 1, 73--84 (2021; Zbl 1471.22007) Full Text: arXiv Link
Cagliero, Leandro; Levstein, Fernando; Szechtman, Fernando Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras. (English) Zbl 1482.17022 J. Algebra 585, 447-483 (2021). Reviewer: Jervin Zen Lobo (Mapusa) MSC: 17B10 17B30 22E27 PDF BibTeX XML Cite \textit{L. Cagliero} et al., J. Algebra 585, 447--483 (2021; Zbl 1482.17022) Full Text: DOI arXiv Link
Baklouti, Ali; Sasaki, Atsumu Visible actions and criteria for multiplicity-freeness of representations of Heisenberg groups. (English) Zbl 1482.22010 J. Lie Theory 31, No. 3, 719-750 (2021). MSC: 22E25 22E27 PDF BibTeX XML Cite \textit{A. Baklouti} and \textit{A. Sasaki}, J. Lie Theory 31, No. 3, 719--750 (2021; Zbl 1482.22010) Full Text: arXiv Link
Gröchenig, Karlheinz New function spaces associated to representations of nilpotent Lie groups and generalized time-frequency analysis. (English) Zbl 1486.22010 J. Lie Theory 31, No. 3, 659-680 (2021). Reviewer: Jonathan Rosenberg (College Park) MSC: 22E25 42B35 46E35 22E27 PDF BibTeX XML Cite \textit{K. Gröchenig}, J. Lie Theory 31, No. 3, 659--680 (2021; Zbl 1486.22010) Full Text: arXiv Link
Fischer, Mathias; Kath, Ines Spectra of compact quotients of the oscillator group. (English) Zbl 1508.22007 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 051, 48 p. (2021). Reviewer: Béchir Dali (Bizerte) MSC: 22E40 22E27 53C50 PDF BibTeX XML Cite \textit{M. Fischer} and \textit{I. Kath}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 051, 48 p. (2021; Zbl 1508.22007) Full Text: DOI arXiv
Gomez, Raul; Gourevitch, Dmitry; Sahi, Siddhartha Whittaker supports for representations of reductive groups. (Supports de Whittaker pour les représentations des groupes réductifs.) (English. French summary) Zbl 07362103 Ann. Inst. Fourier 71, No. 1, 239-286 (2021). MSC: 20G05 20G20 20G25 20G30 20G35 22E27 22E46 22E50 22E55 17B08 PDF BibTeX XML Cite \textit{R. Gomez} et al., Ann. Inst. Fourier 71, No. 1, 239--286 (2021; Zbl 07362103) Full Text: DOI arXiv
Chaudouard, Pierre-Henri; Zydor, Michał The singular transfer for the formula of Jacquet-Rallis traces. (Le transfert singulier pour la formule des traces de Jacquet-Rallis.) (French. English summary) Zbl 1466.11023 Compos. Math. 157, No. 2, 303-434 (2021). Reviewer: Ivan Matić (Osijek) MSC: 11F67 11F70 22E50 22E55 PDF BibTeX XML Cite \textit{P.-H. Chaudouard} and \textit{M. Zydor}, Compos. Math. 157, No. 2, 303--434 (2021; Zbl 1466.11023) Full Text: DOI arXiv
Lemaire, Bertrand Orbital integrals on \(\mathrm{GL}(N,\mathbb{F}_q((t)))\). (Intégrales orbitales sur \(\mathrm{GL}(N,\mathbb{F}_q((t)))\).) (French) Zbl 1479.22014 J. Inst. Math. Jussieu 20, No. 2, 423-515 (2021). MSC: 22E50 PDF BibTeX XML Cite \textit{B. Lemaire}, J. Inst. Math. Jussieu 20, No. 2, 423--515 (2021; Zbl 1479.22014) Full Text: DOI arXiv
Gauthier, Jean-Paul; Rossi, Francesco A universal gap for non-spin quantum control systems. (English) Zbl 1457.81052 Proc. Am. Math. Soc. 149, No. 3, 1203-1214 (2021). MSC: 81Q93 22E27 22C05 PDF BibTeX XML Cite \textit{J.-P. Gauthier} and \textit{F. Rossi}, Proc. Am. Math. Soc. 149, No. 3, 1203--1214 (2021; Zbl 1457.81052) Full Text: DOI arXiv
Cagliero, Leandro; Rojas, Nadina Minimal faithful representations of the free 2-step nilpotent Lie algebra of the rank \(r\). (English) Zbl 1475.17009 J. Algebra 567, 719-741 (2021). Reviewer: Francesco G. Russo (Rondebosch) MSC: 17B01 17B30 22E27 PDF BibTeX XML Cite \textit{L. Cagliero} and \textit{N. Rojas}, J. Algebra 567, 719--741 (2021; Zbl 1475.17009) Full Text: DOI arXiv
Contopoulos, George A review of the “Third” integral. (English) Zbl 1495.83007 Math. Eng. (Springfield) 2, No. 3, 472-511 (2020). MSC: 83C10 83F05 70M20 35B34 83C55 76N30 35Q55 81Q50 74H65 PDF BibTeX XML Cite \textit{G. Contopoulos}, Math. Eng. (Springfield) 2, No. 3, 472--511 (2020; Zbl 1495.83007) Full Text: DOI
Zheng, Xiaoxiao; Wu, Hui Orbital stability of periodic traveling wave solutions to the coupled compound KdV and MKdV equations with two components. (English) Zbl 1492.35293 Math. Found. Comput. 3, No. 1, 11-24 (2020). MSC: 35Q53 37K45 39A23 35C07 35C08 35B10 35B35 35B40 33E05 34L15 PDF BibTeX XML Cite \textit{X. Zheng} and \textit{H. Wu}, Math. Found. Comput. 3, No. 1, 11--24 (2020; Zbl 1492.35293) Full Text: DOI
Chelnokov, Yu. N. Regular quaternion models of perturbed orbital motion of a rigid body in the Earth’s gravitational field. (English. Russian original) Zbl 1465.70014 Mech. Solids 55, No. 7, 958-976 (2020); translation from Prikl. Mat. Mekh. 83, No. 4, 562-585 (2019). MSC: 70E15 70F15 70E20 PDF BibTeX XML Cite \textit{Yu. N. Chelnokov}, Mech. Solids 55, No. 7, 958--976 (2020; Zbl 1465.70014); translation from Prikl. Mat. Mekh. 83, No. 4, 562--585 (2019) Full Text: DOI
Gröchenig, K.; Romero, J. L.; Rottensteiner, D.; Van Velthoven, J. T. Balian-Low type theorems on homogeneous groups. (English) Zbl 1463.22007 Anal. Math. 46, No. 3, 483-515 (2020). MSC: 22E25 22E27 42C15 42C40 PDF BibTeX XML Cite \textit{K. Gröchenig} et al., Anal. Math. 46, No. 3, 483--515 (2020; Zbl 1463.22007) Full Text: DOI arXiv
Inoue, Junko; Ludwig, Jean \(L^1\)-determined primitive ideals in the \(C^\ast\)-algebra of an exponential Lie group with closed non-\(\ast\)-regular orbits. (English) Zbl 1456.43001 Kyushu J. Math. 74, No. 1, 127-148 (2020). MSC: 43A20 22D25 22E25 22E27 PDF BibTeX XML Cite \textit{J. Inoue} and \textit{J. Ludwig}, Kyushu J. Math. 74, No. 1, 127--148 (2020; Zbl 1456.43001) Full Text: DOI
Chaudouard, Pierre-Henri On the fine expansion of the unipotent contribution of the Guo-Jacquet trace formula. (English) Zbl 1445.11040 Pac. J. Math. 305, No. 2, 539-561 (2020). Reviewer: Shin-ya Koyama (Yokohama) MSC: 11F72 11F70 PDF BibTeX XML Cite \textit{P.-H. Chaudouard}, Pac. J. Math. 305, No. 2, 539--561 (2020; Zbl 1445.11040) Full Text: DOI arXiv
Khanmohammadi, Ehssan On the positivity of Kirillov’s character formula. (English) Zbl 1440.22017 Math. Phys. Anal. Geom. 23, No. 2, Paper No. 13, 20 p. (2020). MSC: 22E30 22E27 46L05 PDF BibTeX XML Cite \textit{E. Khanmohammadi}, Math. Phys. Anal. Geom. 23, No. 2, Paper No. 13, 20 p. (2020; Zbl 1440.22017) Full Text: DOI arXiv
Arnal, Didier; Currey, Bradley Representations of solvable Lie groups. Basic theory and examples. (English) Zbl 1479.22001 New Mathematical Monographs 39. Cambridge: Cambridge University Press (ISBN 978-1-108-42809-5/hbk; 978-1-108-55228-8/ebook). xiii, 448 p. (2020). Reviewer: Béchir Dali (Bizerte) MSC: 22-01 22E25 22E27 17B30 17B20 PDF BibTeX XML Cite \textit{D. Arnal} and \textit{B. Currey}, Representations of solvable Lie groups. Basic theory and examples. Cambridge: Cambridge University Press (2020; Zbl 1479.22001) Full Text: DOI
Zhou, Rong; Zhu, Yihang Twisted orbital integrals and irreducible components of affine Deligne-Lusztig varieties. (English) Zbl 1457.11089 Camb. J. Math. 8, No. 1, 149-241 (2020). MSC: 11G18 22E35 PDF BibTeX XML Cite \textit{R. Zhou} and \textit{Y. Zhu}, Camb. J. Math. 8, No. 1, 149--241 (2020; Zbl 1457.11089) Full Text: DOI arXiv
Chen, Aiyong; Lu, Xinhui Orbital stability of elliptic periodic peakons for the modified Camassa-Holm equation. (English) Zbl 1432.37096 Discrete Contin. Dyn. Syst. 40, No. 3, 1703-1735 (2020). MSC: 37K45 35Q51 PDF BibTeX XML Cite \textit{A. Chen} and \textit{X. Lu}, Discrete Contin. Dyn. Syst. 40, No. 3, 1703--1735 (2020; Zbl 1432.37096) Full Text: DOI
Kim, Ju-Lee; Shin, Sug Woo; Templier, Nicolas Asymptotic behavior of supercuspidal representations and Sato-Tate equidistribution for families. (English) Zbl 1493.22018 Adv. Math. 362, Article ID 106955, 57 p. (2020). Reviewer: Jeffrey Adler (Washington) MSC: 22E50 22E35 11F55 PDF BibTeX XML Cite \textit{J.-L. Kim} et al., Adv. Math. 362, Article ID 106955, 57 p. (2020; Zbl 1493.22018) Full Text: DOI arXiv
Algaba, Antonio; García, Cristóbal; Giné, Jaume Center conditions of a particular polynomial differential system with a nilpotent singularity. (English) Zbl 1478.34031 J. Math. Anal. Appl. 483, No. 2, Article ID 123639, 12 p. (2020). Reviewer: Armengol Gasull (Barcelona) MSC: 34C05 34A05 34C14 PDF BibTeX XML Cite \textit{A. Algaba} et al., J. Math. Anal. Appl. 483, No. 2, Article ID 123639, 12 p. (2020; Zbl 1478.34031) Full Text: DOI
Toure, Ibrahima; Kangni, Kinvi Spherical functions of type \(\delta\) on nilpotent Lie groups. (English) Zbl 1438.22007 Electron. J. Math. Anal. Appl. 8, No. 1, 309-315 (2020). MSC: 22E25 22E27 43A30 43A90 PDF BibTeX XML Cite \textit{I. Toure} and \textit{K. Kangni}, Electron. J. Math. Anal. Appl. 8, No. 1, 309--315 (2020; Zbl 1438.22007) Full Text: Link
Zheng, Xiaoxiao; Xin, Jie; Peng, Xiaoming Orbital stability of periodic traveling wave solutions to the generalized long-short wave equations. (English) Zbl 1464.35305 J. Appl. Anal. Comput. 9, No. 6, 2389-2408 (2019). MSC: 35Q53 35Q51 35B35 35B40 35B34 35B10 35C07 33E05 PDF BibTeX XML Cite \textit{X. Zheng} et al., J. Appl. Anal. Comput. 9, No. 6, 2389--2408 (2019; Zbl 1464.35305) Full Text: DOI
Gourevitch, Dmitry; Sahi, Siddhartha Generalized and degenerate Whittaker quotients and Fourier coefficients. (English) Zbl 1469.20046 Aizenbud, Avraham (ed.) et al., Representations of reductive groups. Conference in honor of Joseph Bernstein. Representation theory and algebraic geometry, June 11–16, 2017. Weizmann Institute of Science and The Hebrew University of Jerusalem, Israel. Providence, RI: American Mathematical Society (AMS). Proc. Symp. Pure Math. 101, 133-154 (2019). MSC: 20G05 20G20 20G25 20G30 20G35 22E27 17B08 PDF BibTeX XML Cite \textit{D. Gourevitch} and \textit{S. Sahi}, Proc. Symp. Pure Math. 101, 133--154 (2019; Zbl 1469.20046) Full Text: arXiv
Goresky, Mark; Tai, Yung sheng Real structures on polarized Dieudonné modules. (English) Zbl 1439.14089 Pac. J. Math. 303, No. 1, 217-241 (2019). MSC: 14G35 16W10 14K10 22E27 PDF BibTeX XML Cite \textit{M. Goresky} and \textit{Y. s. Tai}, Pac. J. Math. 303, No. 1, 217--241 (2019; Zbl 1439.14089) Full Text: DOI
Baklouti, Ali; Dhieb, Sami; Manchon, Dominique The Poisson characteristic variety of unitary irreducible representations of exponential Lie groups. (English) Zbl 1431.22010 Baklouti, Ali (ed.) et al., Geometric and harmonic analysis on homogeneous spaces. Selected papers of the 5th Tunisian-Japanese conference, PTJC 2017, Mahdia, Tunisia, December 17–21, 2017. Cham: Springer. Springer Proc. Math. Stat. 290, 207-217 (2019). MSC: 22E27 81S10 PDF BibTeX XML Cite \textit{A. Baklouti} et al., Springer Proc. Math. Stat. 290, 207--217 (2019; Zbl 1431.22010) Full Text: DOI
Inoue, Junko An example of holomorphically induced representations of exponential solvable Lie groups. (English) Zbl 1435.22008 Baklouti, Ali (ed.) et al., Geometric and harmonic analysis on homogeneous spaces. Selected papers of the 5th Tunisian-Japanese conference, PTJC 2017, Mahdia, Tunisia, December 17–21, 2017. Cham: Springer. Springer Proc. Math. Stat. 290, 111-120 (2019). Reviewer: Roman Urban (Wrocław) MSC: 22E27 PDF BibTeX XML Cite \textit{J. Inoue}, Springer Proc. Math. Stat. 290, 111--120 (2019; Zbl 1435.22008) Full Text: DOI
Baklouti, Ali; Fujiwara, Hidenori; Ludwig, Jean Monomial representations of discrete type of an exponential solvable Lie group. (English) Zbl 1433.22005 Baklouti, Ali (ed.) et al., Geometric and harmonic analysis on homogeneous spaces. Selected papers of the 5th Tunisian-Japanese conference, PTJC 2017, Mahdia, Tunisia, December 17–21, 2017. Cham: Springer. Springer Proc. Math. Stat. 290, 1-55 (2019). Reviewer: Mohamed Selmi (Sousse) MSC: 22E27 PDF BibTeX XML Cite \textit{A. Baklouti} et al., Springer Proc. Math. Stat. 290, 1--55 (2019; Zbl 1433.22005) Full Text: DOI
Qiu, Yanqi Ergodic measures on infinite skew-symmetric matrices over non-Archimedean local fields. (English) Zbl 1431.37077 Groups Geom. Dyn. 13, No. 4, 1401-1416 (2019). MSC: 37P30 37P20 PDF BibTeX XML Cite \textit{Y. Qiu}, Groups Geom. Dyn. 13, No. 4, 1401--1416 (2019; Zbl 1431.37077) Full Text: DOI arXiv
Arnal, Didier; Currey, Bradley; Dali, Béchir The Plancherel formula for an inhomogeneous vector group. (English) Zbl 1428.22010 J. Fourier Anal. Appl. 25, No. 6, 2837-2876 (2019). Reviewer: Juan Núñez Valdés (Sevilla) MSC: 22E27 22E45 22D10 22D30 PDF BibTeX XML Cite \textit{D. Arnal} et al., J. Fourier Anal. Appl. 25, No. 6, 2837--2876 (2019; Zbl 1428.22010) Full Text: DOI
Deitmar, Anton; Spilioti, Polyxeni; Gon, Yasuro A prime geodesic theorem for \(\mathrm{SL}_3(\mathbb{Z})\). (English) Zbl 1461.11083 Forum Math. 31, No. 5, 1179-1201 (2019). Reviewer: Laurent Guillopé (Nantes) MSC: 11F72 11R29 11F70 11R16 11R27 11R47 53C35 11R80 22E40 PDF BibTeX XML Cite \textit{A. Deitmar} et al., Forum Math. 31, No. 5, 1179--1201 (2019; Zbl 1461.11083) Full Text: DOI arXiv
Almalki, Fadhel; Kisil, Vladimir V. Geometric dynamics of a harmonic oscillator, arbitrary minimal uncertainty states and the smallest step 3 nilpotent Lie group. (English) Zbl 1422.81124 J. Phys. A, Math. Theor. 52, No. 2, Article ID 025301, 25 p. (2019). MSC: 81R30 81Q05 35J10 22E15 35R03 22E27 PDF BibTeX XML Cite \textit{F. Almalki} and \textit{V. V. Kisil}, J. Phys. A, Math. Theor. 52, No. 2, Article ID 025301, 25 p. (2019; Zbl 1422.81124) Full Text: DOI arXiv Link
Ghorbel, Amira; Loksaier, Zaineb On the rational closure of connected closed subgroups of connected simply connected nilpotent Lie groups. (English) Zbl 1426.22008 Proc. Indian Acad. Sci., Math. Sci. 129, No. 5, Paper No. 82, 15 p. (2019). Reviewer: V. V. Gorbatsevich (Moskva) MSC: 22E40 22E25 22E27 PDF BibTeX XML Cite \textit{A. Ghorbel} and \textit{Z. Loksaier}, Proc. Indian Acad. Sci., Math. Sci. 129, No. 5, Paper No. 82, 15 p. (2019; Zbl 1426.22008) Full Text: DOI
Baklouti, Ali; Bejar, Souhail; Fendri, Ramzi A local rigidity theorem for finite actions on Lie groups and application to compact extensions of \(\mathbb{R}^n\). (English) Zbl 1427.22009 Kyoto J. Math. 59, No. 3, 607-618 (2019). MSC: 22E27 22E40 57S30 PDF BibTeX XML Cite \textit{A. Baklouti} et al., Kyoto J. Math. 59, No. 3, 607--618 (2019; Zbl 1427.22009) Full Text: DOI Euclid
Baklouti, Ali; Bejar, Souhail; Dhahri, Khaireddine Deforming discontinuous groups for Heisenberg motion groups. (English) Zbl 1471.22006 Int. J. Math. 30, No. 9, Article ID 1950045, 23 p. (2019). MSC: 22E27 32G05 PDF BibTeX XML Cite \textit{A. Baklouti} et al., Int. J. Math. 30, No. 9, Article ID 1950045, 23 p. (2019; Zbl 1471.22006) Full Text: DOI
Baklouti, Ali; Fujiwara, Hidenori; Ludwig, Jean The polynomial conjecture for restrictions of some nilpotent Lie groups representations. (English) Zbl 1423.22009 J. Lie Theory 29, No. 2, 311-341 (2019). Reviewer: Juan Núñez Valdés (Sevilla) MSC: 22E27 PDF BibTeX XML Cite \textit{A. Baklouti} et al., J. Lie Theory 29, No. 2, 311--341 (2019; Zbl 1423.22009) Full Text: Link
Chaudouard, Pierre-Henri On relative trace formulae: the case of Jacquet-Rallis. (English) Zbl 1435.11083 Acta Math. Vietnam. 44, No. 2, 391-430 (2019). Reviewer: Salah Mehdi (Metz) MSC: 11F72 11F70 22E50 22E55 11F66 11R39 PDF BibTeX XML Cite \textit{P.-H. Chaudouard}, Acta Math. Vietnam. 44, No. 2, 391--430 (2019; Zbl 1435.11083) Full Text: DOI
Rahali, Aymen Lipsman mapping and dual topology of semidirect products. (English) Zbl 1421.22005 Bull. Belg. Math. Soc. - Simon Stevin 26, No. 1, 149-160 (2019). Reviewer: Mohamed Selmi (Sousse-Riadh) MSC: 22D10 22E27 22E45 20G05 PDF BibTeX XML Cite \textit{A. Rahali}, Bull. Belg. Math. Soc. - Simon Stevin 26, No. 1, 149--160 (2019; Zbl 1421.22005) Full Text: Euclid
Llibre, Jaume; Valls, Claudia Periodic orbits of the planar anisotropic generalized Kepler problem. (English) Zbl 1461.70026 J. Math. Phys. 60, No. 4, 042901, 5 p. (2019). Reviewer: Martha Alvarez-Ramírez (Ciudad de México) MSC: 70M20 70F15 PDF BibTeX XML Cite \textit{J. Llibre} and \textit{C. Valls}, J. Math. Phys. 60, No. 4, 042901, 5 p. (2019; Zbl 1461.70026) Full Text: DOI Link
Grouy, Thibaut Orbital integrals on Lorentzian symmetric spaces. (English) Zbl 1418.43005 J. Geom. Phys. 138, 1-19 (2019). Reviewer: Benjamin Cahen (Metz) MSC: 43A85 53C50 44A99 53C65 53C35 PDF BibTeX XML Cite \textit{T. Grouy}, J. Geom. Phys. 138, 1--19 (2019; Zbl 1418.43005) Full Text: DOI arXiv
Lin, Ying-Fen; Ludwig, Jean; Molitor-Braun, Carine Nilpotent Lie groups: Fourier inversion and prime ideals. (English) Zbl 1412.22022 J. Fourier Anal. Appl. 25, No. 2, 345-376 (2019). Reviewer: Mohamed Selmi (Sousse-Riadh) MSC: 22E30 22E27 43A20 PDF BibTeX XML Cite \textit{Y.-F. Lin} et al., J. Fourier Anal. Appl. 25, No. 2, 345--376 (2019; Zbl 1412.22022) Full Text: DOI
Liu, Bingxiao Hypoelliptic Laplacian and twisted trace formula. (Laplacien hypoelliptique et formule des traces tordue.) (English. French summary) Zbl 1501.58011 C. R., Math., Acad. Sci. Paris 357, No. 1, 74-83 (2019). Reviewer: Albert Luo (Edwardsville) MSC: 58J35 58J20 58J52 35H10 58J05 PDF BibTeX XML Cite \textit{B. Liu}, C. R., Math., Acad. Sci. Paris 357, No. 1, 74--83 (2019; Zbl 1501.58011) Full Text: DOI arXiv
Delorme, P.; Harinck, P.; Souaifi, S. Geometric side of a local relative trace formula. (English) Zbl 1430.11076 Trans. Am. Math. Soc. 371, No. 3, 1815-1857 (2019). Reviewer: Salah Mehdi (Metz) MSC: 11F72 22E50 PDF BibTeX XML Cite \textit{P. Delorme} et al., Trans. Am. Math. Soc. 371, No. 3, 1815--1857 (2019; Zbl 1430.11076) Full Text: DOI arXiv
Rahali, Aymen Cartan motion groups and dual topology. (English) Zbl 1455.22004 Pure Appl. Math. Q. 14, No. 3-4, 617-628 (2018). MSC: 22E45 22D10 22E27 PDF BibTeX XML Cite \textit{A. Rahali}, Pure Appl. Math. Q. 14, No. 3--4, 617--628 (2018; Zbl 1455.22004) Full Text: DOI
Malanda, Cornelie Mitcha; Kangni, Kinvi The quasi-spherical transformations. (English) Zbl 1426.43007 Afr. Math. Ann. (AFMA) 7, 65-71 (2018). MSC: 43A90 22E25 22E27 22E60 PDF BibTeX XML Cite \textit{C. M. Malanda} and \textit{K. Kangni}, Afr. Math. Ann. (AFMA) 7, 65--71 (2018; Zbl 1426.43007)
Zhang, Lin; Hong, Seunghun Volume of the set of locally diagonalizable bipartite states. (English) Zbl 1407.81037 J. Phys. A, Math. Theor. 51, No. 38, Article ID 385302, 22 p. (2018). MSC: 81P40 81P16 47B10 17B08 22E27 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{S. Hong}, J. Phys. A, Math. Theor. 51, No. 38, Article ID 385302, 22 p. (2018; Zbl 1407.81037) Full Text: DOI arXiv
Bruinier, Jan; Funke, Jens; Kudla, Stephen Degenerate Whittaker functions for \(\mathrm{Sp}_n(\mathbb R)\). (English) Zbl 1436.22004 Int. Math. Res. Not. 2018, No. 1, 1-56 (2018). MSC: 22E27 PDF BibTeX XML Cite \textit{J. Bruinier} et al., Int. Math. Res. Not. 2018, No. 1, 1--56 (2018; Zbl 1436.22004) Full Text: DOI
Rahali, Aymen Dual topology of generalized motion groups. (English) Zbl 1424.22007 Math. Rep., Buchar. 20(70), No. 3, 233-243 (2018). Reviewer: Norbert Knarr (Stuttgart) MSC: 22E45 22D10 22E27 PDF BibTeX XML Cite \textit{A. Rahali}, Math. Rep., Buchar. 20(70), No. 3, 233--243 (2018; Zbl 1424.22007)
Messaoud, Anis; Rahali, Aymen On the continuity of the Lipsman mapping of semidirect products. (English) Zbl 1449.22002 Rev. Roum. Math. Pures Appl. 63, No. 3, 249-258 (2018). Reviewer: Yuri I. Karlovich (Cuernavaca) MSC: 22D10 22E27 22E45 PDF BibTeX XML Cite \textit{A. Messaoud} and \textit{A. Rahali}, Rev. Roum. Math. Pures Appl. 63, No. 3, 249--258 (2018; Zbl 1449.22002)
Beltiţă, Ingrid; Beltiţă, Daniel \(C^\ast\)-dynamical systems of solvable Lie groups. (English) Zbl 1427.22010 Transform. Groups 23, No. 3, 589-629 (2018). Reviewer: Mădălina Buneci (Targu-Jiu) MSC: 22E27 17B08 22A22 PDF BibTeX XML Cite \textit{I. Beltiţă} and \textit{D. Beltiţă}, Transform. Groups 23, No. 3, 589--629 (2018; Zbl 1427.22010) Full Text: DOI arXiv
Xu, Zhiguo; Bao, Weizhu; Shi, Shaoyun Quantized vortex dynamics and interaction patterns in superconductivity based on the reduced dynamical law. (English) Zbl 1405.34042 Discrete Contin. Dyn. Syst., Ser. B 23, No. 6, 2265-2297 (2018). MSC: 34C60 34D05 34A33 34A05 82D55 34C45 34D20 PDF BibTeX XML Cite \textit{Z. Xu} et al., Discrete Contin. Dyn. Syst., Ser. B 23, No. 6, 2265--2297 (2018; Zbl 1405.34042) Full Text: DOI arXiv
Smaoui, Kais Heisenberg-Pauli-Weyl inequality for connected nilpotent Lie groups. (English) Zbl 1403.22010 Int. J. Math. 29, No. 12, Article ID 1850086, 13 p. (2018). MSC: 22E27 43A30 PDF BibTeX XML Cite \textit{K. Smaoui}, Int. J. Math. 29, No. 12, Article ID 1850086, 13 p. (2018; Zbl 1403.22010) Full Text: DOI