×

Dynamical response of Mathieu-Duffing oscillator with fractional-order delayed feedback. (English) Zbl 1373.34106

Summary: In this paper, the dynamical response of Mathieu-Duffing oscillator under fractional-order delayed feedback is investigated. At first, the approximate analytical solution and the amplitude-frequency equation are obtained based on the averaging method. The equivalent stiffness coefficient and equivalent damping coefficient are defined by the feedback coefficient, fractional order and time delay et al. The effects of feedback coefficient, fractional order and time delay on these two equivalent parameters are analyzed. It is found that the fractional-order delayed feedback has not only the function of delayed velocity feedback, but also the function of delayed displacement feedback. Then, the comparison of the amplitude-frequency curves obtained by the analytical and numerical solutions verifies the correctness and satisfactory precision of the approximate analytical solution. The effects of the parameters in the fractional-order delayed feedback on the complex dynamical behaviors of Mathieu-Duffing oscillator are studied. It could be found that fractional-order delayed feedback has important influences on the dynamical behavior of Mathieu-Duffing oscillator, and the results are very helpful to design, analyze or control in vibration engineering.

MSC:

34K11 Oscillation theory of functional-differential equations
34K37 Functional-differential equations with fractional derivatives
34K20 Stability theory of functional-differential equations
34K60 Qualitative investigation and simulation of models involving functional-differential equations

Software:

sysdfod; DFOC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Petras, I., Fractional-order nonlinear systems: modeling, analysis and simulation (2011), Higher Education Press: Higher Education Press Beijing · Zbl 1228.34002
[2] Caponetto, R.; Dongola, G.; Fortuna, L.; Petras, I., Fractional order systems: modeling and control applications (2010), World Scientific: World Scientific New Jersey
[3] Caputo, M.; Fabrizio, M., A new definition of fractional derivative without singular kernel, Prog Fract Differ Appl, 1, 2, 73-85 (2015)
[4] Pinto, C. M.A.; Machado, J. A.T., Complex-order van der Pol oscillator, Nonlinear Dyn, 65, 3, 247-254 (2011)
[5] Shen, Y. J.; Wen, S. F.; Li, X. H.; Yang, S. P.; Xing, H. J., Dynamical analysis of fractional-order nonlinear oscillator by incremental harmonic balance method, Nonlinear Dyn, 1-11 (2016)
[6] Machado, J. T.; Kiryakova, V.; Mainardi, F., Recent history of fractional calculus, Commun Nonlinear Sci Numer Simul, 16, 3, 1140-1153 (2011) · Zbl 1221.26002
[7] Wang, Z. H.; Du, M. L., Asymptotical behavior of the solution of a SDOF linear fractionally damped vibration system, Shock Vib, 18, 1-2, 257-268 (2011)
[8] Wang, Z. H.; Hu, H. Y., Stability of a linear oscillator with damping force of fractional-order derivative, Sci China G: Phys, Mech Astron, 39, 10, 1495-1502 (2009), (in Chinese)
[9] Shen, Y. J.; Wei, P.; Yang, S. P., Primary resonance of fractional-order van der Pol oscillator, Nonlinear Dyn, 77, 4, 1629-1642 (2014)
[10] Shen, Y. J.; Yang, S. P.; Xing, H. J.; Gao, G. S., Primary resonance of Duffing oscillator with fractional-order derivative, Commun Nonlinear Sci Numer Simul, 17, 7, 3092-3100 (2012) · Zbl 1252.35274
[11] Shen, Y. J.; Yang, S. P.; Xing, H. J.; Ma, H. X., Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives, Int J Non-Linear Mech, 47, 9, 975-983 (2012)
[12] Deng, W. H.; Li, C. P., The evolution of chaotic dynamics for fractional unified system, Phys lett A, 372, 4, 401-407 (2008) · Zbl 1217.37026
[13] Li, C. P.; Deng, W. H., Remarks on fractional derivatives, Appl Math Comput, 187, 2, 777-784 (2007) · Zbl 1125.26009
[14] Chen, L. C.; Hu, F.; Zhu, W. Q., Stochastic dynamics and fractional optimal control of quasi integrable Hamiltonian systems with fractional derivative damping, Fract Calc Appl Anal, 16, 1, 189-225 (2013) · Zbl 1312.49027
[15] Xu, Y.; Yg, Li; Liu, D.; Wt, Jia; Huang, H., Responses of Duffing oscillator with fractional damping and random phase, Nonlinear Dyn, 74, 3, 745-753 (2013) · Zbl 1279.34095
[16] Leung, A. Y.T.; Guo, Z. J.; Yang, H. X., The residue harmonic balance for fractional order van der Pol like oscillators, J Sound Vib, 331, 5, 1115-1126 (2012)
[17] Hu, H. Y.; Wang, Z. H., Dynamics of controlled mechanical systems with delayed feedback (2002), Springer: Springer Berlin · Zbl 1035.93002
[18] Wang, Z. H.; Hu, H. Y., Stability switches of time-delayed dynamic system with unknown parameters, J Sound vib, 233, 2, 215-233 (2000) · Zbl 1237.93159
[19] Wang, H. L.; Hu, H. Y., Remarks on the perturbation methods in solving the second-order delay differential equations, Nonlinear Dyn, 33, 4, 379-398 (2003) · Zbl 1049.70013
[20] Shi, M.; Wang, Z. H., An effective analytical criterion for stability testing of fractional-delay systems, Automatica, 47, 9, 2001-2005 (2011) · Zbl 1227.93055
[21] Wang, Z. H.; Zheng, Y. G., The optimal form of the fractional-order difference feedbacks in enhancing the stability of a SDOF vibration system, J Sound Vib, 326, 3, 476-488 (2009)
[22] Babakhani, A.; Baleanu, D.; Khanbabaie, R., Hopf bifurcation for a class of fractional differential equations with delay, Nonlinear Dyn, 69, 3, 721-729 (2012) · Zbl 1258.34155
[23] Çelik, V.; Demir, Y., Chaotic dynamics of the fractional order nonlinear system with time delay, Signal, Image Video Process, 8, 1, 65-70 (2014)
[24] Yang, J. H.; Zhu, H., Vibrational resonance in Duffing systems with fractional-order damping, Chaos, 22, 1, Article 013112 pp. (2012) · Zbl 1331.34063
[25] Yang, J. H.; Zhu, H., Bifurcation and resonance induced by fractional-order damping and time delay feedback in a Duffing system, Commun Nonlinear Sci Numer Simul, 18, 5, 1316-1326 (2013) · Zbl 1261.35150
[26] Mesbahi, A.; Haeri, M.; Nazari, M.; Butcher, E., Fractional delayed damped Mathieu equation, Int J Control., 88, 3, 622-630 (2015) · Zbl 1325.34088
[27] Rand, R. H.; Sah, S. M.; Suchorsky, M. K., Fractional Mathieu equation, Commun Nonlinear Sci Numer Simul, 15, 11, 3254-3262 (2010)
[28] Leung, A. Y.T.; Guo, Z. J.; Yang, H. X., Transition curves and bifurcations of a class of fractional Mathieu-type equations, Int J Bifurcation Chaos, 22, 11, Article 1250275 pp. (2012) · Zbl 1258.34017
[29] Wen, S. F.; Shen, Y. J.; Li, X. H.; Yang, S. P.; Xing, H. J., Dynamical analysis of fractional-order Mathieu equation, J Vibroeng, 17, 5, 2696-2709 (2015)
[30] Wen, S. F.; Shen, Y. J.; Li, X. H.; Yang, S. P., Dynamical analysis of Mathieu equation with two kinds of van der Pol fractional-order terms, Int J Non-Linear Mech, 84, 130-138 (2016)
[31] Li, X. H.; Hou, J. Y.; Chen, J. F., An analytical method for Mathieu oscillator based on method of variation of parameter, Commun Nonlinear Sci Numer Simul, 37, 326-353 (2016) · Zbl 1473.34031
[32] Nayfeh, A. H.., Nonlinear oscillations (1973), Wiley: Wiley New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.