Gao, Kai Global bounded weak solutions in a two-dimensional Keller-Segel-Navier-Stokes system with indirect signal production and nonlinear diffusion. (English) Zbl 07739949 J. Math. Anal. Appl. 529, No. 1, Article ID 127595, 31 p. (2024). MSC: 35D30 35K51 35K59 35Q30 92C17 PDF BibTeX XML Cite \textit{K. Gao}, J. Math. Anal. Appl. 529, No. 1, Article ID 127595, 31 p. (2024; Zbl 07739949) Full Text: DOI
Mel’nyk, Taras; Rohde, Christian Asymptotic approximations for semilinear parabolic convection-dominated transport problems in thin graph-like networks. (English) Zbl 07739944 J. Math. Anal. Appl. 529, No. 1, Article ID 127587, 35 p. (2024). MSC: 35B25 35K20 35R02 PDF BibTeX XML Cite \textit{T. Mel'nyk} and \textit{C. Rohde}, J. Math. Anal. Appl. 529, No. 1, Article ID 127587, 35 p. (2024; Zbl 07739944) Full Text: DOI arXiv
Colucci, Renato Periodic travelling waves for a fourth order nonlinear evolution equation. (English) Zbl 07739943 J. Math. Anal. Appl. 529, No. 1, Article ID 127586, 19 p. (2024). MSC: 35C07 35B10 35B25 35K30 35K58 PDF BibTeX XML Cite \textit{R. Colucci}, J. Math. Anal. Appl. 529, No. 1, Article ID 127586, 19 p. (2024; Zbl 07739943) Full Text: DOI
Amirali, Ilhame; Amiraliyev, Gabil M. Numerical solution of linear pseudo-parabolic equation with time delay using three layer difference method. (English) Zbl 07738666 J. Comput. Appl. Math. 436, Article ID 115417, 9 p. (2024). MSC: 65M22 35K70 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{I. Amirali} and \textit{G. M. Amiraliyev}, J. Comput. Appl. Math. 436, Article ID 115417, 9 p. (2024; Zbl 07738666) Full Text: DOI
He, Mingyu; Liao, Wenyuan A compact ADI finite difference method for 2D reaction-diffusion equations with variable diffusion coefficients. (English) Zbl 07738650 J. Comput. Appl. Math. 436, Article ID 115400, 19 p. (2024). MSC: 65Mxx 35Kxx 65Nxx PDF BibTeX XML Cite \textit{M. He} and \textit{W. Liao}, J. Comput. Appl. Math. 436, Article ID 115400, 19 p. (2024; Zbl 07738650) Full Text: DOI
Hu, Bin; Xie, Shuoping; Wang, Zewen Determination of a spacewise-dependent heat source by a logarithmic-type regularization method. (English) Zbl 07744465 Appl. Anal. 102, No. 14, 3986-4003 (2023). MSC: 35R30 35R11 65M32 PDF BibTeX XML Cite \textit{B. Hu} et al., Appl. Anal. 102, No. 14, 3986--4003 (2023; Zbl 07744465) Full Text: DOI
Courte, Luca; Dondl, Patrick Viscosity solutions for doubly nonlinear evolution equations. (English) Zbl 07744462 Appl. Anal. 102, No. 14, 3923-3945 (2023). MSC: 35D40 35G31 35K55 34E15 34A60 34C55 PDF BibTeX XML Cite \textit{L. Courte} and \textit{P. Dondl}, Appl. Anal. 102, No. 14, 3923--3945 (2023; Zbl 07744462) Full Text: DOI
Lin, Hongyan; Li, Fengjie; Nie, Ziqi Blowup property of solutions in the parabolic equation with \(p\)-Laplacian operator and multi-nonlinearities. (English) Zbl 07744457 Appl. Anal. 102, No. 14, 3842-3860 (2023). MSC: 35K55 35B40 35K15 35B33 PDF BibTeX XML Cite \textit{H. Lin} et al., Appl. Anal. 102, No. 14, 3842--3860 (2023; Zbl 07744457) Full Text: DOI
Yan, Baoqiang; O’Regan, Donal; Argarwal, Ravi P. Nonexistence and existence of solutions with prescribed norm for semilinear nonlocal elliptic equations. (English) Zbl 07744451 Appl. Anal. 102, No. 13, 3751-3768 (2023). MSC: 35K57 35B35 PDF BibTeX XML Cite \textit{B. Yan} et al., Appl. Anal. 102, No. 13, 3751--3768 (2023; Zbl 07744451) Full Text: DOI
Xiao, Weiliang; Kang, Wenyu Global large solutions to the Navier-Stokes-Nernst-Planck-Poisson equations in Fourier-Besov spaces. (English) Zbl 07744438 Appl. Anal. 102, No. 12, 3476-3488 (2023). MSC: 35Q35 35K55 76B03 42B37 PDF BibTeX XML Cite \textit{W. Xiao} and \textit{W. Kang}, Appl. Anal. 102, No. 12, 3476--3488 (2023; Zbl 07744438) Full Text: DOI
Zhan, Huashui; Feng, Zhaosheng Degenerate parabolic equations with partial boundary value conditions. (English) Zbl 07744436 Appl. Anal. 102, No. 12, 3444-3462 (2023). MSC: 35K65 35B35 35K20 PDF BibTeX XML Cite \textit{H. Zhan} and \textit{Z. Feng}, Appl. Anal. 102, No. 12, 3444--3462 (2023; Zbl 07744436) Full Text: DOI
Jiang, Chao; Lei, Yuzhu; Liu, Zuhan; Zhou, Ling Existence and asymptotic stability in a fractional chemotaxis system with competitive kinetics. (English) Zbl 07744428 Appl. Anal. 102, No. 12, 3283-3314 (2023). MSC: 35B40 35K55 35Q92 92C17 PDF BibTeX XML Cite \textit{C. Jiang} et al., Appl. Anal. 102, No. 12, 3283--3314 (2023; Zbl 07744428) Full Text: DOI
Boujallal, Lahoucine Partial asymptotic null controllability for semilinear evolution equations in Hilbert spaces. (English) Zbl 07744427 Appl. Anal. 102, No. 12, 3272-3282 (2023). MSC: 93B03 93C10 93C20 35K58 PDF BibTeX XML Cite \textit{L. Boujallal}, Appl. Anal. 102, No. 12, 3272--3282 (2023; Zbl 07744427) Full Text: DOI
Alziary, Bénédicte; Takáč, Peter Monotone methods in counterparty risk models with nonlinear Black-Scholes-type equations. (English) Zbl 07744414 S\(\vec{\text{e}}\)MA J. 80, No. 3, 353-379 (2023). MSC: 35A16 91G40 35K58 91G60 PDF BibTeX XML Cite \textit{B. Alziary} and \textit{P. Takáč}, S\(\vec{\text{e}}\)MA J. 80, No. 3, 353--379 (2023; Zbl 07744414) Full Text: DOI
Jin, Chun Hua Global solvability, pattern formation and stability to a chemotaxis-haptotaxis model with porous medium diffusion. (English) Zbl 07744004 Acta Math. Sin., Engl. Ser. 39, No. 8, 1597-1623 (2023). MSC: 35K55 92C17 PDF BibTeX XML Cite \textit{C. H. Jin}, Acta Math. Sin., Engl. Ser. 39, No. 8, 1597--1623 (2023; Zbl 07744004) Full Text: DOI
Epifanov, A. V.; Tsybulin, V. G. Mathematical model of the ideal distribution of related species in a nonhogeneous environment. (Russian. English summary) Zbl 07743972 Vladikavkaz. Mat. Zh. 25, No. 2, 78-88 (2023). MSC: 35B36 35K20 35Q92 65M20 92C15 92D25 PDF BibTeX XML Cite \textit{A. V. Epifanov} and \textit{V. G. Tsybulin}, Vladikavkaz. Mat. Zh. 25, No. 2, 78--88 (2023; Zbl 07743972) Full Text: DOI MNR
Röckner, Michael; Xie, Longjie; Yang, Li Averaging principle and normal deviations for multi-scale stochastic hyperbolic-parabolic equations. (English) Zbl 07742930 Stoch. Partial Differ. Equ., Anal. Comput. 11, No. 3, 869-907 (2023). MSC: 60H15 60F05 70K70 PDF BibTeX XML Cite \textit{M. Röckner} et al., Stoch. Partial Differ. Equ., Anal. Comput. 11, No. 3, 869--907 (2023; Zbl 07742930) Full Text: DOI arXiv
Sun, Jingwei; Zhang, Hong; Qian, Xu; Song, Songhe A family of structure-preserving exponential time differencing Runge-Kutta schemes for the viscous Cahn-Hilliard equation. (English) Zbl 07742900 J. Comput. Phys. 492, Article ID 112414, 24 p. (2023). MSC: 65Mxx 35Kxx 35Bxx PDF BibTeX XML Cite \textit{J. Sun} et al., J. Comput. Phys. 492, Article ID 112414, 24 p. (2023; Zbl 07742900) Full Text: DOI
Hong, Qi; Gong, Yuezheng; Zhao, Jia Thermodynamically consistent hydrodynamic phase-field computational modeling for fluid-structure interaction with moving contact lines. (English) Zbl 07742895 J. Comput. Phys. 492, Article ID 112409, 21 p. (2023). MSC: 65Mxx 35Kxx 35Qxx PDF BibTeX XML Cite \textit{Q. Hong} et al., J. Comput. Phys. 492, Article ID 112409, 21 p. (2023; Zbl 07742895) Full Text: DOI
Tao, Youshan; Winkler, Michael Global smooth solutions in a three-dimensional cross-diffusive SIS epidemic model with saturated taxis at large densities. (English) Zbl 07742552 Evol. Equ. Control Theory 12, No. 6, 1676-1687 (2023). MSC: 35K55 35A01 35B45 35Q92 92C17 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{M. Winkler}, Evol. Equ. Control Theory 12, No. 6, 1676--1687 (2023; Zbl 07742552) Full Text: DOI
Gentile, Andrea; Passarelli di Napoli, Antonia Higher regularity for weak solutions to degenerate parabolic problems. (English) Zbl 07742484 Calc. Var. Partial Differ. Equ. 62, No. 8, Paper No. 225, 32 p. (2023). MSC: 35B45 35B65 35D30 35K10 35K65 PDF BibTeX XML Cite \textit{A. Gentile} and \textit{A. Passarelli di Napoli}, Calc. Var. Partial Differ. Equ. 62, No. 8, Paper No. 225, 32 p. (2023; Zbl 07742484) Full Text: DOI arXiv
Wang, Chang-Jian; Zhu, Ya-Jie; Zhu, Xin-Cai Long time behavior of the solution to a chemotaxis system with nonlinear indirect signal production and logistic source. (English) Zbl 07742345 Electron. J. Qual. Theory Differ. Equ. 2023, Paper No. 11, 21 p. (2023). MSC: 35K55 92C17 PDF BibTeX XML Cite \textit{C.-J. Wang} et al., Electron. J. Qual. Theory Differ. Equ. 2023, Paper No. 11, 21 p. (2023; Zbl 07742345) Full Text: DOI
Araújo, Bruno Sérgio V.; Demarque, Reginaldo; Viana, Luiz Carleman inequality for a class of super strong degenerate parabolic operators and applications. (English) Zbl 07742343 Electron. J. Qual. Theory Differ. Equ. 2023, Paper No. 9, 25 p. (2023). MSC: 35K65 93B05 93C05 93C10 PDF BibTeX XML Cite \textit{B. S. V. Araújo} et al., Electron. J. Qual. Theory Differ. Equ. 2023, Paper No. 9, 25 p. (2023; Zbl 07742343) Full Text: DOI arXiv
Koffi, N’guessan; Modeste, Camara Gninlfan; Adama, Coulibaly; Augustin, Touré Kidjégbo Numerical approximation of the quenching time for one-dimensional \(p\)-Laplacian with singular boundary flux. (English) Zbl 07742073 J. Indian Math. Soc., New Ser. 90, No. 1-2, 85-104 (2023). MSC: 34B15 35K55 35K65 65M06 PDF BibTeX XML Cite \textit{N. Koffi} et al., J. Indian Math. Soc., New Ser. 90, No. 1--2, 85--104 (2023; Zbl 07742073) Full Text: DOI
Li, Jingwei; Lan, Rihui; Cai, Yongyong; Ju, Lili; Wang, Xiaoqiang Second-order semi-Lagrangian exponential time differencing method with enhanced error estimate for the convective Allen-Cahn equation. (English) Zbl 07742006 J. Sci. Comput. 97, No. 1, Paper No. 7, 29 p. (2023). MSC: 65M12 65M25 35B50 35K55 PDF BibTeX XML Cite \textit{J. Li} et al., J. Sci. Comput. 97, No. 1, Paper No. 7, 29 p. (2023; Zbl 07742006) Full Text: DOI
Hu, Yanmei; Du, Wanjuan Boundedness in a two-dimensional chemotaxis system with signal-dependent motility and logistic source. (English) Zbl 07741582 Bound. Value Probl. 2023, Paper No. 84, 22 p. (2023). MSC: 35B40 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{Y. Hu} and \textit{W. Du}, Bound. Value Probl. 2023, Paper No. 84, 22 p. (2023; Zbl 07741582) Full Text: DOI
Surendar, Maruthai Selvaraj; Sambath, Muniagounder; Balachandran, Krishnan; Ma, Yong-Ki Qualitative analysis of a prey-predator model with prey refuge and intraspecific competition among predators. (English) Zbl 07741579 Bound. Value Probl. 2023, Paper No. 81, 21 p. (2023). MSC: 35B32 35B35 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{M. S. Surendar} et al., Bound. Value Probl. 2023, Paper No. 81, 21 p. (2023; Zbl 07741579) Full Text: DOI
Wang, Jing; Ma, Qiaozhen; Zhou, Wenxue; Yao, Xiaobin Dynamic of the nonclassical diffusion equation with memory. (English) Zbl 07741577 Bound. Value Probl. 2023, Paper No. 79, 22 p. (2023). MSC: 35B41 35B25 35K20 35K58 35K70 35R09 45K05 PDF BibTeX XML Cite \textit{J. Wang} et al., Bound. Value Probl. 2023, Paper No. 79, 22 p. (2023; Zbl 07741577) Full Text: DOI
Yu, Hao; Xue, Bingqian; Zhao, Lifen Critical mass curves for a short-ranged chemical signaling loop. (English) Zbl 07741478 Z. Angew. Math. Phys. 74, No. 5, Paper No. 191, 22 p. (2023). MSC: 35B44 35B51 35K59 92C17 PDF BibTeX XML Cite \textit{H. Yu} et al., Z. Angew. Math. Phys. 74, No. 5, Paper No. 191, 22 p. (2023; Zbl 07741478) Full Text: DOI
Nečasová, Šárka; Ogorzaly, Justyna; Scherz, Jan The compressible Navier-Stokes equations with slip boundary conditions of friction type. (English) Zbl 07741475 Z. Angew. Math. Phys. 74, No. 5, Paper No. 188, 20 p. (2023). MSC: 35Q30 76N10 76N20 35D30 35A01 35A02 35K85 PDF BibTeX XML Cite \textit{Š. Nečasová} et al., Z. Angew. Math. Phys. 74, No. 5, Paper No. 188, 20 p. (2023; Zbl 07741475) Full Text: DOI arXiv
Ji, Quanli; Wu, Ranchao; Feng, Zhaosheng Dynamics of the nonlocal diffusive vector-disease model with delay and spatial heterogeneity. (English) Zbl 07741470 Z. Angew. Math. Phys. 74, No. 5, Paper No. 183, 27 p. (2023). MSC: 35B32 35K20 35K57 35R09 37L10 PDF BibTeX XML Cite \textit{Q. Ji} et al., Z. Angew. Math. Phys. 74, No. 5, Paper No. 183, 27 p. (2023; Zbl 07741470) Full Text: DOI
Liu, Kaikai; Guo, Shangjiang Existence of periodic traveling waves in a nonlocal convection-diffusion model with chemotaxis and delay effect. (English) Zbl 07741466 Z. Angew. Math. Phys. 74, No. 5, Paper No. 179, 13 p. (2023). MSC: 35C07 35K45 35K57 92C17 PDF BibTeX XML Cite \textit{K. Liu} and \textit{S. Guo}, Z. Angew. Math. Phys. 74, No. 5, Paper No. 179, 13 p. (2023; Zbl 07741466) Full Text: DOI
Bezerra, Flank D. M.; Santos, Lucas A.; Silva, Maria J. M.; Takaessu, Carlos R. jun. A note on the spectral analysis of some fourth-order differential equations with a semigroup approach. (English) Zbl 07741384 Result. Math. 78, No. 6, Paper No. 220, 14 p. (2023). MSC: 35K52 35K90 35R11 47A08 47D06 PDF BibTeX XML Cite \textit{F. D. M. Bezerra} et al., Result. Math. 78, No. 6, Paper No. 220, 14 p. (2023; Zbl 07741384) Full Text: DOI
Lappicy, Phillipo Sturm attractors for fully nonlinear parabolic equations. (English) Zbl 07741367 Rev. Mat. Complut. 36, No. 3, 725-747 (2023). MSC: 35B41 35K20 35K55 37L30 37G35 PDF BibTeX XML Cite \textit{P. Lappicy}, Rev. Mat. Complut. 36, No. 3, 725--747 (2023; Zbl 07741367) Full Text: DOI arXiv
Zheng, Meng; Wang, Liangchen Global boundedness in a chemotaxis system with signal-dependent motility and indirect signal consumption. (English) Zbl 07741251 Appl. Math. Lett. 146, Article ID 108838, 7 p. (2023). MSC: 35B40 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{M. Zheng} and \textit{L. Wang}, Appl. Math. Lett. 146, Article ID 108838, 7 p. (2023; Zbl 07741251) Full Text: DOI
García-Archilla, Bosco; John, Volker; Novo, Julia Second order error bounds for POD-ROM methods based on first order divided differences. (English) Zbl 07741250 Appl. Math. Lett. 146, Article ID 108836, 7 p. (2023). MSC: 65Mxx 35Kxx 65Lxx PDF BibTeX XML Cite \textit{B. García-Archilla} et al., Appl. Math. Lett. 146, Article ID 108836, 7 p. (2023; Zbl 07741250) Full Text: DOI arXiv
Zheng, Tingting; Teng, Zhidong; Luo, Yantao; Nie, Linfei \( \kappa \)-contracting in a degenerated diffusive virus infection model with spatial heterogeneity. (English) Zbl 07741228 Appl. Math. Lett. 146, Article ID 108800, 6 p. (2023). MSC: 35K51 35K57 35K65 92D30 PDF BibTeX XML Cite \textit{T. Zheng} et al., Appl. Math. Lett. 146, Article ID 108800, 6 p. (2023; Zbl 07741228) Full Text: DOI
Fuest, Mario; Lankeit, Johannes Corners and collapse: some simple observations concerning critical masses and boundary blow-up in the fully parabolic Keller-Segel system. (English) Zbl 07741219 Appl. Math. Lett. 146, Article ID 108788, 9 p. (2023). MSC: 35B44 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{M. Fuest} and \textit{J. Lankeit}, Appl. Math. Lett. 146, Article ID 108788, 9 p. (2023; Zbl 07741219) Full Text: DOI arXiv
Wang, Jianping Global bounded solution in a chemotaxis-Stokes model with porous medium diffusion and singular sensitivity. (English) Zbl 07741186 Acta Appl. Math. 187, Paper No. 7, 22 p. (2023). MSC: 35B40 35K51 35K59 35K65 35Q35 92C17 PDF BibTeX XML Cite \textit{J. Wang}, Acta Appl. Math. 187, Paper No. 7, 22 p. (2023; Zbl 07741186) Full Text: DOI
Yu, Ying; Ling, Zhi; Zhou, You Dynamical behavior of a spatiotemporal model in open advective environments. (English) Zbl 07741180 Acta Appl. Math. 187, Paper No. 1, 16 p. (2023). MSC: 35B40 35K51 35K57 35Q92 PDF BibTeX XML Cite \textit{Y. Yu} et al., Acta Appl. Math. 187, Paper No. 1, 16 p. (2023; Zbl 07741180) Full Text: DOI
Zheng, Pan; Shan, Wenhai; Liao, Guangyuan Stability analysis of the immune system induced by chemotaxis. (English) Zbl 07741166 SIAM J. Appl. Dyn. Syst. 22, No. 3, 2527-2569 (2023). MSC: 35B35 35B40 35K51 35K59 92C17 92C45 PDF BibTeX XML Cite \textit{P. Zheng} et al., SIAM J. Appl. Dyn. Syst. 22, No. 3, 2527--2569 (2023; Zbl 07741166) Full Text: DOI
Prugger, Artur; Rademacher, Jens D. M.; Yang, Jichen Rotating shallow water equations with bottom drag: bifurcations and growth due to kinetic energy backscatter. (English) Zbl 07741165 SIAM J. Appl. Dyn. Syst. 22, No. 3, 2490-2526 (2023). MSC: 35B32 35B35 35C07 35G50 35K91 35Q35 37N10 76D33 86A05 PDF BibTeX XML Cite \textit{A. Prugger} et al., SIAM J. Appl. Dyn. Syst. 22, No. 3, 2490--2526 (2023; Zbl 07741165) Full Text: DOI arXiv
Winkler, Michael Arbitrarily fast grow-up rates in quasilinear Keller-Segel systems. (English) Zbl 07741151 Commun. Contemp. Math. 25, No. 10, Article ID 2250062, 28 p. (2023). MSC: 35B44 35A21 35B40 35K51 35K59 35K65 92C17 PDF BibTeX XML Cite \textit{M. Winkler}, Commun. Contemp. Math. 25, No. 10, Article ID 2250062, 28 p. (2023; Zbl 07741151) Full Text: DOI
Biler, Piotr; Karch, Grzegorz; Wakui, Hiroshi Large self-similar solutions of the parabolic-elliptic Keller-Segel model. (English) Zbl 07741129 Indiana Univ. Math. J. 72, No. 3, 1027-1054 (2023). MSC: 35Q92 92C17 35K55 35C06 35B51 PDF BibTeX XML Cite \textit{P. Biler} et al., Indiana Univ. Math. J. 72, No. 3, 1027--1054 (2023; Zbl 07741129) Full Text: DOI arXiv
Huang, Liding; Zhang, Jiaogen The Cauchy-Dirichlet problem for parabolic deformed Hermitian-Yang-Mills equation. (English) Zbl 07741081 Proc. Am. Math. Soc. 151, No. 10, 4543-4556 (2023). MSC: 58J35 35J60 53C07 35B45 PDF BibTeX XML Cite \textit{L. Huang} and \textit{J. Zhang}, Proc. Am. Math. Soc. 151, No. 10, 4543--4556 (2023; Zbl 07741081) Full Text: DOI arXiv
Ciani, Simone; Guarnotta, Umberto Liouville rigidity and time-extrinsic Harnack estimates for an anisotropic slow diffusion. (English) Zbl 07741068 Proc. Am. Math. Soc. 151, No. 10, 4371-4388 (2023). MSC: 35B53 35B65 35K65 35K92 PDF BibTeX XML Cite \textit{S. Ciani} and \textit{U. Guarnotta}, Proc. Am. Math. Soc. 151, No. 10, 4371--4388 (2023; Zbl 07741068) Full Text: DOI arXiv
Olivera, Christian; Richard, Alexandre; Tomašević, Milica Quantitative particle approximation of nonlinear Fokker-Planck equations with singular kernel. (English) Zbl 07741032 Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 24, No. 2, 691-749 (2023). MSC: 60K35 60H30 35K55 35Q84 PDF BibTeX XML Cite \textit{C. Olivera} et al., Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 24, No. 2, 691--749 (2023; Zbl 07741032) Full Text: DOI arXiv
Khompysh, Khonatbek; Shakir, Aidos Ganizhanuly An inverse source problem for a nonlinear pseudoparabolic equation with \(p\)-Laplacian diffusion and damping term. (English) Zbl 07740712 Quaest. Math. 46, No. 9, 1889-1914 (2023). MSC: 35R30 35D30 35A01 35K70 35K92 PDF BibTeX XML Cite \textit{K. Khompysh} and \textit{A. G. Shakir}, Quaest. Math. 46, No. 9, 1889--1914 (2023; Zbl 07740712) Full Text: DOI
Farroni, Fernando; Greco, Luigi; Moscariello, Gioconda; Zecca, Gabriella Noncoercive parabolic obstacle problems. (English) Zbl 07740638 Adv. Nonlinear Anal. 12, Article ID 20220322, 26 p. (2023). MSC: 35K86 35K59 35K61 PDF BibTeX XML Cite \textit{F. Farroni} et al., Adv. Nonlinear Anal. 12, Article ID 20220322, 26 p. (2023; Zbl 07740638) Full Text: DOI
Chen, Wenxiong; Ma, Lingwei Qualitative properties of solutions for dual fractional nonlinear parabolic equations. (English) Zbl 07740618 J. Funct. Anal. 285, No. 10, Article ID 110117, 32 p. (2023). MSC: 35R11 35B50 35K15 35K58 26A33 PDF BibTeX XML Cite \textit{W. Chen} and \textit{L. Ma}, J. Funct. Anal. 285, No. 10, Article ID 110117, 32 p. (2023; Zbl 07740618) Full Text: DOI arXiv
Audrito, Alessandro; Kukuljan, Teo Regularity theory for fully nonlinear parabolic obstacle problems. (English) Zbl 07740617 J. Funct. Anal. 285, No. 10, Article ID 110116, 57 p. (2023). MSC: 35B65 35B44 35K85 35R35 PDF BibTeX XML Cite \textit{A. Audrito} and \textit{T. Kukuljan}, J. Funct. Anal. 285, No. 10, Article ID 110116, 57 p. (2023; Zbl 07740617) Full Text: DOI arXiv
Griette, Quentin; Henderson, Christopher; Turanova, Olga Speed-up of traveling waves by negative chemotaxis. (English) Zbl 07740616 J. Funct. Anal. 285, No. 10, Article ID 110115, 67 p. (2023). MSC: 35C07 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{Q. Griette} et al., J. Funct. Anal. 285, No. 10, Article ID 110115, 67 p. (2023; Zbl 07740616) Full Text: DOI arXiv
Scarpa, Luca; Stefanelli, Ulisse Rate-independent stochastic evolution equations: parametrized solutions. (English) Zbl 07740613 J. Funct. Anal. 285, No. 10, Article ID 110102, 48 p. (2023). MSC: 35R60 35K55 60H15 PDF BibTeX XML Cite \textit{L. Scarpa} and \textit{U. Stefanelli}, J. Funct. Anal. 285, No. 10, Article ID 110102, 48 p. (2023; Zbl 07740613) Full Text: DOI arXiv
Derbissaly, Bauyrzhan; Sadybekov, Makhmud Tricomi problem for mixed parabolic-hyperbolic equation with higher order boundary condition. (English) Zbl 07740217 Bull. Iran. Math. Soc. 49, No. 4, Paper No. 52, 13 p. (2023). MSC: 35A09 35L20 35M13 PDF BibTeX XML Cite \textit{B. Derbissaly} and \textit{M. Sadybekov}, Bull. Iran. Math. Soc. 49, No. 4, Paper No. 52, 13 p. (2023; Zbl 07740217) Full Text: DOI
Han, Jiayi; Liu, Changchun Global solvability to a two competing species chemotaxis Navier-Stokes system with singular sensitivity. (English) Zbl 07739917 Commun. Pure Appl. Anal. 22, No. 9, 2828-2852 (2023). MSC: 35B65 35K51 35K59 35Q30 92C17 PDF BibTeX XML Cite \textit{J. Han} and \textit{C. Liu}, Commun. Pure Appl. Anal. 22, No. 9, 2828--2852 (2023; Zbl 07739917) Full Text: DOI
Zeng, Shengda D.; Migórski, Stanisław; Han, Weimin A new class of fractional differential hemivariational inequalities with application to an incompressible Navier-Stokes system coupled with a fractional diffusion equation. (English. Russian original) Zbl 07739848 Izv. Math. 87, No. 2, 326-361 (2023); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 87, No. 2, 133-167 (2023). MSC: 76D05 35K87 35R11 49J52 46N10 PDF BibTeX XML Cite \textit{S. D. Zeng} et al., Izv. Math. 87, No. 2, 326--361 (2023; Zbl 07739848); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 87, No. 2, 133--167 (2023) Full Text: DOI MNR
Ham, YoonMee A Hopf bifurcation in an attraction-attraction chemotaxis system with global coupling. (English) Zbl 07739516 Korean J. Math. 31, No. 2, 203-216 (2023). MSC: 35B32 35B25 35K51 35K57 35R35 PDF BibTeX XML Cite \textit{Y. Ham}, Korean J. Math. 31, No. 2, 203--216 (2023; Zbl 07739516) Full Text: DOI
Gal, C. G.; Grasselli, M.; Poiatti, A.; Shomberg, J. L. Multi-component Cahn-Hilliard systems with singular potentials: theoretical results. (English) Zbl 07739282 Appl. Math. Optim. 88, No. 3, Paper No. 73, 46 p. (2023). MSC: 35B40 35K35 35K58 PDF BibTeX XML Cite \textit{C. G. Gal} et al., Appl. Math. Optim. 88, No. 3, Paper No. 73, 46 p. (2023; Zbl 07739282) Full Text: DOI
Colli, Pierluigi; Gilardi, Gianni; Signori, Andrea; Sprekels, Jürgen Optimal temperature distribution for a nonisothermal Cahn-Hilliard system with source term. (English) Zbl 07739277 Appl. Math. Optim. 88, No. 2, Paper No. 68, 31 p. (2023). MSC: 35K55 35K51 35G61 49J20 49K20 49J50 35Q93 PDF BibTeX XML Cite \textit{P. Colli} et al., Appl. Math. Optim. 88, No. 2, Paper No. 68, 31 p. (2023; Zbl 07739277) Full Text: DOI arXiv
Moatti, Julien A structure preserving hybrid finite volume scheme for semiconductor models with magnetic field on general meshes. (English) Zbl 07739223 ESAIM, Math. Model. Numer. Anal. 57, No. 4, 2557-2593 (2023). MSC: 65M08 35K51 35B40 35Q81 82D37 PDF BibTeX XML Cite \textit{J. Moatti}, ESAIM, Math. Model. Numer. Anal. 57, No. 4, 2557--2593 (2023; Zbl 07739223) Full Text: DOI arXiv
Arnoult, Arthur; Japhet, Caroline; Omnes, Pascal Discrete-time analysis of optimized Schwarz waveform relaxation with Robin parameters depending on the targeted iteration count. (English) Zbl 07739217 ESAIM, Math. Model. Numer. Anal. 57, No. 4, 2371-2396 (2023). MSC: 65M55 35K20 65M12 65M22 65B99 PDF BibTeX XML Cite \textit{A. Arnoult} et al., ESAIM, Math. Model. Numer. Anal. 57, No. 4, 2371--2396 (2023; Zbl 07739217) Full Text: DOI
Egger, Herbert; Philippi, Nora A hybrid-DG method for singularly perturbed convection-diffusion equations on pipe networks. (English) Zbl 07739206 ESAIM, Math. Model. Numer. Anal. 57, No. 4, 2077-2095 (2023). MSC: 65-XX 35B25 35B40 35K20 35R02 65N30 76R99 PDF BibTeX XML Cite \textit{H. Egger} and \textit{N. Philippi}, ESAIM, Math. Model. Numer. Anal. 57, No. 4, 2077--2095 (2023; Zbl 07739206) Full Text: DOI arXiv
Fuest, Mario; Heydari, Shahin; Knobloch, Petr; Lankeit, Johannes; Wick, Thomas Global existence of classical solutions and numerical simulations of a cancer invasion model. (English) Zbl 07739200 ESAIM, Math. Model. Numer. Anal. 57, No. 4, 1893-1919 (2023). MSC: 35A01 35K51 35K57 35Q92 65M22 65M60 92C17 PDF BibTeX XML Cite \textit{M. Fuest} et al., ESAIM, Math. Model. Numer. Anal. 57, No. 4, 1893--1919 (2023; Zbl 07739200) Full Text: DOI arXiv
Liu, Di; Wang, Hao; Jiang, Weihua Dynamics of a diffusion-advection Lotka-Volterra competition model with stage structure in a spatially heterogeneous environment. (English) Zbl 07739121 J. Differ. Equations 372, 536-563 (2023). MSC: 35B32 35B35 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{D. Liu} et al., J. Differ. Equations 372, 536--563 (2023; Zbl 07739121) Full Text: DOI
Dong, Yuchao; Liang, Jin; Brauner, Claude-Michel Double free boundary problem for defaultable corporate bond with credit rating migration risks and their asymptotic behaviors. (English) Zbl 07739120 J. Differ. Equations 372, 505-535 (2023). MSC: 35Q91 35Rxx 91Gxx 35Kxx PDF BibTeX XML Cite \textit{Y. Dong} et al., J. Differ. Equations 372, 505--535 (2023; Zbl 07739120) Full Text: DOI arXiv
Zakharov, S. V. Solution of a parabolic Hamilton-Jacobi type equation determined by a simple boundary singularity. (English. Russian original) Zbl 07739101 Proc. Steklov Inst. Math. 321, Suppl. 1, S257-S269 (2023); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 29, No. 1, 77-90 (2023). MSC: 35K58 35C10 35F21 PDF BibTeX XML Cite \textit{S. V. Zakharov}, Proc. Steklov Inst. Math. 321, S257--S269 (2023; Zbl 07739101); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 29, No. 1, 77--90 (2023) Full Text: DOI
Kazakov, A. L.; Kuznetsov, P. A.; Spevak, L. F. The problem of diffusion wave initiation for a nonlinear second-order parabolic system. (English. Russian original) Zbl 07739091 Proc. Steklov Inst. Math. 321, Suppl. 1, S109-S126 (2023); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 29, No. 2, 67-86 (2023). MSC: 35K65 35C10 35K51 35K59 PDF BibTeX XML Cite \textit{A. L. Kazakov} et al., Proc. Steklov Inst. Math. 321, S109--S126 (2023; Zbl 07739091); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 29, No. 2, 67--86 (2023) Full Text: DOI
Winkler, Michael Classical solutions to Cauchy problems for parabolic-elliptic systems of Keller-Segel type. (English) Zbl 07738929 Open Math. 21, Article ID 20220578, 19 p. (2023). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35B65 35K55 PDF BibTeX XML Cite \textit{M. Winkler}, Open Math. 21, Article ID 20220578, 19 p. (2023; Zbl 07738929) Full Text: DOI
Coclite, Giuseppe Maria; di Ruvo, Lorenzo On \(H^2\)-solutions for a Camassa-Holm type equation. (English) Zbl 07738926 Open Math. 21, Article ID 20220577, 21 p. (2023). MSC: 35G25 35K55 35Q35 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{L. di Ruvo}, Open Math. 21, Article ID 20220577, 21 p. (2023; Zbl 07738926) Full Text: DOI
Dong, Yan Some results for a \(p(x)\)-Kirchhoff type variation-inequality problems in non-divergence form. (English) Zbl 07738921 Open Math. 21, Article ID 20220565, 11 p. (2023). MSC: 35K87 35D30 35K20 35K92 PDF BibTeX XML Cite \textit{Y. Dong}, Open Math. 21, Article ID 20220565, 11 p. (2023; Zbl 07738921) Full Text: DOI
King, John R.; Richardson, Giles W.; Foster, Jamie M. Interface behaviour of the slow diffusion equation with strong absorption: intermediate-asymptotic properties. (English) Zbl 07738702 Eur. J. Appl. Math. 34, No. 5, 1099-1132 (2023). MSC: 35A21 35B25 35B40 35C06 35C20 35K20 35K59 35K65 34A34 PDF BibTeX XML Cite \textit{J. R. King} et al., Eur. J. Appl. Math. 34, No. 5, 1099--1132 (2023; Zbl 07738702) Full Text: DOI
Koval, Serhii D.; Bihlo, Alexander; Popovych, Roman O. Extended symmetry analysis of remarkable (1+2)-dimensional Fokker-Planck equation. (English) Zbl 07738701 Eur. J. Appl. Math. 34, No. 5, 1067-1098 (2023). MSC: 35B06 35Q84 35A30 35C05 35C06 35K10 35K70 PDF BibTeX XML Cite \textit{S. D. Koval} et al., Eur. J. Appl. Math. 34, No. 5, 1067--1098 (2023; Zbl 07738701) Full Text: DOI arXiv
Broadbridge, P.; Cherniha, R. M.; Goard, J. M. Exact nonclassical symmetry solutions of Lotka-Volterra-type population systems. (English) Zbl 07738698 Eur. J. Appl. Math. 34, No. 5, 998-1016 (2023). MSC: 35B06 35C05 35K40 35K57 92D25 PDF BibTeX XML Cite \textit{P. Broadbridge} et al., Eur. J. Appl. Math. 34, No. 5, 998--1016 (2023; Zbl 07738698) Full Text: DOI
Kaneko, Yuki; Matsuzawa, Hiroshi; Yamada, Yoshio A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions. II: Asymptotic profiles of solutions and radial terrace solution. (English. French summary) Zbl 07738544 J. Math. Pures Appl. (9) 178, 1-45 (2023). MSC: 35B40 35K20 35K57 35R35 92D25 PDF BibTeX XML Cite \textit{Y. Kaneko} et al., J. Math. Pures Appl. (9) 178, 1--45 (2023; Zbl 07738544) Full Text: DOI
Tayachi, Slim; Weissler, Fred B. New life-span results for the nonlinear heat equation. (English) Zbl 07738451 J. Differ. Equations 373, 564-625 (2023). MSC: 35B44 35B30 35K20 35K58 PDF BibTeX XML Cite \textit{S. Tayachi} and \textit{F. B. Weissler}, J. Differ. Equations 373, 564--625 (2023; Zbl 07738451) Full Text: DOI arXiv
Lin, Xiandong; Wang, Qiru Threshold dynamics of a time-periodic nonlocal dispersal SIS epidemic model with Neumann boundary conditions. (English) Zbl 07738438 J. Differ. Equations 373, 108-151 (2023). MSC: 35B10 35B40 35K51 35K57 35R09 45C05 92D25 PDF BibTeX XML Cite \textit{X. Lin} and \textit{Q. Wang}, J. Differ. Equations 373, 108--151 (2023; Zbl 07738438) Full Text: DOI
Goh, Ryan; Scheel, Arnd Growing patterns. (English) Zbl 07738411 Nonlinearity 36, No. 10, R1-R51 (2023). MSC: 35B36 35A18 35B32 35K30 35K58 92C15 PDF BibTeX XML Cite \textit{R. Goh} and \textit{A. Scheel}, Nonlinearity 36, No. 10, R1--R51 (2023; Zbl 07738411) Full Text: DOI arXiv
Brandt, Felix; Hieber, Matthias Strong periodic solutions to quasilinear parabolic equations: an approach by the Da Prato-Grisvard theorem. (English) Zbl 07738113 Bull. Lond. Math. Soc. 55, No. 4, 1971-1993 (2023). MSC: 35B10 35K51 35K59 35K90 92C17 PDF BibTeX XML Cite \textit{F. Brandt} and \textit{M. Hieber}, Bull. Lond. Math. Soc. 55, No. 4, 1971--1993 (2023; Zbl 07738113) Full Text: DOI
Herda, Maxime; Zurek, Antoine Study of an entropy dissipating finite volume scheme for a nonlocal cross-diffusion system. (English) Zbl 07737667 ESAIM, Math. Model. Numer. Anal. 57, No. 3, 1589-1617 (2023). MSC: 65M08 65M12 35K51 35Q92 92D25 35R60 PDF BibTeX XML Cite \textit{M. Herda} and \textit{A. Zurek}, ESAIM, Math. Model. Numer. Anal. 57, No. 3, 1589--1617 (2023; Zbl 07737667) Full Text: DOI arXiv
Acosta, Claudia; Jerez, Silvia Convergence of entropy stable schemes for degenerate parabolic equations with a discontinuous convection term. (English) Zbl 07737663 ESAIM, Math. Model. Numer. Anal. 57, No. 3, 1445-1472 (2023). MSC: 65-XX 35K65 65M12 65M06 PDF BibTeX XML Cite \textit{C. Acosta} and \textit{S. Jerez}, ESAIM, Math. Model. Numer. Anal. 57, No. 3, 1445--1472 (2023; Zbl 07737663) Full Text: DOI
Brunk, Aaron; Egger, Herbert; Habrich, Oliver; Lukáčová-Medviďová, Mária Stability and discretization error analysis for the Cahn-Hilliard system via relative energy estimates. (English) Zbl 07737658 ESAIM, Math. Model. Numer. Anal. 57, No. 3, 1297-1322 (2023). MSC: 35A35 35A15 35K35 35K59 65M12 65M15 65M60 PDF BibTeX XML Cite \textit{A. Brunk} et al., ESAIM, Math. Model. Numer. Anal. 57, No. 3, 1297--1322 (2023; Zbl 07737658) Full Text: DOI
Felipe-Sosa, Raul; Fraguela-Collar, Andres; García-Gómez, Yofre H. On the strong convergence of the Faedo-Galerkin approximations to a strong T-periodic solution of the torso-coupled bidomain model. (English) Zbl 07737506 Math. Model. Nat. Phenom. 18, Paper No. 14, 25 p. (2023). MSC: 35K20 35K58 35Q92 65M60 PDF BibTeX XML Cite \textit{R. Felipe-Sosa} et al., Math. Model. Nat. Phenom. 18, Paper No. 14, 25 p. (2023; Zbl 07737506) Full Text: DOI arXiv
Konenkov, A. N. Existence and uniqueness of the classical solution of the first boundary value problem for parabolic systems on the plane. (English. Russian original) Zbl 07737432 Differ. Equ. 59, No. 7, 904-913 (2023); translation from Differ. Uravn. 59, No. 7, 904-913 (2023). MSC: 35K20 35A09 PDF BibTeX XML Cite \textit{A. N. Konenkov}, Differ. Equ. 59, No. 7, 904--913 (2023; Zbl 07737432); translation from Differ. Uravn. 59, No. 7, 904--913 (2023) Full Text: DOI
Priyadarshana, S.; Mohapatra, J.; Pattanaik, S. R. An improved time accurate numerical estimation for singularly perturbed semilinear parabolic differential equations with small space shifts and a large time lag. (English) Zbl 07736767 Math. Comput. Simul. 214, 183-203 (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{S. Priyadarshana} et al., Math. Comput. Simul. 214, 183--203 (2023; Zbl 07736767) Full Text: DOI
Jin, Yu; Peng, Rui; Wang, Jinfeng Enhancing population persistence by a protection zone in a reaction-diffusion model with strong Allee effect. (English) Zbl 07736373 Physica D 454, Article ID 133840, 21 p. (2023). MSC: 34B09 35B40 35K55 92D25 PDF BibTeX XML Cite \textit{Y. Jin} et al., Physica D 454, Article ID 133840, 21 p. (2023; Zbl 07736373) Full Text: DOI arXiv
Han, Yuxin; Huang, Xin; Gu, Wei; Zheng, Bolong Linearized transformed \(L1\) Finite element methods for semi-linear time-fractional parabolic problems. (English) Zbl 07736285 Appl. Math. Comput. 458, Article ID 128242, 14 p. (2023). MSC: 65Mxx 35Rxx 35Kxx PDF BibTeX XML Cite \textit{Y. Han} et al., Appl. Math. Comput. 458, Article ID 128242, 14 p. (2023; Zbl 07736285) Full Text: DOI
Calabrò, Francesco; Cuomo, Salvatore; di Serafino, Daniela; Izzo, Giuseppe; Messina, Eleonora Time discretization in the solution of parabolic PDEs with ANNs. (English) Zbl 07736273 Appl. Math. Comput. 458, Article ID 128230, 13 p. (2023). MSC: 68Txx 65Mxx 65Lxx PDF BibTeX XML Cite \textit{F. Calabrò} et al., Appl. Math. Comput. 458, Article ID 128230, 13 p. (2023; Zbl 07736273) Full Text: DOI
Ôtani, Mitsuharu \(L^\infty\)-energy method and its applications to nonlinear partial differential equations. (English) Zbl 07735878 Sugaku Expo. 36, No. 1, 119-143 (2023); translation from Sūgaku 71, No. 1, 55-76 (2019). MSC: 35B45 35A01 35B33 35D35 35J25 35J66 35K20 35K65 35K92 PDF BibTeX XML Cite \textit{M. Ôtani}, Sugaku Expo. 36, No. 1, 119--143 (2023; Zbl 07735878); translation from Sūgaku 71, No. 1, 55--76 (2019) Full Text: DOI
Winkler, Michael Application of the Moser-Trudinger inequality in the construction of global solutions to a strongly degenerate migration model. (English) Zbl 07735866 Bull. Math. Sci. 13, No. 2, Article ID 2250012, 16 p. (2023). MSC: 35K65 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{M. Winkler}, Bull. Math. Sci. 13, No. 2, Article ID 2250012, 16 p. (2023; Zbl 07735866) Full Text: DOI
Faria, J. C. O.; Webler, C. M. Existence of a global attractor for the heat equation with degenerate memory. (English) Zbl 07735782 J. Dyn. Differ. Equations 35, No. 1, 845-864 (2023). MSC: 35B41 35K58 35R09 PDF BibTeX XML Cite \textit{J. C. O. Faria} and \textit{C. M. Webler}, J. Dyn. Differ. Equations 35, No. 1, 845--864 (2023; Zbl 07735782) Full Text: DOI
Du, Yihong; Hu, Yuanyang; Liang, Xing A climate shift model with free boundary: enhanced invasion. (English) Zbl 07735780 J. Dyn. Differ. Equations 35, No. 1, 771-809 (2023). MSC: 35R35 35K20 35K58 35Q92 PDF BibTeX XML Cite \textit{Y. Du} et al., J. Dyn. Differ. Equations 35, No. 1, 771--809 (2023; Zbl 07735780) Full Text: DOI
Sun, Ningkui; Lei, Chengxia Long-time behavior of a reaction-diffusion model with strong Allee effect and free boundary: effect of protection zone. (English) Zbl 07735779 J. Dyn. Differ. Equations 35, No. 1, 737-770 (2023). MSC: 35B40 35K51 35K58 35R35 92D15 PDF BibTeX XML Cite \textit{N. Sun} and \textit{C. Lei}, J. Dyn. Differ. Equations 35, No. 1, 737--770 (2023; Zbl 07735779) Full Text: DOI arXiv
Qiu, Shuyan; Mu, Chunlai; Tu, Xinyu Dynamics for a three-species predator-prey model with density-dependent motilities. (English) Zbl 07735777 J. Dyn. Differ. Equations 35, No. 1, 709-733 (2023). MSC: 35B40 35K51 35B32 35K57 35K59 92C17 PDF BibTeX XML Cite \textit{S. Qiu} et al., J. Dyn. Differ. Equations 35, No. 1, 709--733 (2023; Zbl 07735777) Full Text: DOI
Brasseur, Julien; Coville, Jérôme Propagation phenomena with nonlocal diffusion in presence of an obstacle. (English) Zbl 07735762 J. Dyn. Differ. Equations 35, No. 1, 237-301 (2023). MSC: 35K58 35B08 35B40 35K57 47G20 PDF BibTeX XML Cite \textit{J. Brasseur} and \textit{J. Coville}, J. Dyn. Differ. Equations 35, No. 1, 237--301 (2023; Zbl 07735762) Full Text: DOI arXiv
Kukavica, Igor; Massatt, David On the global existence for the Kuramoto-Sivashinsky equation. (English) Zbl 07735756 J. Dyn. Differ. Equations 35, No. 1, 69-85 (2023). MSC: 35K35 35K58 PDF BibTeX XML Cite \textit{I. Kukavica} and \textit{D. Massatt}, J. Dyn. Differ. Equations 35, No. 1, 69--85 (2023; Zbl 07735756) Full Text: DOI
Huy Tuan, Nguyen Global existence and convergence results for a class of nonlinear time fractional diffusion equation. (English) Zbl 07735418 Nonlinearity 36, No. 10, 5144-5189 (2023). MSC: 35R11 35K15 35K58 PDF BibTeX XML Cite \textit{N. Huy Tuan}, Nonlinearity 36, No. 10, 5144--5189 (2023; Zbl 07735418) Full Text: DOI
Díaz Palencia, José Luis; Rahman, Saeed ur Analysis of travelling waves and propagating supports for a nonlinear model of flame propagation with a p-Laplacian operator and advection. (English) Zbl 07735413 Nonlinearity 36, No. 9, 4954-4980 (2023). MSC: 35Q35 35B65 35K92 35C08 35C06 35A02 35B20 76S05 74L10 80A25 PDF BibTeX XML Cite \textit{J. L. Díaz Palencia} and \textit{S. u. Rahman}, Nonlinearity 36, No. 9, 4954--4980 (2023; Zbl 07735413) Full Text: DOI
Zhang, Qing; Du, Zhengdong On the number of limit cycles of planar piecewise smooth quadratic systems with focus-parabolic type critical point. (English) Zbl 07735361 Mediterr. J. Math. 20, No. 5, Paper No. 277, 23 p. (2023). MSC: 34C07 34C23 34A36 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{Z. Du}, Mediterr. J. Math. 20, No. 5, Paper No. 277, 23 p. (2023; Zbl 07735361) Full Text: DOI
Wu, Xiulan; Yang, Xiaoxin; Zhao, Yaxin The blow-up of solutions for a class of semi-linear equations with \(p\)-Laplacian viscoelastic term under positive initial energy. (English) Zbl 07735356 Mediterr. J. Math. 20, No. 5, Paper No. 272, 18 p. (2023). MSC: 35B40 35B44 35K20 35K92 35R09 PDF BibTeX XML Cite \textit{X. Wu} et al., Mediterr. J. Math. 20, No. 5, Paper No. 272, 18 p. (2023; Zbl 07735356) Full Text: DOI
Hsu, Shu-Yu Asymptotic behaviour of blow-up solutions of the fast diffusion equation. (English) Zbl 07735329 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 6, Paper No. 71, 31 p. (2023). MSC: 35K65 35B40 35B44 35B51 35K20 PDF BibTeX XML Cite \textit{S.-Y. Hsu}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 6, Paper No. 71, 31 p. (2023; Zbl 07735329) Full Text: DOI arXiv