Khompysh, Khonatbek; Shakir, Aidos Ganizhanuly An inverse source problem for a nonlinear pseudoparabolic equation with \(p\)-Laplacian diffusion and damping term. (English) Zbl 07740712 Quaest. Math. 46, No. 9, 1889-1914 (2023). MSC: 35R30 35D30 35A01 35K92 35K70 PDF BibTeX XML Cite \textit{K. Khompysh} and \textit{A. G. Shakir}, Quaest. Math. 46, No. 9, 1889--1914 (2023; Zbl 07740712) Full Text: DOI
Le, Phuong Strong comparison and strong maximum principles for quasilinear elliptic equations with a gradient term. (English) Zbl 07739343 Positivity 27, No. 4, Paper No. 55, 14 p. (2023). MSC: 35J92 35B50 35B51 PDF BibTeX XML Cite \textit{P. Le}, Positivity 27, No. 4, Paper No. 55, 14 p. (2023; Zbl 07739343) Full Text: DOI
Le, Phuong Gibbons’ conjecture for quasilinear elliptic equations involving a gradient term. (English) Zbl 07739181 Forum Math. 35, No. 5, 1419-1434 (2023). MSC: 35J92 35J62 35B06 35B50 35B51 PDF BibTeX XML Cite \textit{P. Le}, Forum Math. 35, No. 5, 1419--1434 (2023; Zbl 07739181) Full Text: DOI
Zhang, Junjie; Zheng, Shenzhou; Feng, Zhaosheng Gradient estimates of general nonlinear singular elliptic equations with measure data. (English) Zbl 07739118 J. Differ. Equations 372, 402-457 (2023). MSC: 35B65 35J25 35J92 42B37 PDF BibTeX XML Cite \textit{J. Zhang} et al., J. Differ. Equations 372, 402--457 (2023; Zbl 07739118) Full Text: DOI
Byun, Sun-Sig; Kim, Hyojin; Ok, Jihoon Local Hölder continuity for fractional nonlocal equations with general growth. (English) Zbl 07735164 Math. Ann. 387, No. 1-2, 807-846 (2023). MSC: 35R11 35B65 35D30 35J92 47G20 PDF BibTeX XML Cite \textit{S.-S. Byun} et al., Math. Ann. 387, No. 1--2, 807--846 (2023; Zbl 07735164) Full Text: DOI arXiv
Nakao, Mitsuhiro Existence and smoothing effects of the initial-boundary value problem for \(\partial u/\partial t-\Delta\sigma(u)=0\) in time-dependent domains. (English) Zbl 07733857 Opusc. Math. 43, No. 5, 703-734 (2023). MSC: 35B40 35K20 35K59 35K92 PDF BibTeX XML Cite \textit{M. Nakao}, Opusc. Math. 43, No. 5, 703--734 (2023; Zbl 07733857) Full Text: DOI
Zhang, Ping The Orlicz Brunn-Minkowski inequality for the first eigenvalue of \(p\)-Laplacian. (English) Zbl 07732442 J. Math. Anal. Appl. 528, No. 2, Article ID 127537, 14 p. (2023). MSC: 35Pxx 52Axx 35J05 52Bxx 35P15 49R05 PDF BibTeX XML Cite \textit{P. Zhang}, J. Math. Anal. Appl. 528, No. 2, Article ID 127537, 14 p. (2023; Zbl 07732442) Full Text: DOI
Ahmadkhanlu, A. Positive solutions to conformable fractional differential equation with integral boundary condition with \(p\)-Laplacian operator. (English) Zbl 07731418 Southeast Asian Bull. Math. 47, No. 3, 297-314 (2023). MSC: 34B18 35J05 34A08 PDF BibTeX XML Cite \textit{A. Ahmadkhanlu}, Southeast Asian Bull. Math. 47, No. 3, 297--314 (2023; Zbl 07731418) Full Text: Link
Yang, Congmin; Xu, Zhihang; Wang, Zaihong On the existence and uniqueness of periodic solution for Rayleigh type \(p\)-Laplacian equation. (English) Zbl 07727249 Adv. Differ. Equ. Control Process. 30, No. 2, 83-95 (2023). MSC: 34C25 34C15 PDF BibTeX XML Cite \textit{C. Yang} et al., Adv. Differ. Equ. Control Process. 30, No. 2, 83--95 (2023; Zbl 07727249) Full Text: DOI
Li, Yuanyuan A positive solution of \(p\)-Laplace problems related to a critical Sobolev term. (English) Zbl 07727157 Appl. Math. Lett. 145, Article ID 108794, 6 p. (2023). MSC: 35J92 35A01 35B09 PDF BibTeX XML Cite \textit{Y. Li}, Appl. Math. Lett. 145, Article ID 108794, 6 p. (2023; Zbl 07727157) Full Text: DOI
Ambrosio, Vincenzo Regularity and Pohozaev identity for the Choquard equation involving the \(p\)-Laplacian operator. (English) Zbl 07727116 Appl. Math. Lett. 145, Article ID 108742, 9 p. (2023). MSC: 35J92 35B65 PDF BibTeX XML Cite \textit{V. Ambrosio}, Appl. Math. Lett. 145, Article ID 108742, 9 p. (2023; Zbl 07727116) Full Text: DOI arXiv
Banerjee, Agnid; Garain, Prashanta; Kinnunen, Juha Lower semicontinuity and pointwise behavior of supersolutions for some doubly nonlinear nonlocal parabolic \(p\)-Laplace equations. (English) Zbl 07725860 Commun. Contemp. Math. 25, No. 8, Article ID 2250032, 23 p. (2023). MSC: 35K92 35B45 35B65 35K59 35K65 35R11 PDF BibTeX XML Cite \textit{A. Banerjee} et al., Commun. Contemp. Math. 25, No. 8, Article ID 2250032, 23 p. (2023; Zbl 07725860) Full Text: DOI arXiv
Nyström, Kaj Square function estimates for the evolutionary \(p\)-Laplace equation. (English) Zbl 07721218 Discrete Contin. Dyn. Syst. 43, No. 9, 3174-3212 (2023). MSC: 35K92 35B45 35R35 PDF BibTeX XML Cite \textit{K. Nyström}, Discrete Contin. Dyn. Syst. 43, No. 9, 3174--3212 (2023; Zbl 07721218) Full Text: DOI arXiv
Miao, Qianyun; Peng, Fa; Zhou, Yuan A global second-order Sobolev regularity for \(p\)-Laplacian type equations with variable coefficients in bounded domains. (English) Zbl 07716564 Calc. Var. Partial Differ. Equ. 62, No. 7, Paper No. 191, 36 p. (2023). MSC: 35J62 35J25 35B65 PDF BibTeX XML Cite \textit{Q. Miao} et al., Calc. Var. Partial Differ. Equ. 62, No. 7, Paper No. 191, 36 p. (2023; Zbl 07716564) Full Text: DOI arXiv
Aberqi, Ahmed; Bennouna, Jaouad; Benslimane, Omar; Ragusa, Maria Alessandra Weak solvability of nonlinear elliptic equations involving variable exponents. (English) Zbl 07716449 Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1142-1157 (2023). MSC: 35J92 58J05 35A01 35A15 PDF BibTeX XML Cite \textit{A. Aberqi} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1142--1157 (2023; Zbl 07716449) Full Text: DOI arXiv
Saker, Meriem; Boumaza, Nouri; Gheraibia, Billel Global existence, energy decay, and blowup of solutions for a wave equation type \(p\)-Laplacian with memory term and dynamic boundary conditions. (English) Zbl 07716031 Bol. Soc. Mat. Mex., III. Ser. 29, No. 2, Paper No. 51, 17 p. (2023). MSC: 35B40 35B44 35L20 35L72 PDF BibTeX XML Cite \textit{M. Saker} et al., Bol. Soc. Mat. Mex., III. Ser. 29, No. 2, Paper No. 51, 17 p. (2023; Zbl 07716031) Full Text: DOI
Zhang, Jiangwei; Liu, Zhiming; Huang, Jianhua Weak mean random attractors for nonautonomous stochastic parabolic equation with variable exponents. (English) Zbl 07713319 Stoch. Dyn. 23, No. 3, Article ID 2350019, 20 p. (2023). MSC: 35B41 35K20 35K92 35R60 37B55 PDF BibTeX XML Cite \textit{J. Zhang} et al., Stoch. Dyn. 23, No. 3, Article ID 2350019, 20 p. (2023; Zbl 07713319) Full Text: DOI
Akman, Murat; Banerjee, Agnid; Munive, Isidro H. Borderline gradient continuity for the normalized \(p\)-parabolic operator. (English) Zbl 07709787 J. Geom. Anal. 33, No. 8, Paper No. 264, 30 p. (2023). MSC: 35D40 35B65 35K92 PDF BibTeX XML Cite \textit{M. Akman} et al., J. Geom. Anal. 33, No. 8, Paper No. 264, 30 p. (2023; Zbl 07709787) Full Text: DOI arXiv
Xiong, Chawen; Chen, Chunfang; Chen, Jianhua; Sun, Jijiang A concave-convex Kirchhoff type elliptic equation involving the fractional \(p\)-Laplacian and steep well potential. (English) Zbl 07709755 Complex Var. Elliptic Equ. 68, No. 6, 932-962 (2023). MSC: 35R11 35A15 35J35 35J92 PDF BibTeX XML Cite \textit{C. Xiong} et al., Complex Var. Elliptic Equ. 68, No. 6, 932--962 (2023; Zbl 07709755) Full Text: DOI
Huang, Guangyue; Zhao, Liang Liouville type theorems for nonlinear \(p\)-Laplacian equation on complete noncompact Riemannian manifolds. (English) Zbl 07708670 Chin. Ann. Math., Ser. B 44, No. 3, 379-390 (2023). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 58J05 58J35 35D30 PDF BibTeX XML Cite \textit{G. Huang} and \textit{L. Zhao}, Chin. Ann. Math., Ser. B 44, No. 3, 379--390 (2023; Zbl 07708670) Full Text: DOI
Wang, Cong; Su, Jiabao The ground states of quasilinear Hénon equation with double weighted critical exponents. (English) Zbl 07708252 Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 3, 1037-1044 (2023). MSC: 35J92 35A01 35A15 PDF BibTeX XML Cite \textit{C. Wang} and \textit{J. Su}, Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 3, 1037--1044 (2023; Zbl 07708252) Full Text: DOI
Liang, Bo; Zhu, Yongbo; Wang, Ying Existence of solutions to a doubly degenerate fourth-order partial differential equation with a degenerate diffusion. (English) Zbl 07708142 J. Math. Anal. Appl. 527, No. 1, Part 2, Article ID 127429, 20 p. (2023). MSC: 35K65 35K35 35K92 PDF BibTeX XML Cite \textit{B. Liang} et al., J. Math. Anal. Appl. 527, No. 1, Part 2, Article ID 127429, 20 p. (2023; Zbl 07708142) Full Text: DOI
Bobkov, Vladimir; Kolonitskii, Sergey Improved Friedrichs inequality for a subhomogeneous embedding. (English) Zbl 07708127 J. Math. Anal. Appl. 527, No. 1, Part 2, Article ID 127383, 29 p. (2023). MSC: 35J92 35J25 35A01 PDF BibTeX XML Cite \textit{V. Bobkov} and \textit{S. Kolonitskii}, J. Math. Anal. Appl. 527, No. 1, Part 2, Article ID 127383, 29 p. (2023; Zbl 07708127) Full Text: DOI arXiv
Wang, Yuqing; Zhang, Chao; Zhu, Yizhe A second-order Sobolev regularity for \(p(x)\)-Laplace equations. (English) Zbl 07707900 J. Math. Anal. Appl. 526, No. 2, Article ID 127328, 23 p. (2023). MSC: 35J92 35B65 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Math. Anal. Appl. 526, No. 2, Article ID 127328, 23 p. (2023; Zbl 07707900) Full Text: DOI
Fjellström, Carmina Selected topics in mathematical modelling: machine learning and tugs-of-war. (English) Zbl 1515.68014 Uppsala Dissertations in Mathematics 127. Uppsala: Uppsala Univ., Department of Mathematics (Diss.) (ISBN 978-91-506-2998-9). 41 p., open access (2023). MSC: 68-02 35-02 91-02 35K65 35R11 35Q91 68T05 68T07 91A15 91B84 91G10 PDF BibTeX XML Cite \textit{C. Fjellström}, Selected topics in mathematical modelling: machine learning and tugs-of-war. Uppsala: Uppsala Univ., Department of Mathematics (Diss.) (2023; Zbl 1515.68014) Full Text: Link
Yang, Yihao; Liu, Wulong; Winkert, Patrick; Yan, Xingye Existence of solutions for resonant double phase problems with mixed boundary value conditions. (English) Zbl 07703082 SN Partial Differ. Equ. Appl. 4, No. 3, Paper No. 18, 17 p. (2023). MSC: 35J25 35J92 35P30 35A01 PDF BibTeX XML Cite \textit{Y. Yang} et al., SN Partial Differ. Equ. Appl. 4, No. 3, Paper No. 18, 17 p. (2023; Zbl 07703082) Full Text: DOI
Vo Anh Khoa; Nguyen Dat Thuc; Gunaratne, Ajith Analysis and simulation of a variational stabilization for the Helmholtz equation with noisy Cauchy data. (English) Zbl 07700177 BIT 63, No. 2, Paper No. 37, 42 p. (2023). MSC: 65J05 65J20 35K92 PDF BibTeX XML Cite \textit{Vo Anh Khoa} et al., BIT 63, No. 2, Paper No. 37, 42 p. (2023; Zbl 07700177) Full Text: DOI arXiv
Papageorgiou, Nikolaos S.; Repovš, Dušan D.; Vetro, Calogero Constant sign and nodal solutions for parametric anisotropic \((p, 2)\)-equations. (English) Zbl 07699769 Appl. Anal. 102, No. 4, 1059-1076 (2023). Reviewer: Patrick Winkert (Berlin) MSC: 35J20 35J92 35A01 35B65 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} et al., Appl. Anal. 102, No. 4, 1059--1076 (2023; Zbl 07699769) Full Text: DOI arXiv
Bouabdallah, Mohamed; Chakrone, Omar; Chehabi, Mohammed Existence of positive solutions for an impulsive differential equation with \(p\)-Laplacian operator. (English) Zbl 1512.34063 Mediterr. J. Math. 20, No. 4, Paper No. 229, 22 p. (2023). MSC: 34B37 47J30 34B18 PDF BibTeX XML Cite \textit{M. Bouabdallah} et al., Mediterr. J. Math. 20, No. 4, Paper No. 229, 22 p. (2023; Zbl 1512.34063) Full Text: DOI
Cheng, Jiazhuo; Wang, Qiru Global existence and finite time blowup for a mixed pseudo-parabolic \(p\)-Laplacian type equation. (English) Zbl 1517.35063 Nonlinear Anal., Real World Appl. 73, Article ID 103895, 22 p. (2023). MSC: 35B44 35K20 35K70 35K92 PDF BibTeX XML Cite \textit{J. Cheng} and \textit{Q. Wang}, Nonlinear Anal., Real World Appl. 73, Article ID 103895, 22 p. (2023; Zbl 1517.35063) Full Text: DOI arXiv
Peng, Zhongqi; Zhu, Aimin; Zhang, Tingting Multiple solutions of a \(p\)-th Yamabe equation on graph. (English) Zbl 07697681 J. Funct. Spaces 2023, Article ID 5573605, 6 p. (2023). MSC: 35J92 35A01 35A15 PDF BibTeX XML Cite \textit{Z. Peng} et al., J. Funct. Spaces 2023, Article ID 5573605, 6 p. (2023; Zbl 07697681) Full Text: DOI
El Hadfi, Youssef; El Hichami, Mohamed On 1-Laplacian elliptic problems involving a singular term and an \(L^1\)-data. (English) Zbl 07695150 J. Elliptic Parabol. Equ. 9, No. 1, 501-533 (2023). MSC: 35J92 35J25 35A01 35A02 PDF BibTeX XML Cite \textit{Y. El Hadfi} and \textit{M. El Hichami}, J. Elliptic Parabol. Equ. 9, No. 1, 501--533 (2023; Zbl 07695150) Full Text: DOI
Yuan, Shuai; Rădulescu, Vicenţiu D.; Chen, Sitong; Wen, Lixi Fractional Choquard logarithmic equations with Stein-Weiss potential. (English) Zbl 07693149 J. Math. Anal. Appl. 526, No. 1, Article ID 127214, 45 p. (2023). MSC: 35J62 35R11 35B33 35A01 PDF BibTeX XML Cite \textit{S. Yuan} et al., J. Math. Anal. Appl. 526, No. 1, Article ID 127214, 45 p. (2023; Zbl 07693149) Full Text: DOI
Antontsev, Stanislav; Kuznetsov, Ivan; Shmarev, Sergey Global existence and regularity for a pseudo-parabolic equation with \(p(x,t)\)-Laplacian. (English) Zbl 1516.35251 J. Math. Anal. Appl. 526, No. 1, Article ID 127202, 33 p. (2023). MSC: 35K70 35B65 35K20 35K92 PDF BibTeX XML Cite \textit{S. Antontsev} et al., J. Math. Anal. Appl. 526, No. 1, Article ID 127202, 33 p. (2023; Zbl 1516.35251) Full Text: DOI
Ghomari, Tewfik; Maliki, Youssef Struwe compactness results for a critical \(p\)-Laplacian equation involving critical and subcritical Hardy potential on compact Riemannian manifolds. (English) Zbl 07693010 Turk. J. Math. 47, No. 4, 1191-1219 (2023). Reviewer: Vladimir Vasilyev (Belgorod) MSC: 58J05 53C20 46E35 35J62 35J75 PDF BibTeX XML Cite \textit{T. Ghomari} and \textit{Y. Maliki}, Turk. J. Math. 47, No. 4, 1191--1219 (2023; Zbl 07693010) Full Text: DOI
Chaker, Jamil; Kim, Minhyun; Weidner, Marvin The concentration-compactness principle for the nonlocal anisotropic \(p\)-Laplacian of mixed order. (English) Zbl 1516.35454 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 232, Article ID 113254, 18 p. (2023). MSC: 35R11 35A01 35J92 49J35 46E35 46B50 PDF BibTeX XML Cite \textit{J. Chaker} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 232, Article ID 113254, 18 p. (2023; Zbl 1516.35454) Full Text: DOI arXiv
Asfaw, Teffera M. On Nirenberg’s problem for compact perturbations of expansive operator and an application to \(p\)-Laplacian type equation with nonmonotone convection function. (English) Zbl 07688497 Mediterr. J. Math. 20, No. 4, Paper No. 209, 24 p. (2023). MSC: 47H14 47H07 47H11 PDF BibTeX XML Cite \textit{T. M. Asfaw}, Mediterr. J. Math. 20, No. 4, Paper No. 209, 24 p. (2023; Zbl 07688497) Full Text: DOI
Anguiano, María On \(p\)-Laplacian reaction-diffusion problems with dynamical boundary conditions in perforated media. (English) Zbl 1514.35017 Mediterr. J. Math. 20, No. 3, Paper No. 124, 20 p. (2023). MSC: 35B27 35K20 35K93 PDF BibTeX XML Cite \textit{M. Anguiano}, Mediterr. J. Math. 20, No. 3, Paper No. 124, 20 p. (2023; Zbl 1514.35017) Full Text: DOI arXiv
Hasani, Erisa; Perera, Kanishka On the critical \(p\)-Kirchhoff equation. (English) Zbl 1514.35238 Topol. Methods Nonlinear Anal. 61, No. 1, 383-391 (2023). MSC: 35J92 35B33 35A01 PDF BibTeX XML Cite \textit{E. Hasani} and \textit{K. Perera}, Topol. Methods Nonlinear Anal. 61, No. 1, 383--391 (2023; Zbl 1514.35238) Full Text: DOI arXiv
Giri, Ratan Kr.; Pinchover, Yehuda Positive solutions of quasilinear elliptic equations with Fuchsian potentials in Wolff class. (English) Zbl 1516.35212 Milan J. Math. 91, No. 1, 59-96 (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 35J92 35B53 35B40 PDF BibTeX XML Cite \textit{R. Kr. Giri} and \textit{Y. Pinchover}, Milan J. Math. 91, No. 1, 59--96 (2023; Zbl 1516.35212) Full Text: DOI arXiv
Liu, Zhenhai; Papageorgiou, Nikolaos S. Twin positive solutions for a parametric double phase equation with \(p, q\)-growth. (English) Zbl 1516.35213 Mediterr. J. Math. 20, No. 3, Paper No. 176, 11 p. (2023). Reviewer: Shengda Zeng (Yulin) MSC: 35J92 35A01 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{N. S. Papageorgiou}, Mediterr. J. Math. 20, No. 3, Paper No. 176, 11 p. (2023; Zbl 1516.35213) Full Text: DOI
Nguyen, Quoc-Hung; Phuc, Nguyen Cong A comparison estimate for singular \(p\)-Laplace equations and its consequences. (English) Zbl 1514.35242 Arch. Ration. Mech. Anal. 247, No. 3, Paper No. 49, 24 p. (2023). MSC: 35J92 35B51 PDF BibTeX XML Cite \textit{Q.-H. Nguyen} and \textit{N. C. Phuc}, Arch. Ration. Mech. Anal. 247, No. 3, Paper No. 49, 24 p. (2023; Zbl 1514.35242) Full Text: DOI arXiv
Zhang, Xuemei; Kan, Shikun Sufficient and necessary conditions on the existence and estimates of boundary blow-up solutions for singular \(p\)-Laplacian equations. (English) Zbl 07682815 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 3, 1175-1194 (2023). MSC: 35J92 35J75 35B40 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{S. Kan}, Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 3, 1175--1194 (2023; Zbl 07682815) Full Text: DOI
Wang, Chao; Sun, Juntao Normalized solutions for the \(p\)-Laplacian equation with a trapping potential. (English) Zbl 1512.35208 Adv. Nonlinear Anal. 12, Article ID 20220291, 14 p. (2023). MSC: 35J20 35J92 35A01 PDF BibTeX XML Cite \textit{C. Wang} and \textit{J. Sun}, Adv. Nonlinear Anal. 12, Article ID 20220291, 14 p. (2023; Zbl 1512.35208) Full Text: DOI
Brasco, Lorenzo; Lindgren, Erik Uniqueness of extremals for some sharp Poincaré-Sobolev constants. (English) Zbl 1515.35176 Trans. Am. Math. Soc. 376, No. 5, 3541-3584 (2023). MSC: 35P30 35A02 35B65 35J20 PDF BibTeX XML Cite \textit{L. Brasco} and \textit{E. Lindgren}, Trans. Am. Math. Soc. 376, No. 5, 3541--3584 (2023; Zbl 1515.35176) Full Text: DOI arXiv
Wang, Cong; Su, Jiabao The ground states of Hénon equations for \(p\)-Laplacian in \(\mathbb{R}^N\) involving upper weighted critical exponents. (English) Zbl 1514.35246 Commun. Nonlinear Sci. Numer. Simul. 120, Article ID 107146, 26 p. (2023). MSC: 35J92 35B33 35A01 35J20 PDF BibTeX XML Cite \textit{C. Wang} and \textit{J. Su}, Commun. Nonlinear Sci. Numer. Simul. 120, Article ID 107146, 26 p. (2023; Zbl 1514.35246) Full Text: DOI
Wang, Jintao; Zhang, Xiaoqian Invariant sample measures and random Liouville type theorem for a nonautonomous stochastic \(p\)-Laplacian equation. (English) Zbl 1512.35699 Discrete Contin. Dyn. Syst., Ser. B 28, No. 4, 2803-2827 (2023). MSC: 35R60 35B41 35B53 76F20 PDF BibTeX XML Cite \textit{J. Wang} and \textit{X. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 4, 2803--2827 (2023; Zbl 1512.35699) Full Text: DOI
Bae, Soohyun A priori bounds for positive radial solutions of quasilinear equations of Lane-Emden type. (English) Zbl 07675585 Arch. Math., Brno 59, No. 2, 155-162 (2023). MSC: 35J92 35B45 PDF BibTeX XML Cite \textit{S. Bae}, Arch. Math., Brno 59, No. 2, 155--162 (2023; Zbl 07675585) Full Text: DOI
Akagi, Goro; Oka, Tomoyuki Space-time homogenization for nonlinear diffusion. (English) Zbl 07673339 J. Differ. Equations 358, 386-456 (2023). Reviewer: Marcus Waurick (Freiberg) MSC: 35B27 35K20 35K92 47J35 80M40 PDF BibTeX XML Cite \textit{G. Akagi} and \textit{T. Oka}, J. Differ. Equations 358, 386--456 (2023; Zbl 07673339) Full Text: DOI arXiv
Li, Zhen Existence of positive solutions for a class of \(p\)-Laplacian type generalized quasilinear Schrödinger equations with critical growth and potential vanishing at infinity. (English) Zbl 07670561 Electron. J. Qual. Theory Differ. Equ. 2023, Paper No. 3, 20 p. (2023). MSC: 35J60 35J20 PDF BibTeX XML Cite \textit{Z. Li}, Electron. J. Qual. Theory Differ. Equ. 2023, Paper No. 3, 20 p. (2023; Zbl 07670561) Full Text: DOI
Wang, Yu-Zhao; Xue, Yan Logarithmic Harnack inequalities and differential Harnack estimates for \(p\)-Laplacian on Riemannian manifolds. (English) Zbl 07668609 J. Math. Anal. Appl. 523, No. 2, Article ID 127034, 11 p. (2023). Reviewer: Kunal Sharma (Seattle) MSC: 58J35 35K05 35-XX PDF BibTeX XML Cite \textit{Y.-Z. Wang} and \textit{Y. Xue}, J. Math. Anal. Appl. 523, No. 2, Article ID 127034, 11 p. (2023; Zbl 07668609) Full Text: DOI
Ghanmi, A.; Mbarki, L.; Saoudi, K. Infinitely many solutions for a class of Kirchhoff problems involving the \(p(x)\)-Laplacian operator. (English) Zbl 1512.35338 Math. Notes 113, No. 2, 172-181 (2023). MSC: 35J92 35J25 35A01 35J20 PDF BibTeX XML Cite \textit{A. Ghanmi} et al., Math. Notes 113, No. 2, 172--181 (2023; Zbl 1512.35338) Full Text: DOI
Zhang, Weiqiang; Zuo, Jiabin; Zhao, Peihao Multiplicity and concentration of positive solutions for \((p, q)\)-Kirchhoff type problems. (English) Zbl 1512.35345 J. Geom. Anal. 33, No. 5, Paper No. 159, 38 p. (2023). MSC: 35J92 35A01 35A15 PDF BibTeX XML Cite \textit{W. Zhang} et al., J. Geom. Anal. 33, No. 5, Paper No. 159, 38 p. (2023; Zbl 1512.35345) Full Text: DOI
Deidda, Piero; Putti, Mario; Tudisco, Francesco Nodal domain count for the generalized graph \(p\)-Laplacian. (English) Zbl 1512.35335 Appl. Comput. Harmon. Anal. 64, 1-32 (2023). MSC: 35J92 35J10 35R02 PDF BibTeX XML Cite \textit{P. Deidda} et al., Appl. Comput. Harmon. Anal. 64, 1--32 (2023; Zbl 1512.35335) Full Text: DOI arXiv
Shen, Tengfei; Liu, Wenbin Periodic solutions of \(p\)-Laplacian differential equations with jumping nonlinearity across half-eigenvalues. (English) Zbl 07659843 Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 1, 307-326 (2023). Reviewer: Guglielmo Feltrin (Udine) MSC: 34C25 34B15 PDF BibTeX XML Cite \textit{T. Shen} and \textit{W. Liu}, Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 1, 307--326 (2023; Zbl 07659843) Full Text: DOI
Shang, Bin; Zhang, Chao Harnack inequality for mixed local and nonlocal parabolic \(p\)-Laplace equations. (English) Zbl 1510.35169 J. Geom. Anal. 33, No. 4, Paper No. 124, 24 p. (2023). Reviewer: Vincenzo Vespri (Firenze) MSC: 35K92 35B65 35K65 35R09 PDF BibTeX XML Cite \textit{B. Shang} and \textit{C. Zhang}, J. Geom. Anal. 33, No. 4, Paper No. 124, 24 p. (2023; Zbl 1510.35169) Full Text: DOI
Yuan, Wen-Shuo; Ge, Bin; Cao, Qing-Hai Initial boundary value problem for \(p\)-Laplacian type parabolic equation with singular potential and logarithmic nonlinearity. (English) Zbl 1509.35060 Anal. Math. Phys. 13, No. 1, Paper No. 20, 18 p. (2023). MSC: 35B40 35B44 35K20 35K70 35K92 PDF BibTeX XML Cite \textit{W.-S. Yuan} et al., Anal. Math. Phys. 13, No. 1, Paper No. 20, 18 p. (2023; Zbl 1509.35060) Full Text: DOI
Bounaama, Abir; Maouni, Messaoud; Ouaoua, Amar On the existence, decay and blowup of solutions for a quasilinear hyperbolic equations involving the weighted \(p\)-Laplacian with source terms. (English) Zbl 1509.35068 Mediterr. J. Math. 20, No. 2, Paper No. 78, 16 p. (2023). MSC: 35B44 35B38 35L20 35L72 PDF BibTeX XML Cite \textit{A. Bounaama} et al., Mediterr. J. Math. 20, No. 2, Paper No. 78, 16 p. (2023; Zbl 1509.35068) Full Text: DOI
Feng, Zhaosheng; Su, Yu Lions-type properties for the \(p\)-Laplacian and applications to quasilinear elliptic equations. (English) Zbl 1511.35194 J. Geom. Anal. 33, No. 3, Paper No. 99, 32 p. (2023). MSC: 35J92 35J62 35B33 35A01 PDF BibTeX XML Cite \textit{Z. Feng} and \textit{Y. Su}, J. Geom. Anal. 33, No. 3, Paper No. 99, 32 p. (2023; Zbl 1511.35194) Full Text: DOI
Sbai, Abdelaaziz; El Hadfi, Youssef; Zeng, Shengda Nonlinear singular elliptic equations of \(p\)-Laplace type with superlinear growth in the gradient. (English) Zbl 1506.35076 Mediterr. J. Math. 20, No. 1, Paper No. 32, 20 p. (2023). MSC: 35J60 35J75 35A01 35B65 PDF BibTeX XML Cite \textit{A. Sbai} et al., Mediterr. J. Math. 20, No. 1, Paper No. 32, 20 p. (2023; Zbl 1506.35076) Full Text: DOI
Liu, Zhiqing; Fang, Zhong Bo On a singular parabolic \(p\)-biharmonic equation with logarithmic nonlinearity. (English) Zbl 1505.35254 Nonlinear Anal., Real World Appl. 70, Article ID 103780, 34 p. (2023). MSC: 35K67 35B40 35K35 35K92 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{Z. B. Fang}, Nonlinear Anal., Real World Appl. 70, Article ID 103780, 34 p. (2023; Zbl 1505.35254) Full Text: DOI
Di, Huafei; Qian, Xian; Peng, Xiaoming Blow up and exponential growth for a pseudo-parabolic equation with \(p ( x )\)-Laplacian and variable exponents. (English) Zbl 1505.35053 Appl. Math. Lett. 138, Article ID 108517, 8 p. (2023). MSC: 35B44 35K35 35K70 35K92 PDF BibTeX XML Cite \textit{H. Di} et al., Appl. Math. Lett. 138, Article ID 108517, 8 p. (2023; Zbl 1505.35053) Full Text: DOI
Amato, V.; Masiello, A. L.; Paoli, G.; Sannipoli, R. Sharp and quantitative estimates for the \(p\)-torsion of convex sets. (English) Zbl 1506.35100 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 1, Paper No. 12, 22 p. (2023). MSC: 35J92 35J05 35J25 PDF BibTeX XML Cite \textit{V. Amato} et al., NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 1, Paper No. 12, 22 p. (2023; Zbl 1506.35100) Full Text: DOI arXiv
Repovš, Dušan D.; Saoudi, Kamel The Nehari manifold approach for singular equations involving the \(p(x)\)-Laplace operator. (English) Zbl 1511.35199 Complex Var. Elliptic Equ. 68, No. 1, 135-149 (2023). Reviewer: Calogero Vetro (Palermo) MSC: 35J92 35J70 35J20 PDF BibTeX XML Cite \textit{D. D. Repovš} and \textit{K. Saoudi}, Complex Var. Elliptic Equ. 68, No. 1, 135--149 (2023; Zbl 1511.35199) Full Text: DOI arXiv
Misawa, Masashi; Nakamura, Kenta Existence of a sign-changing weak solution to doubly nonlinear parabolic equations. (English) Zbl 1504.35095 J. Geom. Anal. 33, No. 1, Paper No. 33, 44 p. (2023). MSC: 35B45 35B65 35D30 35K20 35K65 35K92 PDF BibTeX XML Cite \textit{M. Misawa} and \textit{K. Nakamura}, J. Geom. Anal. 33, No. 1, Paper No. 33, 44 p. (2023; Zbl 1504.35095) Full Text: DOI
Wang, Guotao; Liu, Yuchuan; Nieto, Juan J.; Zhang, Lihong Asymptotic radial solution of parabolic tempered fractional Laplacian problem. (English) Zbl 1502.35197 Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 1, 16 p. (2023). MSC: 35R11 35B51 35K92 PDF BibTeX XML Cite \textit{G. Wang} et al., Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 1, 16 p. (2023; Zbl 1502.35197) Full Text: DOI
Yao, Fengping Local Hölder regularity for the general non-homogeneous parabolic equations. (English) Zbl 1501.35111 J. Math. Anal. Appl. 519, No. 1, Article ID 126746, 14 p. (2023). MSC: 35B65 35K20 35K92 PDF BibTeX XML Cite \textit{F. Yao}, J. Math. Anal. Appl. 519, No. 1, Article ID 126746, 14 p. (2023; Zbl 1501.35111) Full Text: DOI
Fjellström, Carmina; Nyström, Kaj; Vestberg, Matias Tug-of-war with Kolmogorov. (English) Zbl 1501.35251 J. Differ. Equations 342, 501-558 (2023). MSC: 35K65 35B05 35K51 35K70 35K92 35H20 35R03 35Q91 91A80 91A05 PDF BibTeX XML Cite \textit{C. Fjellström} et al., J. Differ. Equations 342, 501--558 (2023; Zbl 1501.35251) Full Text: DOI arXiv
Arora, Rakesh; Shmarev, Sergey Double-phase parabolic equations with variable growth and nonlinear sources. (English) Zbl 1500.35203 Adv. Nonlinear Anal. 12, 304-335 (2023). MSC: 35K65 35K67 35K20 35K92 35B65 PDF BibTeX XML Cite \textit{R. Arora} and \textit{S. Shmarev}, Adv. Nonlinear Anal. 12, 304--335 (2023; Zbl 1500.35203) Full Text: DOI
Xie, Xiaoliang; Wang, Tianfang; Zhang, Wen Existence of solutions for the \(( p , q )\)-Laplacian equation with nonlocal Choquard reaction. (English) Zbl 1500.35191 Appl. Math. Lett. 135, Article ID 108418, 8 p. (2023). MSC: 35J92 35A01 35A15 PDF BibTeX XML Cite \textit{X. Xie} et al., Appl. Math. Lett. 135, Article ID 108418, 8 p. (2023; Zbl 1500.35191) Full Text: DOI
Li, Fang; Zhu, Xiangyu Convergence rate of solutions to the generalized telegraph equation with an inhomogeneous force. (English) Zbl 1497.35048 J. Math. Anal. Appl. 517, No. 1, Article ID 126564, 10 p. (2023). MSC: 35B40 35L20 35L72 35J92 74K10 PDF BibTeX XML Cite \textit{F. Li} and \textit{X. Zhu}, J. Math. Anal. Appl. 517, No. 1, Article ID 126564, 10 p. (2023; Zbl 1497.35048) Full Text: DOI
Wang, Qian; Chen, Lin; Tang, Nan Infinitely solutions for a class of nonlocal quasilinear elliptic equations. (Chinese. English summary) Zbl 07694518 Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 3, 767-774 (2022). MSC: 35J92 PDF BibTeX XML Cite \textit{Q. Wang} et al., Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 3, 767--774 (2022; Zbl 07694518) Full Text: Link
Razani, A.; Safari, F. A \((p(x),q(x))\)-Laplacian problem with the Steklov boundary conditions. (English) Zbl 1511.35198 Lobachevskii J. Math. 43, No. 12, 3616-3625 (2022). MSC: 35J92 35J25 35A01 35A15 PDF BibTeX XML Cite \textit{A. Razani} and \textit{F. Safari}, Lobachevskii J. Math. 43, No. 12, 3616--3625 (2022; Zbl 1511.35198) Full Text: DOI
Yang, Hui; Ma, Futao; Gao, Wenjie; Han, Yuzhu Blow-up properties of solutions to a class of \(p\)-Kirchhoff evolution equations. (English) Zbl 1512.35394 Electron Res. Arch. 30, No. 7, 2663-2680 (2022). MSC: 35K92 35B44 35K20 35R09 PDF BibTeX XML Cite \textit{H. Yang} et al., Electron Res. Arch. 30, No. 7, 2663--2680 (2022; Zbl 1512.35394) Full Text: DOI
Yilmaz, Emrah; Gulsen, Tuba; Koyunbakan, Hikmet Inverse nodal problem for \(p\)-Laplacian string equation with Prüfer substitution. (English) Zbl 07662174 C. R. Acad. Bulg. Sci. 75, No. 9, 1262-1270 (2022). Reviewer: Petar Popivanov (Sofia) MSC: 34A55 34L05 34L20 PDF BibTeX XML Cite \textit{E. Yilmaz} et al., C. R. Acad. Bulg. Sci. 75, No. 9, 1262--1270 (2022; Zbl 07662174) Full Text: DOI
Oka, Tomoyuki Corrector results for space-time homogenization of nonlinear diffusion. (English) Zbl 1502.35010 Math. Mech. Complex Syst. 10, No. 2, 171-190 (2022). MSC: 35B27 35K20 35K92 47J35 80M40 PDF BibTeX XML Cite \textit{T. Oka}, Math. Mech. Complex Syst. 10, No. 2, 171--190 (2022; Zbl 1502.35010) Full Text: DOI arXiv
Shang, Bin; Zhang, Chao Hölder regularity for mixed local and nonlocal \(p\)-Laplace parabolic equations. (English) Zbl 1502.35034 Discrete Contin. Dyn. Syst. 42, No. 12, 5817-5837 (2022). MSC: 35B45 35B65 35K65 35K67 35K92 PDF BibTeX XML Cite \textit{B. Shang} and \textit{C. Zhang}, Discrete Contin. Dyn. Syst. 42, No. 12, 5817--5837 (2022; Zbl 1502.35034) Full Text: DOI arXiv
Dzagoeva, L. F.; Tedeev, A. F. Asymptotic behavior of the solution of doubly degenerate parabolic equations with inhomogeneous density. (English) Zbl 1513.35343 Vladikavkaz. Mat. Zh. 24, No. 3, 78-86 (2022). MSC: 35K92 35B33 35E15 PDF BibTeX XML Cite \textit{L. F. Dzagoeva} and \textit{A. F. Tedeev}, Vladikavkaz. Mat. Zh. 24, No. 3, 78--86 (2022; Zbl 1513.35343) Full Text: DOI MNR
Bögelein, Verena; Duzaar, Frank; Scheven, Christoph Higher integrability for doubly nonlinear parabolic systems. (English) Zbl 1501.35097 SN Partial Differ. Equ. Appl. 3, No. 6, Paper No. 74, 41 p. (2022). MSC: 35B45 35B65 35K40 35K59 35K92 PDF BibTeX XML Cite \textit{V. Bögelein} et al., SN Partial Differ. Equ. Appl. 3, No. 6, Paper No. 74, 41 p. (2022; Zbl 1501.35097) Full Text: DOI
Vildanova, V. F. Existence of the Cauchy problem for aggregation equation with variable exponents in the hyperbolic space. (English) Zbl 1501.35242 Lobachevskii J. Math. 43, No. 6, 1572-1584 (2022). MSC: 35K15 35K92 35Q92 PDF BibTeX XML Cite \textit{V. F. Vildanova}, Lobachevskii J. Math. 43, No. 6, 1572--1584 (2022; Zbl 1501.35242) Full Text: DOI
Boumaza, Nouri; Gheraibia, Billel Global existence, nonexistence, and decay of solutions for a wave equation of \(p\)-Laplacian type with weak and \(p\)-Laplacian damping, nonlinear boundary delay and source terms. (English) Zbl 1501.35054 Asymptotic Anal. 129, No. 3-4, 577-592 (2022). MSC: 35B40 35B44 35L35 35L77 PDF BibTeX XML Cite \textit{N. Boumaza} and \textit{B. Gheraibia}, Asymptotic Anal. 129, No. 3--4, 577--592 (2022; Zbl 1501.35054) Full Text: DOI
de Oliveira, José Francisco; Miyagaki, Olímpio H.; Moreira, Sandra I. On a class of degenerate quasilinear elliptic equations with zero mass. (English) Zbl 1501.35235 Complex Var. Elliptic Equ. 67, No. 11, 2719-2746 (2022). MSC: 35J92 35J96 35B07 35A01 PDF BibTeX XML Cite \textit{J. F. de Oliveira} et al., Complex Var. Elliptic Equ. 67, No. 11, 2719--2746 (2022; Zbl 1501.35235) Full Text: DOI
Gambera, Laura; Guarnotta, Umberto Strongly singular convective elliptic equations in \(\mathbb{R}^N\) driven by a non-homogeneous operator. (English) Zbl 1501.35238 Commun. Pure Appl. Anal. 21, No. 9, 3031-3054 (2022). MSC: 35J92 35J75 35A01 PDF BibTeX XML Cite \textit{L. Gambera} and \textit{U. Guarnotta}, Commun. Pure Appl. Anal. 21, No. 9, 3031--3054 (2022; Zbl 1501.35238) Full Text: DOI arXiv
Anthal, G. C.; Giacomoni, J.; Sreenadh, K. Some existence and uniqueness results for logistic Choquard equations. (English) Zbl 1501.35230 Rend. Circ. Mat. Palermo (2) 71, No. 3, 997-1034 (2022). MSC: 35J92 35R11 35A01 35A02 35B65 PDF BibTeX XML Cite \textit{G. C. Anthal} et al., Rend. Circ. Mat. Palermo (2) 71, No. 3, 997--1034 (2022; Zbl 1501.35230) Full Text: DOI arXiv
de Araujo, Anderson L. A.; Faria, Luiz F. O. Existence, nonexistence, and asymptotic behavior of solutions for \(N\)-Laplacian equations involving critical exponential growth in the whole \({\mathbb{R}}^N\). (English) Zbl 1501.35234 Math. Ann. 384, No. 3-4, 1469-1507 (2022). MSC: 35J92 35B33 35A01 PDF BibTeX XML Cite \textit{A. L. A. de Araujo} and \textit{L. F. O. Faria}, Math. Ann. 384, No. 3--4, 1469--1507 (2022; Zbl 1501.35234) Full Text: DOI arXiv
Fang, Yuzhou; Zhang, Chao Equivalence between distributional and viscosity solutions for the double-phase equation. (English) Zbl 1500.35184 Adv. Calc. Var. 15, No. 4, 811-829 (2022). MSC: 35J92 35D40 PDF BibTeX XML Cite \textit{Y. Fang} and \textit{C. Zhang}, Adv. Calc. Var. 15, No. 4, 811--829 (2022; Zbl 1500.35184) Full Text: DOI arXiv
Salari, Amjad; Biranvand, Nader; Hashemi Sababe, Saeed On variational approaches for fractional differential equations. (English) Zbl 1500.35189 Math. Slovaca 72, No. 5, 1215-1226 (2022). MSC: 35J92 35R11 PDF BibTeX XML Cite \textit{A. Salari} et al., Math. Slovaca 72, No. 5, 1215--1226 (2022; Zbl 1500.35189) Full Text: DOI
Arroyo, Ángel; Blanc, Pablo; Parviainen, Mikko Local regularity estimates for general discrete dynamic programming equations. (English. French summary) Zbl 1500.35064 J. Math. Pures Appl. (9) 167, 225-256 (2022). MSC: 35B45 35B65 35J15 35J92 91A50 PDF BibTeX XML Cite \textit{Á. Arroyo} et al., J. Math. Pures Appl. (9) 167, 225--256 (2022; Zbl 1500.35064) Full Text: DOI arXiv
Chen, Yiru; Gu, Haibo Multiplicity solutions for a class of \(p\)-Laplacian fractional differential equations via variational methods. (English) Zbl 1496.34012 Open Math. 20, 959-973 (2022). MSC: 34A08 34B37 47J30 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{H. Gu}, Open Math. 20, 959--973 (2022; Zbl 1496.34012) Full Text: DOI
Wang, Pengyan Monotonicity of solutions for fractional \(p\)-equations with a gradient term. (English) Zbl 1500.35305 Open Math. 20, 465-477 (2022). MSC: 35R11 35A09 35B06 35B09 35J92 PDF BibTeX XML Cite \textit{P. Wang}, Open Math. 20, 465--477 (2022; Zbl 1500.35305) Full Text: DOI
Hetzer, Georg Trajectory attractors of energy balance climate models with bio-feedback and latent energy flux. (English) Zbl 1498.35100 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 4, Paper No. 166, 7 p. (2022). MSC: 35B41 35K65 35K92 35R10 35R70 PDF BibTeX XML Cite \textit{G. Hetzer}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 4, Paper No. 166, 7 p. (2022; Zbl 1498.35100) Full Text: DOI
Ricceri, Biagio Addendum to “A more complete version of a minimax theorem”. (English) Zbl 1498.49012 Appl. Anal. Optim. 6, No. 2, 195-197 (2022). MSC: 49J35 49K35 90C47 35J92 PDF BibTeX XML Cite \textit{B. Ricceri}, Appl. Anal. Optim. 6, No. 2, 195--197 (2022; Zbl 1498.49012) Full Text: Link
Sabina de Lis, José C.; Segura de León, Sergio \(p\)-Laplacian diffusion coupled to logistic reaction: asymptotic behavior as \(p\) goes to 1. To the memory of Professor Ireneo Peral Alonso, a brilliant mathematician, excellent person and dear friend. (English) Zbl 1500.35188 Ann. Mat. Pura Appl. (4) 201, No. 5, 2197-2240 (2022). MSC: 35J92 35B40 35B32 PDF BibTeX XML Cite \textit{J. C. Sabina de Lis} and \textit{S. Segura de León}, Ann. Mat. Pura Appl. (4) 201, No. 5, 2197--2240 (2022; Zbl 1500.35188) Full Text: DOI
Bertacco, Federico; Orrieri, Carlo; Scarpa, Luca Random separation property for stochastic Allen-Cahn-type equations. (English) Zbl 1498.35636 Electron. J. Probab. 27, Paper No. 95, 32 p. (2022). MSC: 35R60 35K20 35K67 35K92 60H15 PDF BibTeX XML Cite \textit{F. Bertacco} et al., Electron. J. Probab. 27, Paper No. 95, 32 p. (2022; Zbl 1498.35636) Full Text: DOI arXiv Link
Nakamura, Kenta Local boundedness of a mixed local-nonlocal doubly nonlinear equation. (English) Zbl 1498.35122 J. Evol. Equ. 22, No. 3, Paper No. 75, 38 p. (2022). MSC: 35B45 35B65 35D30 35K61 35K65 35K92 35R11 PDF BibTeX XML Cite \textit{K. Nakamura}, J. Evol. Equ. 22, No. 3, Paper No. 75, 38 p. (2022; Zbl 1498.35122) Full Text: DOI
Zheng, Yadong; Fang, Zhong Bo New critical curves for a doubly degenerate parabolic equation in half-line. (English) Zbl 1498.35342 Appl. Anal. 101, No. 17, 5989-6012 (2022). MSC: 35K65 35B33 35B40 35C06 35K61 35K92 35R09 PDF BibTeX XML Cite \textit{Y. Zheng} and \textit{Z. B. Fang}, Appl. Anal. 101, No. 17, 5989--6012 (2022; Zbl 1498.35342) Full Text: DOI
Chung, Nguyen Thanh; Ho, Ky On a \(p (\cdot)\)-biharmonic problem of Kirchhoff type involving critical growth. (English) Zbl 1498.35310 Appl. Anal. 101, No. 16, 5700-5726 (2022). MSC: 35J92 35A01 PDF BibTeX XML Cite \textit{N. T. Chung} and \textit{K. Ho}, Appl. Anal. 101, No. 16, 5700--5726 (2022; Zbl 1498.35310) Full Text: DOI arXiv
Pinamonti, Andrea; Stefani, Giorgio Existence and uniqueness theorems for some semi-linear equations on locally finite graphs. (English) Zbl 1498.35557 Proc. Am. Math. Soc. 150, No. 11, 4757-4770 (2022). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 35R02 35J92 35A15 PDF BibTeX XML Cite \textit{A. Pinamonti} and \textit{G. Stefani}, Proc. Am. Math. Soc. 150, No. 11, 4757--4770 (2022; Zbl 1498.35557) Full Text: DOI arXiv
Song, Hongxue; Chen, Caisheng Infinitely many solutions for Schrödinger-Choquard equation with critical exponential growth in \(\mathbb{R}^N\). (English) Zbl 1498.35317 J. Dyn. Control Syst. 28, No. 4, 951-970 (2022). MSC: 35J92 35B33 35A01 PDF BibTeX XML Cite \textit{H. Song} and \textit{C. Chen}, J. Dyn. Control Syst. 28, No. 4, 951--970 (2022; Zbl 1498.35317) Full Text: DOI
Aramaki, Junichi Existence of weak solutions for a nonlinear problem involving \(p(\cdot)\)-Laplacian operator with mixed boundary conditions. (English) Zbl 1498.35308 J. Anal. 30, No. 3, 1283-1304 (2022). MSC: 35J92 35J25 35A01 35A15 PDF BibTeX XML Cite \textit{J. Aramaki}, J. Anal. 30, No. 3, 1283--1304 (2022; Zbl 1498.35308) Full Text: DOI