Li, Qi; Lou, Bendong Vanishing phenomena in fast decreasing generalized bistable equations. (English) Zbl 07330915 J. Math. Anal. Appl. 500, No. 1, Article ID 125096, 9 p. (2021). MSC: 35B40 35B05 35K57 35K15 PDF BibTeX XML Cite \textit{Q. Li} and \textit{B. Lou}, J. Math. Anal. Appl. 500, No. 1, Article ID 125096, 9 p. (2021; Zbl 07330915) Full Text: DOI
Zhan, Huashui; Feng, Zhaosheng Optimal partial boundary condition for degenerate parabolic equations. (English) Zbl 07330799 J. Differ. Equations 284, 156-182 (2021). MSC: 35K20 35K65 35B35 PDF BibTeX XML Cite \textit{H. Zhan} and \textit{Z. Feng}, J. Differ. Equations 284, 156--182 (2021; Zbl 07330799) Full Text: DOI
Jiang, Su Zhen; Wu, Yu Jiang Recovering a time-dependent potential function in a multi-term time fractional diffusion equation by using a nonlinear condition. (English) Zbl 07330240 J. Inverse Ill-Posed Probl. 29, No. 2, 233-248 (2021). MSC: 35R30 35R11 35R25 35K20 65M32 PDF BibTeX XML Cite \textit{S. Z. Jiang} and \textit{Y. J. Wu}, J. Inverse Ill-Posed Probl. 29, No. 2, 233--248 (2021; Zbl 07330240) Full Text: DOI
Yuan, Ganghua Inverse problems for stochastic parabolic equations with additive noise. (English) Zbl 07330230 J. Inverse Ill-Posed Probl. 29, No. 1, 93-108 (2021). MSC: 60H15 PDF BibTeX XML Cite \textit{G. Yuan}, J. Inverse Ill-Posed Probl. 29, No. 1, 93--108 (2021; Zbl 07330230) Full Text: DOI
Li, Buyang; Ma, Shu A high-order exponential integrator for nonlinear parabolic equations with nonsmooth initial data. (English) Zbl 07329954 J. Sci. Comput. 87, No. 1, Paper No. 23, 16 p. (2021). MSC: 65 PDF BibTeX XML Cite \textit{B. Li} and \textit{S. Ma}, J. Sci. Comput. 87, No. 1, Paper No. 23, 16 p. (2021; Zbl 07329954) Full Text: DOI
Li, Xiao; Ju, Lili; Hoang, Thi-Thao-Phuong Overlapping domain decomposition based exponential time differencing methods for semilinear parabolic equations. (English) Zbl 07329842 BIT 61, No. 1, 1-36 (2021). MSC: 65 35K55 65M12 65M55 65R20 PDF BibTeX XML Cite \textit{X. Li} et al., BIT 61, No. 1, 1--36 (2021; Zbl 07329842) Full Text: DOI
Giacomoni, Jacques; Gouasmia, Abdelhamid; Mokrane, Abdelhafid Existence and global behavior of weak solutions to a doubly nonlinear evolution fractional \(p\)-Laplacian equation. (English) Zbl 07329783 Electron. J. Differ. Equ. 2021, Paper No. 09, 37 p. (2021). MSC: 35B40 35K59 35K55 35K10 35R11 PDF BibTeX XML Cite \textit{J. Giacomoni} et al., Electron. J. Differ. Equ. 2021, Paper No. 09, 37 p. (2021; Zbl 07329783) Full Text: Link
Han, Yuzhu Blow-up phenomena for a fourth-order parabolic equation with a general nonlinearity. (English) Zbl 07329768 J. Dyn. Control Syst. 27, No. 2, 261-270 (2021). MSC: 35B44 35K25 35K30 PDF BibTeX XML Cite \textit{Y. Han}, J. Dyn. Control Syst. 27, No. 2, 261--270 (2021; Zbl 07329768) Full Text: DOI
Laurent, Camille; Léautaud, Matthieu On uniform observability of gradient flows in the vanishing viscosity limit. (Sur l’observabilité uniforme des flots de gradient dans la limite de viscosité évanescente.) (English. French summary) Zbl 07329544 J. Éc. Polytech., Math. 8, 439-506 (2021). MSC: 93B07 93B05 35B25 35F05 35K05 93C73 PDF BibTeX XML Cite \textit{C. Laurent} and \textit{M. Léautaud}, J. Éc. Polytech., Math. 8, 439--506 (2021; Zbl 07329544) Full Text: DOI
Zhang, Yongzhe Superconvexity of the heat kernel on hyperbolic space with applications to mean curvature flow. (English) Zbl 07329499 Proc. Am. Math. Soc. 149, No. 5, 2161-2166 (2021). MSC: 35K08 58J35 35K93 PDF BibTeX XML Cite \textit{Y. Zhang}, Proc. Am. Math. Soc. 149, No. 5, 2161--2166 (2021; Zbl 07329499) Full Text: DOI
Zhang, Liangdi Parabolic gradient estimates and Harnack inequalities for a nonlinear equation under the Ricci flow. (English) Zbl 07328981 Bull. Braz. Math. Soc. (N.S.) 52, No. 1, 77-99 (2021). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B45 35K55 53C99 PDF BibTeX XML Cite \textit{L. Zhang}, Bull. Braz. Math. Soc. (N.S.) 52, No. 1, 77--99 (2021; Zbl 07328981) Full Text: DOI
Wang, Jia-Bing; Wang, Jie; Cao, Jia-Feng Blowup and global existence of a free boundary problem with weak spatial source. (English) Zbl 07328931 Appl. Anal. 100, No. 5, 964-974 (2021). MSC: 35R35 35K57 35K20 35B33 35B44 PDF BibTeX XML Cite \textit{J.-B. Wang} et al., Appl. Anal. 100, No. 5, 964--974 (2021; Zbl 07328931) Full Text: DOI
Schilling, Nathanael Short-time heat content asymptotics via the wave and eikonal equations. (English) Zbl 07328193 J. Geom. Anal. 31, No. 2, 2172-2181 (2021). MSC: 53C21 53C42 58J35 PDF BibTeX XML Cite \textit{N. Schilling}, J. Geom. Anal. 31, No. 2, 2172--2181 (2021; Zbl 07328193) Full Text: DOI
Dwivedi, Shubham; Gianniotis, Panagiotis; Karigiannis, Spiro A gradient flow of isometric \(\text{G}_2\)-structures. (English) Zbl 07328184 J. Geom. Anal. 31, No. 2, 1855-1933 (2021). MSC: 53E99 53C25 53C29 58J35 58J60 PDF BibTeX XML Cite \textit{S. Dwivedi} et al., J. Geom. Anal. 31, No. 2, 1855--1933 (2021; Zbl 07328184) Full Text: DOI
Gess, Benjamin Optimal regularity for the porous medium equation. (English) Zbl 07328115 J. Eur. Math. Soc. (JEMS) 23, No. 2, 425-465 (2021). MSC: 35K59 35B65 35D30 76Sxx PDF BibTeX XML Cite \textit{B. Gess}, J. Eur. Math. Soc. (JEMS) 23, No. 2, 425--465 (2021; Zbl 07328115) Full Text: DOI
Cavallina, Lorenzo; Magnanini, Rolando; Sakaguchi, Shigeru Two-phase heat conductors with a surface of the constant flow property. (English) Zbl 07327648 J. Geom. Anal. 31, No. 1, 312-345 (2021). MSC: 35K05 35K10 35B06 35B40 35K15 35K20 35J05 35J25 PDF BibTeX XML Cite \textit{L. Cavallina} et al., J. Geom. Anal. 31, No. 1, 312--345 (2021; Zbl 07327648) Full Text: DOI
Chen, Bo; Wang, Youde Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. (English) Zbl 07327282 Commun. Pure Appl. Anal. 20, No. 1, 319-338 (2021). MSC: 35Q60 78A25 58J35 35D30 82D40 35R09 PDF BibTeX XML Cite \textit{B. Chen} and \textit{Y. Wang}, Commun. Pure Appl. Anal. 20, No. 1, 319--338 (2021; Zbl 07327282) Full Text: DOI
Alqahtani, Awatif; Jleli, Mohamed; Samet, Bessem Finite-time blow-up for inhomogeneous parabolic equations with nonlinear memory. (English) Zbl 07327112 Complex Var. Elliptic Equ. 66, No. 1, 84-93 (2021). MSC: 35B44 35K15 35K58 35R09 35B33 PDF BibTeX XML Cite \textit{A. Alqahtani} et al., Complex Var. Elliptic Equ. 66, No. 1, 84--93 (2021; Zbl 07327112) Full Text: DOI
Schätzler, Leah The obstacle problem for degenerate doubly nonlinear equations of porous medium type. (English) Zbl 07326835 Ann. Mat. Pura Appl. (4) 200, No. 2, 641-683 (2021). MSC: 35K86 35K20 35K65 49J40 49J45 PDF BibTeX XML Cite \textit{L. Schätzler}, Ann. Mat. Pura Appl. (4) 200, No. 2, 641--683 (2021; Zbl 07326835) Full Text: DOI
Huang, Rongli; Ye, Yunhua A convergence result on the second boundary value problem for parabolic equations. (English) Zbl 07326756 Pac. J. Math. 310, No. 1, 159-179 (2021). MSC: 53C44 53A10 PDF BibTeX XML Cite \textit{R. Huang} and \textit{Y. Ye}, Pac. J. Math. 310, No. 1, 159--179 (2021; Zbl 07326756) Full Text: DOI
Tang, H. S.; Li, L.; Grossberg, M.; Liu, Y. J.; Jia, Y. M.; Li, S. S.; Dong, W. B. An exploratory study on machine learning to couple numerical solutions of partial differential equations. (English) Zbl 07323672 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105729, 11 p. (2021). Reviewer: Chandrasekhar Salimath (Bengaluru) MSC: 65N55 65N06 68T07 35J05 35K20 PDF BibTeX XML Cite \textit{H. S. Tang} et al., Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105729, 11 p. (2021; Zbl 07323672) Full Text: DOI
Knopf, Patrik; Signori, Andrea On the nonlocal Cahn-Hilliard equation with nonlocal dynamic boundary condition and boundary penalization. (English) Zbl 07319432 J. Differ. Equations 280, 236-291 (2021). MSC: 35A01 35A02 35A15 35K61 35B40 35B41 45K05 47H05 47J35 80A22 PDF BibTeX XML Cite \textit{P. Knopf} and \textit{A. Signori}, J. Differ. Equations 280, 236--291 (2021; Zbl 07319432) Full Text: DOI
Kim, Jungkwon; Lee, Yoonjung; Seo, Ihyeok On well-posedness for the inhomogeneous nonlinear Schrödinger equation in the critical case. (English) Zbl 07319430 J. Differ. Equations 280, 179-202 (2021). MSC: 35Q55 35A01 35B45 35K15 35B45 35J10 PDF BibTeX XML Cite \textit{J. Kim} et al., J. Differ. Equations 280, 179--202 (2021; Zbl 07319430) Full Text: DOI
Jäger, Willi; Woukeng, Jean Louis Homogenization of Richards’ equations in multiscale porous media with soft inclusions. (English) Zbl 07319423 J. Differ. Equations 281, 503-549 (2021). Reviewer: Adrian Muntean (Karlstad) MSC: 35B40 35K65 46J10 35B27 74E05 35J60 PDF BibTeX XML Cite \textit{W. Jäger} and \textit{J. L. Woukeng}, J. Differ. Equations 281, 503--549 (2021; Zbl 07319423) Full Text: DOI
Triki, Faouzi Coefficient identification in parabolic equations with final data. (English. French summary) Zbl 07319318 J. Math. Pures Appl. (9) 148, 342-359 (2021). MSC: 35R30 35K20 35K15 PDF BibTeX XML Cite \textit{F. Triki}, J. Math. Pures Appl. (9) 148, 342--359 (2021; Zbl 07319318) Full Text: DOI
Bayraktar, Erhan; Cecchin, Alekos; Cohen, Asaf; Delarue, François Finite state mean field games with Wright-Fisher common noise. (English. French summary) Zbl 07319305 J. Math. Pures Appl. (9) 147, 98-162 (2021). MSC: 91A16 35K65 PDF BibTeX XML Cite \textit{E. Bayraktar} et al., J. Math. Pures Appl. (9) 147, 98--162 (2021; Zbl 07319305) Full Text: DOI
Braun, Mathias; Habermann, Karen; Sturm, Karl-Theodor Optimal transport, gradient estimates, and pathwise Brownian coupling on spaces with variable Ricci bounds. (English. French summary) Zbl 07319304 J. Math. Pures Appl. (9) 147, 60-97 (2021). MSC: 58J65 49Q22 60J60 35K05 58J35 53C23 31C25 60J46 PDF BibTeX XML Cite \textit{M. Braun} et al., J. Math. Pures Appl. (9) 147, 60--97 (2021; Zbl 07319304) Full Text: DOI
Vabishchevich, P. N. An approximate representation of a solution to fractional elliptical BVP via solution of parabolic IVP. (English) Zbl 07319229 J. Comput. Appl. Math. 391, Article ID 113460, 14 p. (2021). MSC: 65 35R11 65F60 65D32 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, J. Comput. Appl. Math. 391, Article ID 113460, 14 p. (2021; Zbl 07319229) Full Text: DOI
Büyükaşık, Şirin A.; Bozacı, Aylin Dynamical properties of generalized traveling waves of exactly solvable forced Burgers equations with variable coefficients. (English) Zbl 07319175 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105682, 21 p. (2021). MSC: 35Q53 35C05 35K15 35C07 35A08 PDF BibTeX XML Cite \textit{Ş. A. Büyükaşık} and \textit{A. Bozacı}, Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105682, 21 p. (2021; Zbl 07319175) Full Text: DOI
Wang, Hanxiao Extended backward stochastic Volterra integral equations, quasilinear parabolic equations, and Feynman-Kac formula. (English) Zbl 07318765 Stoch. Dyn. 21, No. 1, Article ID 2150004, 37 p. (2021). MSC: 60H20 45D05 35K40 35K59 PDF BibTeX XML Cite \textit{H. Wang}, Stoch. Dyn. 21, No. 1, Article ID 2150004, 37 p. (2021; Zbl 07318765) Full Text: DOI
López-García, Marcos; Mercado, Alberto Uniform null controllability of a fourth-order parabolic equation with a transport term. (English) Zbl 07318549 J. Math. Anal. Appl. 498, No. 2, Article ID 124979, 29 p. (2021). MSC: 35B 93B 35K PDF BibTeX XML Cite \textit{M. López-García} and \textit{A. Mercado}, J. Math. Anal. Appl. 498, No. 2, Article ID 124979, 29 p. (2021; Zbl 07318549) Full Text: DOI
Cheng, Meifang; Lin, Chin-Cheng; Qu, Meng Characterization of Besov spaces associated with parabolic sections. (English) Zbl 07317193 J. Math. Anal. Appl. 497, No. 1, Article ID 124871, 34 p. (2021). MSC: 46E35 35 46 PDF BibTeX XML Cite \textit{M. Cheng} et al., J. Math. Anal. Appl. 497, No. 1, Article ID 124871, 34 p. (2021; Zbl 07317193) Full Text: DOI
Mahata, Shantiram; Sinha, Rajen Kumar Finite element method for fractional parabolic integro-differential equations with smooth and nonsmooth initial data. (English) Zbl 07316881 J. Sci. Comput. 87, No. 1, Paper No. 7, 32 p. (2021). MSC: 65 35R09 35R11 65M60 65N15 PDF BibTeX XML Cite \textit{S. Mahata} and \textit{R. K. Sinha}, J. Sci. Comput. 87, No. 1, Paper No. 7, 32 p. (2021; Zbl 07316881) Full Text: DOI
Sun, Jian-Wen Lower bounds for some nonlocal dispersal equations. (English) Zbl 07315662 J. Math. Anal. Appl. 495, No. 2, Article ID 124781, 8 p. (2021). MSC: 35R09 35K15 35K05 PDF BibTeX XML Cite \textit{J.-W. Sun}, J. Math. Anal. Appl. 495, No. 2, Article ID 124781, 8 p. (2021; Zbl 07315662) Full Text: DOI
Takimoto, Kazuhiro Bernstein type theorem for the generalized parabolic 2-Hessian equation under weaker conditions. (English) Zbl 07315371 J. Math. Anal. Appl. 495, No. 1, Article ID 124703, 14 p. (2021). MSC: 35B08 35K55 PDF BibTeX XML Cite \textit{K. Takimoto}, J. Math. Anal. Appl. 495, No. 1, Article ID 124703, 14 p. (2021; Zbl 07315371) Full Text: DOI
Thieu, T. K. Thoa; Colangeli, Matteo; Muntean, Adrian Uniqueness and stability with respect to parameters of solutions to a fluid-like driven system for active-passive pedestrian dynamics. (English) Zbl 07315370 J. Math. Anal. Appl. 495, No. 1, Article ID 124702, 13 p. (2021). MSC: 35K51 35K58 PDF BibTeX XML Cite \textit{T. K. T. Thieu} et al., J. Math. Anal. Appl. 495, No. 1, Article ID 124702, 13 p. (2021; Zbl 07315370) Full Text: DOI
Umakoshi, Haruki A semilinear heat equation with initial data in negative Sobolev spaces. (English) Zbl 07314580 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 745-767 (2021). MSC: 35K58 35K91 35K20 35A01 35A02 35B65 35D30 PDF BibTeX XML Cite \textit{H. Umakoshi}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 745--767 (2021; Zbl 07314580) Full Text: DOI
Martinez, Patrick; Vancostenoble, Judith Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. (English) Zbl 07314578 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 695-721 (2021). MSC: 92D25 92D40 35F20 35K57 35Q92 35R30 PDF BibTeX XML Cite \textit{P. Martinez} and \textit{J. Vancostenoble}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 695--721 (2021; Zbl 07314578) Full Text: DOI
Laurençot, Philippe; Walker, Christoph Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. (English) Zbl 07314577 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 677-694 (2021). MSC: 35K86 74H20 35Q74 74M25 35M86 35K25 PDF BibTeX XML Cite \textit{P. Laurençot} and \textit{C. Walker}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 677--694 (2021; Zbl 07314577) Full Text: DOI
Frenzel, Thomas; Liero, Matthias Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. (English) Zbl 07314564 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 395-425 (2021). MSC: 35B27 35K20 35K10 35K57 35Q84 PDF BibTeX XML Cite \textit{T. Frenzel} and \textit{M. Liero}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 395--425 (2021; Zbl 07314564) Full Text: DOI
Abels, Helmut; Kampmann, Johannes Existence of weak solutions for a sharp interface model for phase separation on biological membranes. (English) Zbl 07314561 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 331-351 (2021). MSC: 35R35 35K93 92C37 PDF BibTeX XML Cite \textit{H. Abels} and \textit{J. Kampmann}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 331--351 (2021; Zbl 07314561) Full Text: DOI
Poláčik, Peter; Quittner, Pavol Entire and ancient solutions of a supercritical semilinear heat equation. (English) Zbl 07314170 Discrete Contin. Dyn. Syst. 41, No. 1, 413-438 (2021). MSC: 35K58 35B08 35B44 35B05 35B53 PDF BibTeX XML Cite \textit{P. Poláčik} and \textit{P. Quittner}, Discrete Contin. Dyn. Syst. 41, No. 1, 413--438 (2021; Zbl 07314170) Full Text: DOI
Castorina, Daniele; Mantegazza, Carlo Ancient solutions of superlinear heat equations on Riemannian manifolds. (English) Zbl 07312337 Commun. Contemp. Math. 23, No. 3, Article ID 2050033, 16 p. (2021). MSC: 35K58 35R01 35B53 58J35 PDF BibTeX XML Cite \textit{D. Castorina} and \textit{C. Mantegazza}, Commun. Contemp. Math. 23, No. 3, Article ID 2050033, 16 p. (2021; Zbl 07312337) Full Text: DOI
Khan, Feroz Higher order pathwise approximation for the stochastic Burgers’ equation with additive noise. (English) Zbl 07311179 Appl. Numer. Math. 162, 67-80 (2021). MSC: 60 PDF BibTeX XML Cite \textit{F. Khan}, Appl. Numer. Math. 162, 67--80 (2021; Zbl 07311179) Full Text: DOI
Albuja, Guillermo; Ávila, Andrés I. A family of new globally convergent linearization schemes for solving Richards’ equation. (English) Zbl 07310757 Appl. Numer. Math. 159, 281-296 (2021). MSC: 65M06 65N30 65H10 35K65 76S05 35Q35 PDF BibTeX XML Cite \textit{G. Albuja} and \textit{A. I. Ávila}, Appl. Numer. Math. 159, 281--296 (2021; Zbl 07310757) Full Text: DOI
Khanmamedov, Azer On the 2D Cahn-Hilliard/Allen-Cahn equation with the inertial term. (English) Zbl 07310646 J. Math. Anal. Appl. 494, No. 2, Article ID 124603, 19 p. (2021). MSC: 35K35 35K58 35B41 PDF BibTeX XML Cite \textit{A. Khanmamedov}, J. Math. Anal. Appl. 494, No. 2, Article ID 124603, 19 p. (2021; Zbl 07310646) Full Text: DOI
Diehl, Nicolau M. L. Improved regularity for the inhomogeneous porous medium equation. (English) Zbl 07309699 J. Math. Anal. Appl. 494, No. 1, Article ID 124593, 8 p. (2021). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B65 35K55 76S05 PDF BibTeX XML Cite \textit{N. M. L. Diehl}, J. Math. Anal. Appl. 494, No. 1, Article ID 124593, 8 p. (2021; Zbl 07309699) Full Text: DOI
Sun, Linlin; Zhu, Jingyong Global existence and convergence of a flow to Kazdan-Warner equation with non-negative prescribed function. (English) Zbl 07309252 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 42, 26 p. (2021). MSC: 35R01 35K59 35B33 58J35 PDF BibTeX XML Cite \textit{L. Sun} and \textit{J. Zhu}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 42, 26 p. (2021; Zbl 07309252) Full Text: DOI
Bryan, Paul; Ivaki, Mohammad N.; Scheuer, Julian Orlicz-Minkowski flows. (English) Zbl 07309251 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 41, 25 p. (2021). MSC: 53E10 35K55 52A05 53A15 58J35 PDF BibTeX XML Cite \textit{P. Bryan} et al., Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 41, 25 p. (2021; Zbl 07309251) Full Text: DOI
Wang, Yu-Zhao; Xue, Yan Gradient estimates for a parabolic \(p\)-Laplace equation with logarithmic nonlinearity on Riemannian manifolds. (English) Zbl 07308551 Proc. Am. Math. Soc. 149, No. 3, 1329-1341 (2021). MSC: 58J05 58J35 PDF BibTeX XML Cite \textit{Y.-Z. Wang} and \textit{Y. Xue}, Proc. Am. Math. Soc. 149, No. 3, 1329--1341 (2021; Zbl 07308551) Full Text: DOI
Ding, Hang; Zhou, Jun Comments on “Blow-up and decay for a class of pseudo-parabolic \(p\)-Laplacian equation with logarithmic nonlinearity”. (English) Zbl 07308033 Comput. Math. Appl. 84, 144-147 (2021). MSC: 35 31 PDF BibTeX XML Cite \textit{H. Ding} and \textit{J. Zhou}, Comput. Math. Appl. 84, 144--147 (2021; Zbl 07308033) Full Text: DOI
Sulman, Mohamed H. M.; Nguyen, T. B.; Haynes, R. D.; Huang, Weizhang Domain decomposition parabolic Monge-Ampère approach for fast generation of adaptive moving meshes. (English) Zbl 07308030 Comput. Math. Appl. 84, 97-111 (2021). MSC: 65 76 PDF BibTeX XML Cite \textit{M. H. M. Sulman} et al., Comput. Math. Appl. 84, 97--111 (2021; Zbl 07308030) Full Text: DOI
Ramos, João P. G. The Hilbert transform along the parabola, the polynomial Carleson theorem and oscillatory singular integrals. (English) Zbl 07307507 Math. Ann. 379, No. 1-2, 159-185 (2021). MSC: 42B20 42B25 44A12 PDF BibTeX XML Cite \textit{J. P. G. Ramos}, Math. Ann. 379, No. 1--2, 159--185 (2021; Zbl 07307507) Full Text: DOI
McCue, Scott W.; El-Hachem, Maud; Simpson, Matthew J. Exact sharp-fronted travelling wave solutions of the Fisher-KPP equation. (English) Zbl 07307181 Appl. Math. Lett. 114, Article ID 106918, 9 p. (2021). MSC: 35C07 35K57 35K20 PDF BibTeX XML Cite \textit{S. W. McCue} et al., Appl. Math. Lett. 114, Article ID 106918, 9 p. (2021; Zbl 07307181) Full Text: DOI
Xie, Minghong; Tan, Zhong; Wu, Zhonger Local existence and uniqueness of weak solutions to fractional pseudo-parabolic equation with singular potential. (English) Zbl 07307172 Appl. Math. Lett. 114, Article ID 106898, 10 p. (2021). MSC: 35R11 35K70 35D30 PDF BibTeX XML Cite \textit{M. Xie} et al., Appl. Math. Lett. 114, Article ID 106898, 10 p. (2021; Zbl 07307172) Full Text: DOI
Guo, Jing; Wang, Cheng; Wise, Steven M.; Yue, Xingye An improved error analysis for a second-order numerical scheme for the Cahn-Hilliard equation. (English) Zbl 07305225 J. Comput. Appl. Math. 388, Article ID 113300, 17 p. (2021). MSC: 65M06 35K30 65M12 65M15 65T40 PDF BibTeX XML Cite \textit{J. Guo} et al., J. Comput. Appl. Math. 388, Article ID 113300, 17 p. (2021; Zbl 07305225) Full Text: DOI
Huang, Weizhang; Kamenski, Lennard; Lang, Jens Conditioning of implicit Runge-Kutta integration for finite element approximation of linear diffusion equations on anisotropic meshes. (English) Zbl 07305180 J. Comput. Appl. Math. 387, Article ID 112497, 18 p. (2021). MSC: 65M60 65M06 65L06 65N30 65M50 65F08 65F10 65F35 65F15 35K10 PDF BibTeX XML Cite \textit{W. Huang} et al., J. Comput. Appl. Math. 387, Article ID 112497, 18 p. (2021; Zbl 07305180) Full Text: DOI
Xu, Qiuyan; An, Hengbin A class of domain decomposition based nonlinear explicit-implicit iteration algorithms for solving diffusion equations with discontinuous coefficient. (English) Zbl 07305149 J. Comput. Appl. Math. 386, Article ID 113232, 24 p. (2021). MSC: 65M55 65M06 35K55 85A25 80A21 85-08 35Q85 PDF BibTeX XML Cite \textit{Q. Xu} and \textit{H. An}, J. Comput. Appl. Math. 386, Article ID 113232, 24 p. (2021; Zbl 07305149) Full Text: DOI
Avramidi, Ivan G. Heat semigroups on Weyl algebra. (English) Zbl 07303903 J. Geom. Phys. 161, Article ID 104044, 25 p. (2021). MSC: 58J50 58J35 58J37 58J53 58J90 PDF BibTeX XML Cite \textit{I. G. Avramidi}, J. Geom. Phys. 161, Article ID 104044, 25 p. (2021; Zbl 07303903) Full Text: DOI
Bauer, Wolfram; Furutani, Kenro; Iwasaki, Chisato; Laaroussi, Abdellah Spectral theory of a class of nilmanifolds attached to Clifford modules. (English) Zbl 07303586 Math. Z. 297, No. 1-2, 557-583 (2021). Reviewer: Emilio A. Lauret (Báhia Blanca) MSC: 58J53 53C17 58J35 PDF BibTeX XML Cite \textit{W. Bauer} et al., Math. Z. 297, No. 1--2, 557--583 (2021; Zbl 07303586) Full Text: DOI
Faulhuber, Markus Extremal determinants of Laplace-Beltrami operators for rectangular tori. (English) Zbl 07303569 Math. Z. 297, No. 1-2, 175-195 (2021). MSC: 58J52 26A51 33E05 58J35 11H06 52C05 PDF BibTeX XML Cite \textit{M. Faulhuber}, Math. Z. 297, No. 1--2, 175--195 (2021; Zbl 07303569) Full Text: DOI
Amenta, Alex New Riemannian manifolds with \(L^p\)-unbounded Riesz transform for \(p > 2\). (English) Zbl 07303566 Math. Z. 297, No. 1-2, 99-112 (2021). Reviewer: Vladimir Vasilyev (Belgorod) MSC: 58J35 42B20 58J65 PDF BibTeX XML Cite \textit{A. Amenta}, Math. Z. 297, No. 1--2, 99--112 (2021; Zbl 07303566) Full Text: DOI
Kuwada, Kazumasa; Li, Xiang-Dong Monotonicity and rigidity of the \(\mathcal{W}\)-entropy on \(\mathsf{RCD} (0, N)\) spaces. (English) Zbl 07302645 Manuscr. Math. 164, No. 1-2, 119-149 (2021). MSC: 53C23 58J35 58J65 60J60 PDF BibTeX XML Cite \textit{K. Kuwada} and \textit{X.-D. Li}, Manuscr. Math. 164, No. 1--2, 119--149 (2021; Zbl 07302645) Full Text: DOI
Majdoub, Mohamed; Mliki, Ezzedine Well-posedness for Hardy-Hénon parabolic equations with fractional Brownian noise. (English) Zbl 07301482 Anal. Math. Phys. 11, No. 1, Paper No. 20, 12 p. (2021). Reviewer: Manil T. Mohan (Roorkee) MSC: 60H15 60H30 35R60 35K05 60G22 PDF BibTeX XML Cite \textit{M. Majdoub} and \textit{E. Mliki}, Anal. Math. Phys. 11, No. 1, Paper No. 20, 12 p. (2021; Zbl 07301482) Full Text: DOI
Monmarché, Pierre A note on Fisher information hypocoercive decay for the linear Boltzmann equation. (English) Zbl 07299663 Anal. Math. Phys. 11, No. 1, Paper No. 1, 11 p. (2021). MSC: 35Q20 35K99 60J25 82C31 PDF BibTeX XML Cite \textit{P. Monmarché}, Anal. Math. Phys. 11, No. 1, Paper No. 1, 11 p. (2021; Zbl 07299663) Full Text: DOI
Ouzahra, Mohamed Finite-time control for the bilinear heat equation. (English) Zbl 1455.93178 Eur. J. Control 57, 284-293 (2021). MSC: 93D40 93B05 93C20 35K05 PDF BibTeX XML Cite \textit{M. Ouzahra}, Eur. J. Control 57, 284--293 (2021; Zbl 1455.93178) Full Text: DOI
Guzman, Patricio; Rosier, Lionel Null controllability of the structurally damped wave equation on the two-dimensional torus. (English) Zbl 07299441 SIAM J. Control Optim. 59, No. 1, 131-155 (2021). Reviewer: Kaïs Ammari (Monastir) MSC: 35Q74 74D05 93B05 93B07 93C20 PDF BibTeX XML Cite \textit{P. Guzman} and \textit{L. Rosier}, SIAM J. Control Optim. 59, No. 1, 131--155 (2021; Zbl 07299441) Full Text: DOI
Mosconi, Sunra Liouville theorems for ancient caloric functions via optimal growth conditions. (English) Zbl 1455.58009 Proc. Am. Math. Soc. 149, No. 2, 897-906 (2021). MSC: 58J35 35B53 46A55 PDF BibTeX XML Cite \textit{S. Mosconi}, Proc. Am. Math. Soc. 149, No. 2, 897--906 (2021; Zbl 1455.58009) Full Text: DOI
Chen, Si-Jia; Lü, Xing; Tang, Xian-Feng Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients. (English) Zbl 07299032 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105628, 12 p. (2021). MSC: 35C08 35K58 35A25 37K10 PDF BibTeX XML Cite \textit{S.-J. Chen} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105628, 12 p. (2021; Zbl 07299032) Full Text: DOI
Shi, Dongyang; Li, Chaoqun Superconvergence analysis of two-grid methods for bacteria equations. (English) Zbl 07298618 Numer. Algorithms 86, No. 1, 123-152 (2021). MSC: 65M60 65M06 65M55 65Z05 65M12 35K40 92C50 PDF BibTeX XML Cite \textit{D. Shi} and \textit{C. Li}, Numer. Algorithms 86, No. 1, 123--152 (2021; Zbl 07298618) Full Text: DOI
Cancès, Clément; Nabet, Flore; Vohralík, Martin Convergence and a posteriori error analysis for energy-stable finite element approximations of degenerate parabolic equations. (English) Zbl 07298446 Math. Comput. 90, No. 328, 517-563 (2021). MSC: 65M60 65M06 65M12 35K65 65M15 35Q84 PDF BibTeX XML Cite \textit{C. Cancès} et al., Math. Comput. 90, No. 328, 517--563 (2021; Zbl 07298446) Full Text: DOI
Engu, Satyanarayana; Sahoo, Manas R.; Berke, Venkatramana P. Solutions to viscous Burgers equations with time dependent source term. (English) Zbl 07298214 Electron. J. Differ. Equ. 2021, Paper No. 02, 16 p. (2021). MSC: 35C15 35K20 35K58 35B09 35B40 PDF BibTeX XML Cite \textit{S. Engu} et al., Electron. J. Differ. Equ. 2021, Paper No. 02, 16 p. (2021; Zbl 07298214) Full Text: Link
Wang, Renhai; Wang, Bixiang Random dynamics of non-autonomous fractional stochastic \(p\)-Laplacian equations on \(\mathbb{R}^N\). (English) Zbl 07296638 Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021). MSC: 35R60 35R11 35K93 35K15 35B40 35B41 37L30 PDF BibTeX XML Cite \textit{R. Wang} and \textit{B. Wang}, Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021; Zbl 07296638) Full Text: DOI
Dong, Hongjie; Kim, Doyoon An approach for weighted mixed-norm estimates for parabolic equations with local and non-local time derivatives. (English) Zbl 07289457 Adv. Math. 377, Article ID 107494, 45 p. (2021). MSC: 35R11 35K PDF BibTeX XML Cite \textit{H. Dong} and \textit{D. Kim}, Adv. Math. 377, Article ID 107494, 45 p. (2021; Zbl 07289457) Full Text: DOI
Jiang, Renjin Riesz transform via heat kernel and harmonic functions on non-compact manifolds. (English) Zbl 07289440 Adv. Math. 377, Article ID 107464, 51 p. (2021). MSC: 58J35 35K05 PDF BibTeX XML Cite \textit{R. Jiang}, Adv. Math. 377, Article ID 107464, 51 p. (2021; Zbl 07289440) Full Text: DOI
Li, Chang; Zheng, Tao The continuity equation of almost Hermitian metrics. (English) Zbl 07289123 J. Differ. Equations 274, 1015-1036 (2021). MSC: 32Q60 32W20 35K96 53C15 PDF BibTeX XML Cite \textit{C. Li} and \textit{T. Zheng}, J. Differ. Equations 274, 1015--1036 (2021; Zbl 07289123) Full Text: DOI
Marveggio, Alice; Schimperna, Giulio On a non-isothermal Cahn-Hilliard model based on a microforce balance. (English) Zbl 07289120 J. Differ. Equations 274, 924-970 (2021). Reviewer: Joseph Shomberg (Providence) MSC: 35K41 35K55 80A22 74A15 PDF BibTeX XML Cite \textit{A. Marveggio} and \textit{G. Schimperna}, J. Differ. Equations 274, 924--970 (2021; Zbl 07289120) Full Text: DOI
Garcke, Harald; Lam, Kei Fong; Signori, Andrea On a phase field model of Cahn-Hilliard type for tumour growth with mechanical effects. (English) Zbl 07284889 Nonlinear Anal., Real World Appl. 57, Article ID 103192, 28 p. (2021). Reviewer: Joseph Shomberg (Providence) MSC: 35G61 49J20 35Q92 PDF BibTeX XML Cite \textit{H. Garcke} et al., Nonlinear Anal., Real World Appl. 57, Article ID 103192, 28 p. (2021; Zbl 07284889) Full Text: DOI
Biler, Piotr; Boritchev, Alexandre; Karch, Grzegorz; Laurençot, Philippe Concentration phenomena in a diffusive aggregation model. (English) Zbl 1455.35264 J. Differ. Equations 271, 1092-1108 (2021). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q92 35K55 35B36 35B45 35B06 92C37 PDF BibTeX XML Cite \textit{P. Biler} et al., J. Differ. Equations 271, 1092--1108 (2021; Zbl 1455.35264) Full Text: DOI
Vildanova, V. F.; Mukminov, F. Kh. Existence of weak solutions of the aggregation equation with the \(p ( \cdot )\)-Laplacian. (English. Russian original) Zbl 1453.35109 J. Math. Sci., New York 252, No. 2, 156-167 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 152, 34-45 (2018). MSC: 35K20 35K92 35K65 35K61 35D30 35R09 PDF BibTeX XML Cite \textit{V. F. Vildanova} and \textit{F. Kh. Mukminov}, J. Math. Sci., New York 252, No. 2, 156--167 (2021; Zbl 1453.35109); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 152, 34--45 (2018) Full Text: DOI
Zhang, Tian-Tian; Xu, Mei-Juan The symmetry-preserving difference schemes and exact solutions of some high-dimensional differential equations. (English) Zbl 07281329 Appl. Math. Lett. 112, Article ID 106813, 9 p. (2021). MSC: 65M06 35K59 PDF BibTeX XML Cite \textit{T.-T. Zhang} and \textit{M.-J. Xu}, Appl. Math. Lett. 112, Article ID 106813, 9 p. (2021; Zbl 07281329) Full Text: DOI
Zheng, Xiangcheng; Wang, Hong; Fu, Hongfei Analysis of a physically-relevant variable-order time-fractional reaction-diffusion model with Mittag-Leffler kernel. (English) Zbl 1453.35185 Appl. Math. Lett. 112, Article ID 106804, 7 p. (2021). MSC: 35R11 35K20 35K57 PDF BibTeX XML Cite \textit{X. Zheng} et al., Appl. Math. Lett. 112, Article ID 106804, 7 p. (2021; Zbl 1453.35185) Full Text: DOI
Cherniha, Roman; Serov, Mykola; Prystavka, Yulia A complete Lie symmetry classification of a class of (1+2)-dimensional reaction-diffusion-convection equations. (English) Zbl 1452.35211 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105466, 20 p. (2021). MSC: 35Q79 35K57 35K59 35K05 35A30 35R03 PDF BibTeX XML Cite \textit{R. Cherniha} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105466, 20 p. (2021; Zbl 1452.35211) Full Text: DOI
Kopteva, Natalia Error analysis of an \(L2\)-type method on graded meshes for a fractional-order parabolic problem. (English) Zbl 1452.65237 Math. Comput. 90, No. 327, 19-40 (2021). MSC: 65M60 65M22 65M15 35R11 26A33 PDF BibTeX XML Cite \textit{N. Kopteva}, Math. Comput. 90, No. 327, 19--40 (2021; Zbl 1452.65237) Full Text: DOI
Zhang, Tie; Sheng, Ying The \(H^1\)-error analysis of the finite element method for solving the fractional diffusion equation. (English) Zbl 1452.65263 J. Math. Anal. Appl. 493, No. 2, Article ID 124540, 22 p. (2021). MSC: 65M60 65M06 65N30 65M12 65M15 35R11 26A33 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{Y. Sheng}, J. Math. Anal. Appl. 493, No. 2, Article ID 124540, 22 p. (2021; Zbl 1452.65263) Full Text: DOI
Li, Lingfei; Gao, Hang The stability and stabilization of heat equation in non-cylindrical domain. (English) Zbl 1451.35065 J. Math. Anal. Appl. 493, No. 2, Article ID 124538, 15 p. (2021). MSC: 35K20 35K05 35B35 PDF BibTeX XML Cite \textit{L. Li} and \textit{H. Gao}, J. Math. Anal. Appl. 493, No. 2, Article ID 124538, 15 p. (2021; Zbl 1451.35065) Full Text: DOI
Fila, Marek; Ishige, Kazuhiro; Kawakami, Tatsuki The large diffusion limit for the heat equation with a dynamical boundary condition. (English) Zbl 1450.35031 Commun. Contemp. Math. 23, No. 1, Article ID 2050003, 20 p. (2021). MSC: 35B25 35K05 35A01 35K20 35B30 PDF BibTeX XML Cite \textit{M. Fila} et al., Commun. Contemp. Math. 23, No. 1, Article ID 2050003, 20 p. (2021; Zbl 1450.35031) Full Text: DOI
Leonori, Tommaso; Molino, Alexis; Segura de León, Sergio Parabolic equations with natural growth approximated by nonlocal equations. (English) Zbl 1450.35064 Commun. Contemp. Math. 23, No. 1, Article ID 1950088, 32 p. (2021). MSC: 35B40 35B51 35K58 35R09 47G20 PDF BibTeX XML Cite \textit{T. Leonori} et al., Commun. Contemp. Math. 23, No. 1, Article ID 1950088, 32 p. (2021; Zbl 1450.35064) Full Text: DOI
Arora, Rakesh; Shmarev, Sergey Strong solutions of evolution equations with \(p(x,t)\)-Laplacian: existence, global higher integrability of the gradients and second-order regularity. (English) Zbl 1450.35153 J. Math. Anal. Appl. 493, No. 1, Article ID 124506, 31 p. (2021). MSC: 35K92 35D35 35K65 35K67 35B65 PDF BibTeX XML Cite \textit{R. Arora} and \textit{S. Shmarev}, J. Math. Anal. Appl. 493, No. 1, Article ID 124506, 31 p. (2021; Zbl 1450.35153) Full Text: DOI
Bradji, Abdallah; Ziggaf, Moussa A convergence result of a linear SUSHI scheme using characteristics method for a semi-linear parabolic equation. (English) Zbl 07243209 Dimov, Ivan (ed.) et al., Advances in high performance computing. Results of the international conference on high performance computing, Borovets, Bulgaria, September 2–6, 2019. Cham: Springer (ISBN 978-3-030-55346-3/hbk; 978-3-030-55347-0/ebook). Studies in Computational Intelligence 902, 452-462 (2021). MSC: 65 PDF BibTeX XML Cite \textit{A. Bradji} and \textit{M. Ziggaf}, Stud. Comput. Intell. 902, 452--462 (2021; Zbl 07243209) Full Text: DOI
Kirsten, Klaus; Lee, Yoonweon The BFK-gluing formula and the curvature tensors on a 2-dimensional compact hypersurface. (English) Zbl 07332252 J. Spectr. Theory 10, No. 3, 1007-1051 (2020). MSC: 58J52 58J35 58J20 14F40 PDF BibTeX XML Cite \textit{K. Kirsten} and \textit{Y. Lee}, J. Spectr. Theory 10, No. 3, 1007--1051 (2020; Zbl 07332252) Full Text: DOI
Gong, Wei; Li, Buyang Improved error estimates for semidiscrete finite element solutions of parabolic Dirichlet boundary control problems. (English) Zbl 07330078 IMA J. Numer. Anal. 40, No. 4, 2898-2939 (2020). MSC: 65 PDF BibTeX XML Cite \textit{W. Gong} and \textit{B. Li}, IMA J. Numer. Anal. 40, No. 4, 2898--2939 (2020; Zbl 07330078) Full Text: DOI
Ivasyshen, S. D.; Korenyuk, N. I. Integral representation of solutions of half-space homogeneous Dirichlet and Neumann problems for an equation of Fokker-Planck-Kolmogorov type of normal Markov process. (Ukrainian. English summary) Zbl 07329624 Bukovyn. Mat. Zh. 8, No. 2, 56-70 (2020). MSC: 35K20 PDF BibTeX XML Cite \textit{S. D. Ivasyshen} and \textit{N. I. Korenyuk}, Bukovyn. Mat. Zh. 8, No. 2, 56--70 (2020; Zbl 07329624) Full Text: DOI
Gromyk, A. P.; Konet, I. M.; Pylypyuk, T. M. Parabolic boundary value problems in a piecewise homogeneous wedge-shaped solid cylinder. (Ukrainian. English summary) Zbl 07329623 Bukovyn. Mat. Zh. 8, No. 2, 40-55 (2020). MSC: 35K20 PDF BibTeX XML Cite \textit{A. P. Gromyk} et al., Bukovyn. Mat. Zh. 8, No. 2, 40--55 (2020; Zbl 07329623) Full Text: DOI
Gorodets’kyĭ, V. V.; Kolisnyk, R. S.; Martynyuk, O. V. On a nonlocal problem for partial differential equations of parabolic type. (Ukrainian. English summary) Zbl 07329622 Bukovyn. Mat. Zh. 8, No. 2, 24-39 (2020). MSC: 35K55 46T30 PDF BibTeX XML Cite \textit{V. V. Gorodets'kyĭ} et al., Bukovyn. Mat. Zh. 8, No. 2, 24--39 (2020; Zbl 07329622) Full Text: DOI
Fan, Huiying; Ma, Tao Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. (English) Zbl 07326989 Commun. Pure Appl. Anal. 19, No. 12, 5487-5508 (2020). MSC: 35C15 35K15 47D03 42B25 PDF BibTeX XML Cite \textit{H. Fan} and \textit{T. Ma}, Commun. Pure Appl. Anal. 19, No. 12, 5487--5508 (2020; Zbl 07326989) Full Text: DOI
Gong, Shuyu; Zhou, Ziwei; Bao, Jiguang Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation. (English) Zbl 07326918 Commun. Pure Appl. Anal. 19, No. 10, 4921-4936 (2020). MSC: 35K96 35K20 35D40 PDF BibTeX XML Cite \textit{S. Gong} et al., Commun. Pure Appl. Anal. 19, No. 10, 4921--4936 (2020; Zbl 07326918) Full Text: DOI
Eom, Junyong; Sato, Ryuichi Large time behavior of ODE type solutions to parabolic \(p\)-Laplacian type equations. (English) Zbl 07326896 Commun. Pure Appl. Anal. 19, No. 9, 4373-4386 (2020). MSC: 35B40 35K15 35K92 PDF BibTeX XML Cite \textit{J. Eom} and \textit{R. Sato}, Commun. Pure Appl. Anal. 19, No. 9, 4373--4386 (2020; Zbl 07326896) Full Text: DOI
Söliver, Benjamin; Junge, Oliver A convergent Lagrangian discretization for \(p\)-Wasserstein and flux-limited diffusion equations. (English) Zbl 07326889 Commun. Pure Appl. Anal. 19, No. 9, 4227-4256 (2020). MSC: 65 35K30 35Q99 65M12 35B40 PDF BibTeX XML Cite \textit{B. Söliver} and \textit{O. Junge}, Commun. Pure Appl. Anal. 19, No. 9, 4227--4256 (2020; Zbl 07326889) Full Text: DOI
Lions, Pierre-Louis; Souganidis, Panagiotis E. Extended mean-field games. (English) Zbl 07326807 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 31, No. 3, 611-625 (2020). MSC: 35B27 35G61 35F21 35Q49 35K40 35K59 91A13 PDF BibTeX XML Cite \textit{P.-L. Lions} and \textit{P. E. Souganidis}, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 31, No. 3, 611--625 (2020; Zbl 07326807) Full Text: DOI