Hwang, Guenbo; Moon, Byungsoo Stability of periodic peaked solitary waves for a cubic Camassa-Holm-type equation. (English) Zbl 07567628 J. Evol. Equ. 22, No. 3, Paper No. 68, 26 p. (2022). MSC: 35B30 35G25 PDF BibTeX XML Cite \textit{G. Hwang} and \textit{B. Moon}, J. Evol. Equ. 22, No. 3, Paper No. 68, 26 p. (2022; Zbl 07567628) Full Text: DOI OpenURL
Deng, Tongjie; Chen, Aiyong Orbital stability of the sum of \(N\) peakons for the generalized higher-order Camassa-Holm equation. (English) Zbl 07560164 Z. Angew. Math. Phys. 73, No. 4, Paper No. 155, 28 p. (2022). MSC: 35G25 35L05 35Q51 PDF BibTeX XML Cite \textit{T. Deng} and \textit{A. Chen}, Z. Angew. Math. Phys. 73, No. 4, Paper No. 155, 28 p. (2022; Zbl 07560164) Full Text: DOI OpenURL
Semenov, Alexander Orbital stability of a sum of solitons and breathers of the modified Korteweg-de Vries equation. (English) Zbl 07559742 Nonlinearity 35, No. 8, 4211-4249 (2022). MSC: 35Q51 35Q53 35B40 37K10 37K40 PDF BibTeX XML Cite \textit{A. Semenov}, Nonlinearity 35, No. 8, 4211--4249 (2022; Zbl 07559742) Full Text: DOI OpenURL
Jarrín, Oscar; Cortez, Manuel Fernando On the long-time behavior for a damped Navier-Stokes-Bardina model. (English) Zbl 07557753 Discrete Contin. Dyn. Syst. 42, No. 8, 3661-3707 (2022). MSC: 35B40 35D30 PDF BibTeX XML Cite \textit{O. Jarrín} and \textit{M. F. Cortez}, Discrete Contin. Dyn. Syst. 42, No. 8, 3661--3707 (2022; Zbl 07557753) Full Text: DOI OpenURL
Jeanjean, Louis; Jendrej, Jacek; Le, Thanh Trung; Visciglia, Nicola Orbital stability of ground states for a Sobolev critical Schrödinger equation. (English. French summary) Zbl 07555977 J. Math. Pures Appl. (9) 164, 158-179 (2022). MSC: 35Q55 35B38 35B35 PDF BibTeX XML Cite \textit{L. Jeanjean} et al., J. Math. Pures Appl. (9) 164, 158--179 (2022; Zbl 07555977) Full Text: DOI OpenURL
Kopylova, Elena Klein-Gordon equation with mean field interaction. Orbital and asymptotic stability of solitary waves. (English) Zbl 07554813 Nonlinearity 35, No. 7, 3593-3629 (2022). MSC: 35L71 35B35 35B40 35C08 47F05 PDF BibTeX XML Cite \textit{E. Kopylova}, Nonlinearity 35, No. 7, 3593--3629 (2022; Zbl 07554813) Full Text: DOI OpenURL
Li, Yuan; Zhao, Dun; Wang, Qingxuan Existence of the stable traveling wave for half-wave equation with \(L^2\)-critical combined nonlinearities. (English) Zbl 07548854 Appl. Anal. 101, No. 7, 2498-2510 (2022). MSC: 35Q41 35Q55 35J20 PDF BibTeX XML Cite \textit{Y. Li} et al., Appl. Anal. 101, No. 7, 2498--2510 (2022; Zbl 07548854) Full Text: DOI OpenURL
Luo, Haijun; Wu, Dan Normalized ground states for general pseudo-relativistic Schrödinger equations. (English) Zbl 07540658 Appl. Anal. 101, No. 9, 3410-3431 (2022). MSC: 35Q55 35Q41 35B35 35A15 35B65 49M41 PDF BibTeX XML Cite \textit{H. Luo} and \textit{D. Wu}, Appl. Anal. 101, No. 9, 3410--3431 (2022; Zbl 07540658) Full Text: DOI OpenURL
Chen, Aiyong; Deng, Tongjie; Qiao, Zhijun Stability of peakons and periodic peakons for a nonlinear quartic Camassa-Holm equation. (English) Zbl 07528113 Monatsh. Math. 198, No. 2, 251-288 (2022). Reviewer: Nilay Duruk Mutlubas (İstanbul) MSC: 35B35 35C08 35G25 37K45 PDF BibTeX XML Cite \textit{A. Chen} et al., Monatsh. Math. 198, No. 2, 251--288 (2022; Zbl 07528113) Full Text: DOI OpenURL
Qin, Guoquan; Yan, Zhenya; Guo, Boling Orbital stability of peakon solutions for a generalized higher-order Camassa-Holm equation. (English) Zbl 1487.35061 Z. Angew. Math. Phys. 73, No. 3, Paper No. 96, 19 p. (2022). MSC: 35B35 35C08 35G25 35L05 35Q51 PDF BibTeX XML Cite \textit{G. Qin} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 96, 19 p. (2022; Zbl 1487.35061) Full Text: DOI OpenURL
Adami, Riccardo; Boni, Filippo; Dovetta, Simone Competing nonlinearities in NLS equations as source of threshold phenomena on star graphs. (English) Zbl 1486.35400 J. Funct. Anal. 283, No. 1, Article ID 109483, 34 p. (2022). MSC: 35R02 35B35 35J20 35Q40 35Q55 81Q35 49J40 PDF BibTeX XML Cite \textit{R. Adami} et al., J. Funct. Anal. 283, No. 1, Article ID 109483, 34 p. (2022; Zbl 1486.35400) Full Text: DOI OpenURL
Moraes, Gabriel E. Bittencourt; de Loreno, Guilherme Cnoidal waves for the quintic Klein-Gordon and Schrödinger equations: existence and orbital instability. (English) Zbl 07506391 J. Math. Anal. Appl. 513, No. 1, Article ID 126203, 22 p. (2022). Reviewer: Xiaoming He (Beijing) MSC: 35B35 35C07 35Q51 35Q53 35Q55 PDF BibTeX XML Cite \textit{G. E. B. Moraes} and \textit{G. de Loreno}, J. Math. Anal. Appl. 513, No. 1, Article ID 126203, 22 p. (2022; Zbl 07506391) Full Text: DOI OpenURL
Bousder, M. A new constant behind the rotational velocity of galaxies. (English) Zbl 1486.85003 J. Cosmol. Astropart. Phys. 2022, No. 1, Paper No. 15, 12 p. (2022). MSC: 85A05 83C56 70M20 82D20 83F05 83C65 76E20 PDF BibTeX XML Cite \textit{M. Bousder}, J. Cosmol. Astropart. Phys. 2022, No. 1, Paper No. 15, 12 p. (2022; Zbl 1486.85003) Full Text: DOI arXiv OpenURL
Kurata, Kazuhiro; Osada, Yuki Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. (English) Zbl 07485784 Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1511-1547 (2022). MSC: 35Q55 35Q41 35J50 35B40 35B35 35A15 35C20 49M41 PDF BibTeX XML Cite \textit{K. Kurata} and \textit{Y. Osada}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1511--1547 (2022; Zbl 07485784) Full Text: DOI OpenURL
Nadafi, Reza; Kabganian, Mansour Robust nonlinear attitude tracking control of an underactuated spacecraft under saturation and time-varying uncertainties. (English) Zbl 1483.93109 Eur. J. Control 63, 133-142 (2022). MSC: 93B35 93D20 93C10 70M20 PDF BibTeX XML Cite \textit{R. Nadafi} and \textit{M. Kabganian}, Eur. J. Control 63, 133--142 (2022; Zbl 1483.93109) Full Text: DOI OpenURL
Chen, Guanjun; Huo, Wei Angular velocity stabilization of underactuated rigid satellites based on energy shaping. (English) Zbl 1483.93500 J. Franklin Inst. 359, No. 4, 1558-1581 (2022). MSC: 93D20 70M20 PDF BibTeX XML Cite \textit{G. Chen} and \textit{W. Huo}, J. Franklin Inst. 359, No. 4, 1558--1581 (2022; Zbl 1483.93500) Full Text: DOI OpenURL
Patsis, P. A.; Manos, T.; Chaves-Velasquez, L.; Skokos, Ch.; Puerari, I. Chaoticity in the vicinity of complex unstable periodic orbits in galactic type potentials. (English) Zbl 1486.85018 Physica D 429, Article ID 133050, 15 p. (2022). MSC: 85A15 70M20 70H40 81Q50 70K50 70G10 83C55 76E20 PDF BibTeX XML Cite \textit{P. A. Patsis} et al., Physica D 429, Article ID 133050, 15 p. (2022; Zbl 1486.85018) Full Text: DOI arXiv OpenURL
Oruc, Goksu; Natali, Fábio; Borluk, Handan; Muslu, Gulcin M. On the stability of solitary wave solutions for a generalized fractional Benjamin-Bona-Mahony equation. (English) Zbl 1482.76055 Nonlinearity 35, No. 3, 1152-1169 (2022). MSC: 76E99 76B25 35Q51 26A33 PDF BibTeX XML Cite \textit{G. Oruc} et al., Nonlinearity 35, No. 3, 1152--1169 (2022; Zbl 1482.76055) Full Text: DOI arXiv OpenURL
Peng, Chao; Zhang, Hao; Wen, Changxuan; Zhu, Zhengfan; Gao, Yang Exploring more solutions for low-energy transfers to lunar distant retrograde orbits. (English) Zbl 1482.70025 Celest. Mech. Dyn. Astron. 134, No. 1, Paper No. 4, 38 p. (2022). MSC: 70M20 PDF BibTeX XML Cite \textit{C. Peng} et al., Celest. Mech. Dyn. Astron. 134, No. 1, Paper No. 4, 38 p. (2022; Zbl 1482.70025) Full Text: DOI OpenURL
Lan, Enhao Orbital stability of nonlinear Schrödinger-Kirchhoff equations. (English) Zbl 1482.35034 Mediterr. J. Math. 19, No. 1, Paper No. 36, 15 p. (2022). MSC: 35B35 35B40 35Q55 35R09 PDF BibTeX XML Cite \textit{E. Lan}, Mediterr. J. Math. 19, No. 1, Paper No. 36, 15 p. (2022; Zbl 1482.35034) Full Text: DOI OpenURL
Goloshchapova, Nataliia Dynamical and variational properties of the NLS-\( \delta'_s\) equation on the star graph. (English) Zbl 1483.35211 J. Differ. Equations 310, 1-44 (2022). MSC: 35Q55 35Q41 35Q40 35B35 35B33 35B32 35B45 PDF BibTeX XML Cite \textit{N. Goloshchapova}, J. Differ. Equations 310, 1--44 (2022; Zbl 1483.35211) Full Text: DOI arXiv OpenURL
López Ortí, José A.; Forner Gumbau, Manuel; Barreda Rochera, Miguel An alternative method to construct a consistent second-order theory on the equilibrium figures of rotating celestial bodies. (English) Zbl 1483.70035 J. Comput. Appl. Math. 404, Article ID 113305, 14 p. (2022). MSC: 70F15 70E50 70G10 70M20 PDF BibTeX XML Cite \textit{J. A. López Ortí} et al., J. Comput. Appl. Math. 404, Article ID 113305, 14 p. (2022; Zbl 1483.70035) Full Text: DOI OpenURL
Liu, Jiayin; He, Zhiqian; Feng, Binhua Existence and stability of standing waves for the inhomogeneous Gross-Pitaevskii equation with a partial confinement. (English) Zbl 07413084 J. Math. Anal. Appl. 506, No. 1, Article ID 125604, 20 p. (2022). MSC: 35Q55 35B35 35B44 35A15 35J61 35A01 PDF BibTeX XML Cite \textit{J. Liu} et al., J. Math. Anal. Appl. 506, No. 1, Article ID 125604, 20 p. (2022; Zbl 07413084) Full Text: DOI OpenURL
Zhang, Guoqing; Li, Yanru; Ding, Zhonghai Existence and stability of vector solitary waves for nonlinear Schrödinger systems of Hartree-type with Bessel potential. (English) Zbl 07412943 J. Math. Anal. Appl. 505, No. 1, Article ID 125452, 21 p. (2022). MSC: 35Q55 35Q40 35A01 35A02 35A15 35B35 35C08 76A15 33C10 PDF BibTeX XML Cite \textit{G. Zhang} et al., J. Math. Anal. Appl. 505, No. 1, Article ID 125452, 21 p. (2022; Zbl 07412943) Full Text: DOI OpenURL
Wang, Yile Existence of stable standing waves for the nonlinear Schrödinger equation with inverse-power potential and combined power-type and Choquard-type nonlinearities. (English) Zbl 1485.35348 AIMS Math. 6, No. 6, 5837-5850 (2021). MSC: 35Q55 PDF BibTeX XML Cite \textit{Y. Wang}, AIMS Math. 6, No. 6, 5837--5850 (2021; Zbl 1485.35348) Full Text: DOI OpenURL
Giri, Shobhit; Nandan, Hemwati; Joshi, Lokesh Kumar; Maharaj, Sunil D. Stability analysis of circular orbits around a charged BTZ black hole spacetime in a nonlinear electrodynamics model via Lyapunov exponents. (English) Zbl 07501760 Mod. Phys. Lett. A 36, No. 31, Article ID 2150220, 14 p. (2021). MSC: 83C57 70M20 83C22 34D08 70K55 30C35 83C55 76E20 PDF BibTeX XML Cite \textit{S. Giri} et al., Mod. Phys. Lett. A 36, No. 31, Article ID 2150220, 14 p. (2021; Zbl 07501760) Full Text: DOI OpenURL
Ghosh, Mithun Dark matter halo with charge in pseudo-spheroidal geometry. (English) Zbl 1487.83059 Mod. Phys. Lett. A 36, No. 25, Article ID 2150178, 15 p. (2021). MSC: 83C56 83C55 76X05 76E20 83C50 78A45 14B25 70M20 PDF BibTeX XML Cite \textit{M. Ghosh}, Mod. Phys. Lett. A 36, No. 25, Article ID 2150178, 15 p. (2021; Zbl 1487.83059) Full Text: DOI OpenURL
Li, Ji; Liu, Yue Stability of solitary waves for the modified Camassa-Holm equation. (English) Zbl 1483.35164 Ann. PDE 7, No. 2, Paper No. 14, 35 p. (2021). MSC: 35Q35 35Q51 PDF BibTeX XML Cite \textit{J. Li} and \textit{Y. Liu}, Ann. PDE 7, No. 2, Paper No. 14, 35 p. (2021; Zbl 1483.35164) Full Text: DOI OpenURL
Bardin, Boris S.; Chekina, Evgeniya A. On the orbital stability of pendulum-like oscillations of a heavy rigid body with a fixed point in the Bobylev-Steklov case. (English) Zbl 07499147 Russ. J. Nonlinear Dyn. 17, No. 4, 453-464 (2021). MSC: 70K30 70K45 37N05 PDF BibTeX XML Cite \textit{B. S. Bardin} and \textit{E. A. Chekina}, Russ. J. Nonlinear Dyn. 17, No. 4, 453--464 (2021; Zbl 07499147) Full Text: DOI MNR OpenURL
Lagodzinskyi, O. E.; Timokha, A. N. Counter- and co-directed swirling-type waves due to orbital excitations of a square-base tank. (English) Zbl 07498756 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2021, No. 6, 45-51 (2021). MSC: 76B10 76D27 76B45 PDF BibTeX XML Cite \textit{O. E. Lagodzinskyi} and \textit{A. N. Timokha}, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2021, No. 6, 45--51 (2021; Zbl 07498756) Full Text: DOI OpenURL
Banerjee, Indrani; Chakraborty, Sumanta; SenGupta, Soumitra Looking for extra dimensions in the observed quasi-periodic oscillations of black holes. (English) Zbl 1487.85007 J. Cosmol. Astropart. Phys. 2021, No. 9, Paper No. 37, 34 p. (2021). MSC: 85A15 83C57 83D05 83F05 70M20 83E15 93C55 76E20 35B34 PDF BibTeX XML Cite \textit{I. Banerjee} et al., J. Cosmol. Astropart. Phys. 2021, No. 9, Paper No. 37, 34 p. (2021; Zbl 1487.85007) Full Text: DOI arXiv OpenURL
Ling, Xing-qian; Zhang, Wei-guo Influence of nonlinear terms on orbital stability of solitary wave solutions to the generalized symmetric regularized-long-wave equation. (English) Zbl 1482.35035 J. Nonlinear Math. Phys. 28, No. 4, 390-413 (2021). MSC: 35B35 35L05 35C07 PDF BibTeX XML Cite \textit{X.-q. Ling} and \textit{W.-g. Zhang}, J. Nonlinear Math. Phys. 28, No. 4, 390--413 (2021; Zbl 1482.35035) Full Text: DOI OpenURL
Di, Huafei; Li, Ji; Liu, Yue Orbital stability of solitary waves and a Liouville-type property to the cubic Camassa-Holm-type equation. (English) Zbl 1487.35057 Physica D 428, Article ID 133024, 15 p. (2021). Reviewer: Nilay Duruk Mutlubas (İstanbul) MSC: 35B35 35C08 35Q35 PDF BibTeX XML Cite \textit{H. Di} et al., Physica D 428, Article ID 133024, 15 p. (2021; Zbl 1487.35057) Full Text: DOI OpenURL
Teodoro, Matheus C.; Collodel, Lucas G.; Kunz, Jutta Retrograde Polish doughnuts around boson stars. (English) Zbl 1485.85019 J. Cosmol. Astropart. Phys. 2021, No. 3, Paper No. 63, 27 p. (2021). MSC: 85A15 83C55 76E20 70E05 14M25 70M20 PDF BibTeX XML Cite \textit{M. C. Teodoro} et al., J. Cosmol. Astropart. Phys. 2021, No. 3, Paper No. 63, 27 p. (2021; Zbl 1485.85019) Full Text: DOI arXiv OpenURL
Manzi, M.; Topputo, F. A flow-informed strategy for ballistic capture orbit generation. (English) Zbl 1482.70026 Celest. Mech. Dyn. Astron. 133, No. 11-12, Paper No. 54, 16 p. (2021). MSC: 70P05 70M20 PDF BibTeX XML Cite \textit{M. Manzi} and \textit{F. Topputo}, Celest. Mech. Dyn. Astron. 133, No. 11--12, Paper No. 54, 16 p. (2021; Zbl 1482.70026) Full Text: DOI OpenURL
Ardila, Alex H.; Cely, Liliana; Goloshchapova, Nataliia Instability of ground states for the NLS equation with potential on the star graph. (English) Zbl 1483.35195 J. Evol. Equ. 21, No. 4, 3703-3732 (2021). MSC: 35Q55 35Q41 35Q40 35B35 49J40 PDF BibTeX XML Cite \textit{A. H. Ardila} et al., J. Evol. Equ. 21, No. 4, 3703--3732 (2021; Zbl 1483.35195) Full Text: DOI arXiv OpenURL
Moon, Byungsoo Orbital stability of periodic peakons for the generalized modified Camassa-Holm equation. (English) Zbl 1480.35092 Discrete Contin. Dyn. Syst., Ser. S 14, No. 12, 4409-4437 (2021). MSC: 35C08 35B10 35B35 35B40 35G25 PDF BibTeX XML Cite \textit{B. Moon}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 12, 4409--4437 (2021; Zbl 1480.35092) Full Text: DOI OpenURL
Pugliese, D.; Montani, G. Aspects of GRMHD in high-energy astrophysics: geometrically thick disks and tori agglomerates around spinning black holes. (English) Zbl 1483.85010 Gen. Relativ. Gravitation 53, No. 5, Paper No. 51, 51 p. (2021). MSC: 85A15 83C57 83C55 76W05 70M20 70F35 14M25 83C22 35B35 82D10 PDF BibTeX XML Cite \textit{D. Pugliese} and \textit{G. Montani}, Gen. Relativ. Gravitation 53, No. 5, Paper No. 51, 51 p. (2021; Zbl 1483.85010) Full Text: DOI OpenURL
Charalampidis, Efstathios G.; Hur, Vera Mikyoung Numerical bifurcation and stability for the capillary-gravity Whitham equation. (English) Zbl 07428541 Wave Motion 106, Article ID 102793, 18 p. (2021). MSC: 76-XX 83-XX PDF BibTeX XML Cite \textit{E. G. Charalampidis} and \textit{V. M. Hur}, Wave Motion 106, Article ID 102793, 18 p. (2021; Zbl 07428541) Full Text: DOI arXiv OpenURL
Comech, Andrew; Kopylova, Elena Orbital stability and spectral properties of solitary waves of Klein-Gordon equation with concentrated nonlinearity. (English) Zbl 1478.35080 Commun. Pure Appl. Anal. 20, No. 6, 2187-2209 (2021). MSC: 35C08 35B35 35L15 35L71 PDF BibTeX XML Cite \textit{A. Comech} and \textit{E. Kopylova}, Commun. Pure Appl. Anal. 20, No. 6, 2187--2209 (2021; Zbl 1478.35080) Full Text: DOI OpenURL
Ling, Xing-qian; Zhang, Wei-guo Orbital stability of dn periodic solutions for the generalized symmetric regularized-long-wave equation. (English) Zbl 07424153 Appl. Math. Comput. 405, Article ID 126249, 10 p. (2021). MSC: 35Q53 35Q51 37K45 PDF BibTeX XML Cite \textit{X.-q. Ling} and \textit{W.-g. Zhang}, Appl. Math. Comput. 405, Article ID 126249, 10 p. (2021; Zbl 07424153) Full Text: DOI OpenURL
De Blasi, Irene; Celletti, Alessandra; Efthymiopoulos, Christos Semi-analytical estimates for the orbital stability of Earth’s satellites. (English) Zbl 1476.70081 J. Nonlinear Sci. 31, No. 6, Paper No. 93, 37 p. (2021). MSC: 70M20 70F15 37N05 34C60 PDF BibTeX XML Cite \textit{I. De Blasi} et al., J. Nonlinear Sci. 31, No. 6, Paper No. 93, 37 p. (2021; Zbl 1476.70081) Full Text: DOI arXiv OpenURL
Günther, Sebastian; Körner, Jacob; Lebeda, Timo; Pötzl, Bastian; Rein, Gerhard; Straub, Christopher; Weber, Jörg A numerical stability analysis for the Einstein-Vlasov system. (English) Zbl 1479.83142 Classical Quantum Gravity 38, No. 3, Article ID 035003, 27 p. (2021). MSC: 83C57 82C70 70M20 34E20 65L07 PDF BibTeX XML Cite \textit{S. Günther} et al., Classical Quantum Gravity 38, No. 3, Article ID 035003, 27 p. (2021; Zbl 1479.83142) Full Text: DOI arXiv OpenURL
Carles, Rémi; Sparber, Christof Orbital stability vs. scattering in the cubic-quintic Schrödinger equation. (English) Zbl 1471.35254 Rev. Math. Phys. 33, No. 3, Article ID 2150004, 27 p. (2021). MSC: 35Q55 35A01 35C08 35P25 37K40 PDF BibTeX XML Cite \textit{R. Carles} and \textit{C. Sparber}, Rev. Math. Phys. 33, No. 3, Article ID 2150004, 27 p. (2021; Zbl 1471.35254) Full Text: DOI arXiv OpenURL
Vincent, Aguda Ekele; Perdiou, Angela E. Poynting-Robertson and oblateness effects on the equilibrium points of the perturbed R3BP: application on Cen X-4 binary system. (English) Zbl 1476.70031 Rassias, Themistocles M. (ed.), Nonlinear analysis, differential equations, and applications. Cham: Springer. Springer Optim. Appl. 173, 131-147 (2021). MSC: 70F07 70F15 70M20 70K42 PDF BibTeX XML Cite \textit{A. E. Vincent} and \textit{A. E. Perdiou}, Springer Optim. Appl. 173, 131--147 (2021; Zbl 1476.70031) Full Text: DOI OpenURL
Oliveira, Filipe; Pastor, Ademir On a Schrödinger system arizing in nonlinear optics. (English) Zbl 1479.35844 Anal. Math. Phys. 11, No. 3, Paper No. 123, 38 p. (2021). MSC: 35Q60 35Q41 35Q55 35Q51 35C07 35B44 35B35 35A01 35A02 78A60 PDF BibTeX XML Cite \textit{F. Oliveira} and \textit{A. Pastor}, Anal. Math. Phys. 11, No. 3, Paper No. 123, 38 p. (2021; Zbl 1479.35844) Full Text: DOI arXiv OpenURL
Csobo, Elek Existence and orbital stability of standing waves to a nonlinear Schrödinger equation with inverse square potential on the half-line. (English) Zbl 1479.35770 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 5, Paper No. 54, 32 p. (2021). MSC: 35Q55 35Q41 35B35 35B44 35A01 35A02 PDF BibTeX XML Cite \textit{E. Csobo}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 5, Paper No. 54, 32 p. (2021; Zbl 1479.35770) Full Text: DOI arXiv OpenURL
Colombi, Francesco; Colagrossi, Andrea; Lavagna, Michèle Floquet modes and stability analysis of periodic orbit-attitude solutions along Earth-Moon halo orbits. (English) Zbl 1472.70023 Celest. Mech. Dyn. Astron. 133, No. 7, Paper No. 34, 33 p. (2021). MSC: 70F07 70K20 70M20 PDF BibTeX XML Cite \textit{F. Colombi} et al., Celest. Mech. Dyn. Astron. 133, No. 7, Paper No. 34, 33 p. (2021; Zbl 1472.70023) Full Text: DOI OpenURL
Montalto, Riccardo The Navier-Stokes equation with time quasi-periodic external force: existence and stability of quasi-periodic solutions. (English) Zbl 1477.35130 J. Dyn. Differ. Equations 33, No. 3, 1341-1362 (2021). MSC: 35Q30 76D05 35B15 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{R. Montalto}, J. Dyn. Differ. Equations 33, No. 3, 1341--1362 (2021; Zbl 1477.35130) Full Text: DOI arXiv OpenURL
Bahri, Yakine; Ibrahim, Slim; Kikuchi, Hiroaki Transverse stability of line soliton and characterization of ground state for wave guide Schrödinger equations. (English) Zbl 1471.76018 J. Dyn. Differ. Equations 33, No. 3, 1297-1339 (2021). MSC: 76B25 76E30 35Q51 35Q55 PDF BibTeX XML Cite \textit{Y. Bahri} et al., J. Dyn. Differ. Equations 33, No. 3, 1297--1339 (2021; Zbl 1471.76018) Full Text: DOI arXiv OpenURL
Sun, Wen-Rong; Deconinck, Bernard Stability of elliptic solutions to the sinh-Gordon equation. (English) Zbl 1472.35040 J. Nonlinear Sci. 31, No. 4, Paper No. 63, 23 p. (2021). MSC: 35B35 35C07 35L71 37K45 33E05 PDF BibTeX XML Cite \textit{W.-R. Sun} and \textit{B. Deconinck}, J. Nonlinear Sci. 31, No. 4, Paper No. 63, 23 p. (2021; Zbl 1472.35040) Full Text: DOI arXiv OpenURL
Kowalczyk, Michał; Martel, Yvan; Muñoz, Claudio; Van Den Bosch, Hanne A sufficient condition for asymptotic stability of kinks in general (1+1)-scalar field models. (English) Zbl 1469.35150 Ann. PDE 7, No. 1, Paper No. 10, 98 p. (2021). MSC: 35L71 35B35 35B40 37K40 PDF BibTeX XML Cite \textit{M. Kowalczyk} et al., Ann. PDE 7, No. 1, Paper No. 10, 98 p. (2021; Zbl 1469.35150) Full Text: DOI arXiv OpenURL
Aleksandrov, A. Yu.; Andriyanova, N. R.; Tikhonov, A. A. Averaging method in the problem of the Lorentz stabilization of the indirect equilibrium position of a satellite in the orbital coordinate system. (English. Russian original) Zbl 1479.70066 Vestn. St. Petersbg. Univ., Math. 54, No. 1, 95-105 (2021); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 8(66), No. 1, 123-137 (2021). MSC: 70M20 34D20 PDF BibTeX XML Cite \textit{A. Yu. Aleksandrov} et al., Vestn. St. Petersbg. Univ., Math. 54, No. 1, 95--105 (2021; Zbl 1479.70066); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 8(66), No. 1, 123--137 (2021) Full Text: DOI OpenURL
Zeng, Xiaping; Liang, Zhiqing; Pang, Guoping; Zhou, Zewen The prevention and control mathematical model for the pomacea canaliculata-rice with impulsive state feedback. (Chinese. English summary) Zbl 1474.92137 J. Sichuan Norm. Univ., Nat. Sci. 44, No. 1, 73-83 (2021). MSC: 92D45 93B52 PDF BibTeX XML Cite \textit{X. Zeng} et al., J. Sichuan Norm. Univ., Nat. Sci. 44, No. 1, 73--83 (2021; Zbl 1474.92137) Full Text: DOI OpenURL
Petukhov, Vyacheslav Georgievich; Ryazanov, Vladimir Vladimirovich Artificial libration points in the task of towing space debris by an ion beam. (Russian. English summary) Zbl 1464.70018 Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 21, No. 2, 202-212 (2021). MSC: 70M20 PDF BibTeX XML Cite \textit{V. G. Petukhov} and \textit{V. V. Ryazanov}, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 21, No. 2, 202--212 (2021; Zbl 1464.70018) Full Text: DOI MNR OpenURL
Rosales, José J.; Jorba, Àngel; Jorba-Cuscó, Marc Families of Halo-like invariant tori around \(L_2\) in the Earth-Moon bicircular problem. (English) Zbl 1472.70032 Celest. Mech. Dyn. Astron. 133, No. 4, Paper No. 16, 30 p. (2021). Reviewer: Maria Gousidou-Koutita (Thessaloniki) MSC: 70F10 70F15 70K43 70K42 70M20 70K60 70H09 70H12 PDF BibTeX XML Cite \textit{J. J. Rosales} et al., Celest. Mech. Dyn. Astron. 133, No. 4, Paper No. 16, 30 p. (2021; Zbl 1472.70032) Full Text: DOI OpenURL
Feng, Binhua; Zhu, Shihui Stability and instability of standing waves for the fractional nonlinear Schrödinger equations. (English) Zbl 1471.35256 J. Differ. Equations 292, 287-324 (2021). MSC: 35Q55 35J20 35B35 35R11 35B44 PDF BibTeX XML Cite \textit{B. Feng} and \textit{S. Zhu}, J. Differ. Equations 292, 287--324 (2021; Zbl 1471.35256) Full Text: DOI OpenURL
Gassot, Louise On the orbital stability of a family of travelling waves for the cubic Schrödinger equation on the Heisenberg group. (Autour de la stabilité orbitale d’une famille d’ondes progressives pour l’équation de Schrödinger cubique sur le groupe de Heisenberg.) (English. French summary) Zbl 1469.35194 Bull. Soc. Math. Fr. 149, No. 1, 15-54 (2021). MSC: 35Q55 35B35 35C07 43A80 35R03 PDF BibTeX XML Cite \textit{L. Gassot}, Bull. Soc. Math. Fr. 149, No. 1, 15--54 (2021; Zbl 1469.35194) Full Text: DOI arXiv OpenURL
Detomazi Almeida, Gisele; Cristófani, Fabrício; Natali, Fábio On the stability of periodic traveling waves for the modified Kawahara equation. (English) Zbl 1464.76043 Appl. Anal. 100, No. 8, 1660-1667 (2021). MSC: 76E99 76B15 35Q35 PDF BibTeX XML Cite \textit{G. Detomazi Almeida} et al., Appl. Anal. 100, No. 8, 1660--1667 (2021; Zbl 1464.76043) Full Text: DOI arXiv OpenURL
Zhang, Yong; Xu, Fei; Li, Fengquan The existence and decay of solitary waves for the Fornberg-Whitham equation. (English) Zbl 1464.35270 Z. Angew. Math. Phys. 72, No. 3, Paper No. 112, 12 p. (2021). MSC: 35Q35 76B15 35A01 35C08 35B35 35B10 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Z. Angew. Math. Phys. 72, No. 3, Paper No. 112, 12 p. (2021; Zbl 1464.35270) Full Text: DOI arXiv OpenURL
Petruşel, Adrian; Petruşel, Gabriela; Yao, Jen-Chih Graph contractions in vector-valued metric spaces and applications. (English) Zbl 07339864 Optimization 70, No. 4, 763-775 (2021). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{A. Petruşel} et al., Optimization 70, No. 4, 763--775 (2021; Zbl 07339864) Full Text: DOI OpenURL
Gassot, Louise The third order Benjamin-Ono equation on the torus: well-posedness, traveling waves and stability. (English) Zbl 1467.37061 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 3, 815-840 (2021). Reviewer: Vladimir Răsvan (Craiova) MSC: 37K10 37E30 37K35 35Q53 35C07 PDF BibTeX XML Cite \textit{L. Gassot}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 3, 815--840 (2021; Zbl 1467.37061) Full Text: DOI arXiv OpenURL
Natali, Fábio; Cardoso, Eleomar Existence and orbital stability of standing waves for the 1D Schrödinger-Kirchhoff equation. (English) Zbl 1460.35030 J. Math. Anal. Appl. 500, No. 1, Article ID 125098, 20 p. (2021). MSC: 35B35 35C08 35Q55 35R09 PDF BibTeX XML Cite \textit{F. Natali} and \textit{E. Cardoso}, J. Math. Anal. Appl. 500, No. 1, Article ID 125098, 20 p. (2021; Zbl 1460.35030) Full Text: DOI arXiv OpenURL
Feng, Binhua; Cao, Leijin; Liu, Jiayin Existence of stable standing waves for the Lee-Huang-Yang corrected dipolar Gross-Pitaevskii equation. (English) Zbl 1460.35153 Appl. Math. Lett. 115, Article ID 106952, 8 p. (2021). MSC: 35J61 35Q55 35A01 PDF BibTeX XML Cite \textit{B. Feng} et al., Appl. Math. Lett. 115, Article ID 106952, 8 p. (2021; Zbl 1460.35153) Full Text: DOI OpenURL
Schulz, Volker H. Book review of: A. J. Hahn, Basic calculus of planetary orbits and interplanetary flight. The missions of the Voyagers, Cassini, and Juno. (English) Zbl 1455.00022 SIAM Rev. 63, No. 1, 244-245 (2021). MSC: 00A17 85-01 85A05 70-01 70F15 70F05 70M20 70P05 70H40 70H14 83C10 PDF BibTeX XML Cite \textit{V. H. Schulz}, SIAM Rev. 63, No. 1, 244--245 (2021; Zbl 1455.00022) OpenURL
Fukaya, Noriyoshi; Hayashi, Masayuki Instability of algebraic standing waves for nonlinear Schrödinger equations with double power nonlinearities. (English) Zbl 1458.35387 Trans. Am. Math. Soc. 374, No. 2, 1421-1447 (2021). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q41 35A15 35B35 PDF BibTeX XML Cite \textit{N. Fukaya} and \textit{M. Hayashi}, Trans. Am. Math. Soc. 374, No. 2, 1421--1447 (2021; Zbl 1458.35387) Full Text: DOI arXiv OpenURL
Cao, Daomin; Wan, Jie; Wang, Guodong; Zhan, Weicheng Rotating vortex patches for the planar Euler equations in a disk. (English) Zbl 1455.35180 J. Differ. Equations 275, 509-532 (2021). MSC: 35Q31 35A15 35B35 76B47 PDF BibTeX XML Cite \textit{D. Cao} et al., J. Differ. Equations 275, 509--532 (2021; Zbl 1455.35180) Full Text: DOI arXiv OpenURL
Churilov, Alexander N. Orbital stability of periodic solutions of an impulsive system with a linear continuous-time part. (English) Zbl 1484.34104 AIMS Math. 5, No. 1, 96-110 (2020). MSC: 34C25 34A37 34D20 PDF BibTeX XML Cite \textit{A. N. Churilov}, AIMS Math. 5, No. 1, 96--110 (2020; Zbl 1484.34104) Full Text: DOI OpenURL
Zheng, Xiaoxiao; Xin, Jie; Gu, Yongyi Orbital stability of solitary waves to the coupled compound KdV and MKdV equations with two components. (English) Zbl 1484.35351 AIMS Math. 5, No. 4, 3298-3320 (2020). MSC: 35Q55 37K45 PDF BibTeX XML Cite \textit{X. Zheng} et al., AIMS Math. 5, No. 4, 3298--3320 (2020; Zbl 1484.35351) Full Text: DOI OpenURL
Pebeu, M. F. Kepnang; Ndjomatchoua, Frank T.; Mbong, T. L. M. Djomo; Gninzanlong, Carlos L.; Tabi, C. B.; Kofane, T. C. Orbital stability and homoclinic bifurcation in a parametrized deformable double-well potential. (English) Zbl 07503999 Chaos Solitons Fractals 130, Article ID 109411, 8 p. (2020). MSC: 70K55 70K50 70K20 PDF BibTeX XML Cite \textit{M. F. K. Pebeu} et al., Chaos Solitons Fractals 130, Article ID 109411, 8 p. (2020; Zbl 07503999) Full Text: DOI OpenURL
Angulo Pava, Jaime; Goloshchapova, Nataliia Stability properties of standing waves for NLS equations with the \(\delta^\prime\)-interaction. (English) Zbl 07490560 Physica D 403, Article ID 132332, 24 p. (2020). MSC: 35Q55 35B20 35B35 37B30 81Q10 PDF BibTeX XML Cite \textit{J. Angulo Pava} and \textit{N. Goloshchapova}, Physica D 403, Article ID 132332, 24 p. (2020; Zbl 07490560) Full Text: DOI OpenURL
Zheng, Xiaoxiao; Wu, Hui Orbital stability of periodic traveling wave solutions to the coupled compound KdV and MKdV equations with two components. (English) Zbl 07485153 Math. Found. Comput. 3, No. 1, 11-24 (2020). MSC: 35Q53 37K45 39A23 35C07 35C08 35B10 35B35 35B40 33E05 34L15 PDF BibTeX XML Cite \textit{X. Zheng} and \textit{H. Wu}, Math. Found. Comput. 3, No. 1, 11--24 (2020; Zbl 07485153) Full Text: DOI OpenURL
Zheng, Xiaoxiao; Di, Huafei; Peng, Xiaoming Orbital stability of solitary waves for the generalized long-short wave resonance equations with a cubic-quintic strong nonlinear term. (English) Zbl 07461012 J. Inequal. Appl. 2020, Paper No. 238, 18 p. (2020). MSC: 35Q55 35B35 PDF BibTeX XML Cite \textit{X. Zheng} et al., J. Inequal. Appl. 2020, Paper No. 238, 18 p. (2020; Zbl 07461012) Full Text: DOI OpenURL
Petruşel, Adrian; Petruşel, Gabriela; Wong, Mu-Ming Fixed point results for orbital contractions in complete gauge spaces with applications. (English) Zbl 1460.54054 J. Nonlinear Convex Anal. 21, No. 4, 791-803 (2020). MSC: 54H25 54E40 54F05 34A12 PDF BibTeX XML Cite \textit{A. Petruşel} et al., J. Nonlinear Convex Anal. 21, No. 4, 791--803 (2020; Zbl 1460.54054) Full Text: Link OpenURL
Kilin, Aleksandr Aleksandrovich; Artemova, Elizabeta Markovna Stability of regular vortex polygons in Bose-Einstein condensate. (Russian. English summary) Zbl 1479.76036 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 56, 20-29 (2020). MSC: 76E07 76U05 76Y05 PDF BibTeX XML Cite \textit{A. A. Kilin} and \textit{E. M. Artemova}, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 56, 20--29 (2020; Zbl 1479.76036) Full Text: DOI MNR OpenURL
Liang, Zhiqing; Huang, Junhua; Zeng, Xiaping; Zhou, Zewen Qualitative analysis of Leslie system with mutual interference and impulsive state feedback control. (Chinese. English summary) Zbl 1474.34315 Math. Pract. Theory 50, No. 14, 241-251 (2020). MSC: 34C60 34C25 34D23 93B52 92D25 PDF BibTeX XML Cite \textit{Z. Liang} et al., Math. Pract. Theory 50, No. 14, 241--251 (2020; Zbl 1474.34315) OpenURL
Gassot, Louise Radially symmetric traveling waves for the Schrödinger equation on the Heisenberg group. (English) Zbl 1462.35427 Pure Appl. Anal. 2, No. 4, 739-794 (2020). MSC: 35R03 35B35 35C07 35Q55 43A80 PDF BibTeX XML Cite \textit{L. Gassot}, Pure Appl. Anal. 2, No. 4, 739--794 (2020; Zbl 1462.35427) Full Text: DOI arXiv OpenURL
Chifu, Cristian; Petruşel, Adrian; Petruşel, Gabriela Fixed point results for non-self nonlinear graphic contractions in complete metric spaces with applications. (English) Zbl 1458.54033 J. Fixed Point Theory Appl. 22, No. 4, Paper No. 97, 16 p. (2020). MSC: 54H25 54E40 54F05 54E50 PDF BibTeX XML Cite \textit{C. Chifu} et al., J. Fixed Point Theory Appl. 22, No. 4, Paper No. 97, 16 p. (2020; Zbl 1458.54033) Full Text: DOI OpenURL
Cristófani, Fabrício; Natali, Fábio; Pastor, Ademir Periodic traveling-wave solutions for regularized dispersive equations: sufficient conditions for orbital stability with applications. (English) Zbl 1461.35089 Commun. Math. Sci. 18, No. 3, 613-634 (2020). MSC: 35C07 35B10 35B35 76B15 PDF BibTeX XML Cite \textit{F. Cristófani} et al., Commun. Math. Sci. 18, No. 3, 613--634 (2020; Zbl 1461.35089) Full Text: DOI arXiv OpenURL
Cristófani, Fabrício; Pastor, Ademir Nonlinear stability of periodic-wave solutions for systems of dispersive equations. (English) Zbl 1460.35028 Commun. Pure Appl. Anal. 19, No. 10, 5015-5032 (2020). MSC: 35B35 35C07 35F50 35Q51 35Q53 PDF BibTeX XML Cite \textit{F. Cristófani} and \textit{A. Pastor}, Commun. Pure Appl. Anal. 19, No. 10, 5015--5032 (2020; Zbl 1460.35028) Full Text: DOI arXiv OpenURL
Bardin, B. S. On a method of introducing local coordinates in the problem of the orbital stability of planar periodic motions of a rigid body. (English) Zbl 1470.70024 Russ. J. Nonlinear Dyn. 16, No. 4, 581-594 (2020). Reviewer: Giovanni Rastelli (Vercelli) MSC: 70H12 70E50 70M20 PDF BibTeX XML Cite \textit{B. S. Bardin}, Russ. J. Nonlinear Dyn. 16, No. 4, 581--594 (2020; Zbl 1470.70024) Full Text: DOI MNR OpenURL
Lee, Manseob Orbital shadowing property on chain transitive sets for generic diffeomorphisms. (English) Zbl 1458.37031 Acta Univ. Sapientiae, Math. 12, No. 1, 146-154 (2020). MSC: 37C50 37C05 37C20 37B65 37D30 PDF BibTeX XML Cite \textit{M. Lee}, Acta Univ. Sapientiae, Math. 12, No. 1, 146--154 (2020; Zbl 1458.37031) Full Text: DOI OpenURL
Gutnik, S. A.; Sarychev, V. A. Mathematical simulation of satellite motion with an aerodynamic attitude control system influenced by active damping torques. (English. Russian original) Zbl 1453.93192 Comput. Math. Math. Phys. 60, No. 10, 1721-1729 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 10, 1777-1786 (2020). MSC: 93D20 93C95 70M20 PDF BibTeX XML Cite \textit{S. A. Gutnik} and \textit{V. A. Sarychev}, Comput. Math. Math. Phys. 60, No. 10, 1721--1729 (2020; Zbl 1453.93192); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 10, 1777--1786 (2020) Full Text: DOI OpenURL
Ismail, A. I. The stability conditions for a heavy solid motion. (English) Zbl 1459.70020 Math. Probl. Eng. 2020, Article ID 8829439, 4 p. (2020). MSC: 70E50 34D20 70M20 70E05 PDF BibTeX XML Cite \textit{A. I. Ismail}, Math. Probl. Eng. 2020, Article ID 8829439, 4 p. (2020; Zbl 1459.70020) Full Text: DOI OpenURL
Geyer, Anna; Pelinovsky, Dmitry E. Spectral instability of the peaked periodic wave in the reduced Ostrovsky equations. (English) Zbl 1454.35024 Proc. Am. Math. Soc. 148, No. 12, 5109-5125 (2020). Reviewer: Guobao Zhang (Lanzhou) MSC: 35B35 35Q35 35B10 PDF BibTeX XML Cite \textit{A. Geyer} and \textit{D. E. Pelinovsky}, Proc. Am. Math. Soc. 148, No. 12, 5109--5125 (2020; Zbl 1454.35024) Full Text: DOI arXiv OpenURL
Li, Xinfu; Zhao, Junying Orbital stability of standing waves for Schrödinger type equations with slowly decaying linear potential. (English) Zbl 1443.35146 Comput. Math. Appl. 79, No. 2, 303-316 (2020). MSC: 35Q55 35B35 35C08 PDF BibTeX XML Cite \textit{X. Li} and \textit{J. Zhao}, Comput. Math. Appl. 79, No. 2, 303--316 (2020; Zbl 1443.35146) Full Text: DOI arXiv OpenURL
Sukhov, E. A. Stability and bifurcation of resonance periodic motions of a symmetric satellite. (English. Russian original) Zbl 1479.70078 J. Math. Sci., New York 250, No. 1, 155-165 (2020); translation from Probl. Mat. Anal. 104, 139-148 (2020). MSC: 70M20 70K20 70K42 70K50 34C23 34D30 PDF BibTeX XML Cite \textit{E. A. Sukhov}, J. Math. Sci., New York 250, No. 1, 155--165 (2020; Zbl 1479.70078); translation from Probl. Mat. Anal. 104, 139--148 (2020) Full Text: DOI OpenURL
Natali, Fábio; Amaral, Sabrina Odd periodic waves and stability results for the defocusing mass-critical Korteweg-de Vries equation. (English) Zbl 1440.76015 Math. Methods Appl. Sci. 43, No. 6, 3253-3259 (2020). MSC: 76B15 37K45 35Q53 PDF BibTeX XML Cite \textit{F. Natali} and \textit{S. Amaral}, Math. Methods Appl. Sci. 43, No. 6, 3253--3259 (2020; Zbl 1440.76015) Full Text: DOI OpenURL
Sun, Ruoci Filtering the \(L^2\)-critical focusing Schrödinger equation. (English) Zbl 1447.35301 Discrete Contin. Dyn. Syst. 40, No. 10, 5973-5990 (2020). MSC: 35Q55 35B35 35P25 35C07 30H10 35A01 35A02 PDF BibTeX XML Cite \textit{R. Sun}, Discrete Contin. Dyn. Syst. 40, No. 10, 5973--5990 (2020; Zbl 1447.35301) Full Text: DOI OpenURL
Klimina, L. A. Method for constructing periodic solutions of a controlled dynamic system with a cylindrical phase space. (English. Russian original) Zbl 1448.93250 J. Comput. Syst. Sci. Int. 59, No. 2, 139-150 (2020); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upravl. 2020, No. 2, 5-16 (2020). MSC: 93D05 70Q05 35B10 PDF BibTeX XML Cite \textit{L. A. Klimina}, J. Comput. Syst. Sci. Int. 59, No. 2, 139--150 (2020; Zbl 1448.93250); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upravl. 2020, No. 2, 5--16 (2020) Full Text: DOI OpenURL
Li, Bing; Ohta, Masahito; Wu, Yifei; Xue, Jun Instability of the solitary waves for the generalized Boussinesq equations. (English) Zbl 1444.35021 SIAM J. Math. Anal. 52, No. 4, 3192-3221 (2020). MSC: 35B35 35L76 35L30 35Q35 35C07 PDF BibTeX XML Cite \textit{B. Li} et al., SIAM J. Math. Anal. 52, No. 4, 3192--3221 (2020; Zbl 1444.35021) Full Text: DOI arXiv OpenURL
Khorbatly, Bashar; Molinet, Luc On the orbital stability of the Degasperis-Procesi antipeakon-peakon profile. (English) Zbl 1442.35341 J. Differ. Equations 269, No. 6, 4799-4852 (2020). MSC: 35Q35 35Q51 35B40 35B35 PDF BibTeX XML Cite \textit{B. Khorbatly} and \textit{L. Molinet}, J. Differ. Equations 269, No. 6, 4799--4852 (2020; Zbl 1442.35341) Full Text: DOI arXiv OpenURL
Martins, Renan H.; Natali, Fábio A comment about the paper “On the instability of elliptic traveling wave solutions of the modified Camassa-Holm equation”. (English) Zbl 1434.35005 J. Differ. Equations 269, No. 5, 4598-4608 (2020). MSC: 35B35 35C07 35B10 PDF BibTeX XML Cite \textit{R. H. Martins} and \textit{F. Natali}, J. Differ. Equations 269, No. 5, 4598--4608 (2020; Zbl 1434.35005) Full Text: DOI arXiv OpenURL
Benzoni-Gavage, S.; Mietka, C.; Rodrigues, L. M. Stability of periodic waves in Hamiltonian PDEs of either long wavelength or small amplitude. (English) Zbl 1450.35055 Indiana Univ. Math. J. 69, No. 2, 545-619 (2020). Reviewer: Dmitry Pelinovsky (Hamilton) MSC: 35B35 35B10 35Q35 35Q51 35Q53 37K06 37K45 35C07 PDF BibTeX XML Cite \textit{S. Benzoni-Gavage} et al., Indiana Univ. Math. J. 69, No. 2, 545--619 (2020; Zbl 1450.35055) Full Text: DOI arXiv OpenURL
Li, Ming Orbital shadowing and stability for vector fields. (English) Zbl 1441.37033 J. Differ. Equations 269, No. 2, 1360-1382 (2020). Reviewer: Alexander O. Ignatyev (Donetsk) MSC: 37C50 37C75 37D20 PDF BibTeX XML Cite \textit{M. Li}, J. Differ. Equations 269, No. 2, 1360--1382 (2020; Zbl 1441.37033) Full Text: DOI OpenURL
Liang, Zaitao; Liao, Fangfang Radial stability of periodic orbits of damped Keplerian-like systems. (English) Zbl 1436.34038 Nonlinear Anal., Real World Appl. 54, Article ID 103093, 16 p. (2020). Reviewer: Alessandro Fonda (Trieste) MSC: 34C25 34D20 70M20 37C60 PDF BibTeX XML Cite \textit{Z. Liang} and \textit{F. Liao}, Nonlinear Anal., Real World Appl. 54, Article ID 103093, 16 p. (2020; Zbl 1436.34038) Full Text: DOI OpenURL
Ning, Cui Instability of solitary wave solutions for the nonlinear Schrödinger equation of derivative type in degenerate case. (English) Zbl 1436.35068 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111665, 23 p. (2020). MSC: 35C08 35B35 35Q55 PDF BibTeX XML Cite \textit{C. Ning}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111665, 23 p. (2020; Zbl 1436.35068) Full Text: DOI OpenURL
Ai, Shangbing; Sadhu, Susmita The entry-exit theorem and relaxation oscillations in slow-fast planar systems. (English) Zbl 1466.34039 J. Differ. Equations 268, No. 11, 7220-7249 (2020). Reviewer: Nikola Popovic (Edinburgh) MSC: 34C26 34E05 34E15 34D20 PDF BibTeX XML Cite \textit{S. Ai} and \textit{S. Sadhu}, J. Differ. Equations 268, No. 11, 7220--7249 (2020; Zbl 1466.34039) Full Text: DOI OpenURL
Chen, Aiyong; Lu, Xinhui Orbital stability of elliptic periodic peakons for the modified Camassa-Holm equation. (English) Zbl 1432.37096 Discrete Contin. Dyn. Syst. 40, No. 3, 1703-1735 (2020). MSC: 37K45 35Q51 PDF BibTeX XML Cite \textit{A. Chen} and \textit{X. Lu}, Discrete Contin. Dyn. Syst. 40, No. 3, 1703--1735 (2020; Zbl 1432.37096) Full Text: DOI OpenURL
Stefanov, Atanas; Wright, J. Douglas Small amplitude traveling waves in the full-dispersion Whitham equation. (English) Zbl 1436.34018 J. Dyn. Differ. Equations 32, No. 1, 85-99 (2020). Reviewer: Minghe Pei (Jilin) MSC: 34B15 34E10 35C07 35Q53 35L05 35B35 PDF BibTeX XML Cite \textit{A. Stefanov} and \textit{J. D. Wright}, J. Dyn. Differ. Equations 32, No. 1, 85--99 (2020; Zbl 1436.34018) Full Text: DOI arXiv OpenURL