Wang, Mingxin; Zhang, Qianying; Zhao, Xiao-Qiang Dynamics for a diffusive competition model with seasonal succession and different free boundaries. (English) Zbl 07332797 J. Differ. Equations 285, 536-582 (2021). MSC: 35K51 35R35 92B05 35B40 PDF BibTeX XML Cite \textit{M. Wang} et al., J. Differ. Equations 285, 536--582 (2021; Zbl 07332797) Full Text: DOI
Munteanu, Ionuţ Boundary stabilizing actuators for multi-phase fluids in a channel. (English) Zbl 07332789 J. Differ. Equations 285, 175-210 (2021). MSC: 93D15 35K52 35Q35 35K55 76D05 93C20 PDF BibTeX XML Cite \textit{I. Munteanu}, J. Differ. Equations 285, 175--210 (2021; Zbl 07332789) Full Text: DOI
Giga, Yoshikazu; Onoue, Fumihiko; Takasao, Keisuke A varifold formulation of mean curvature flow with Dirichlet or dynamic boundary conditions. (English) Zbl 07332732 Differ. Integral Equ. 34, No. 1-2, 21-126 (2021). MSC: 35A15 35K20 49Q20 35D30 PDF BibTeX XML Cite \textit{Y. Giga} et al., Differ. Integral Equ. 34, No. 1--2, 21--126 (2021; Zbl 07332732)
Mackenzie, John; Rowlatt, Christopher; Insall, Robert A conservative finite element ALE scheme for mass-conservative reaction-diffusion equations on evolving two-dimensional domains. (English) Zbl 07331664 SIAM J. Sci. Comput. 43, No. 1, B132-B166 (2021). MSC: 35K57 35K61 65M12 65M60 92C17 PDF BibTeX XML Cite \textit{J. Mackenzie} et al., SIAM J. Sci. Comput. 43, No. 1, B132--B166 (2021; Zbl 07331664) Full Text: DOI
Ohavi, Isaac Quasi linear parabolic PDE posed on a network with non linear Neumann boundary condition at vertices. (English) Zbl 07330941 J. Math. Anal. Appl. 500, No. 1, Article ID 125154, 29 p. (2021). MSC: 35K51 35K59 35K61 35A09 35R02 PDF BibTeX XML Cite \textit{I. Ohavi}, J. Math. Anal. Appl. 500, No. 1, Article ID 125154, 29 p. (2021; Zbl 07330941) Full Text: DOI
Langer, Ulrich; Steinbach, Olaf; Tröltzsch, Fredi; Yang, Huidong Unstructured space-time finite element methods for optimal control of parabolic equations. (English) Zbl 07330835 SIAM J. Sci. Comput. 43, No. 2, A744-A771 (2021). MSC: 49J20 35K20 65M60 65M50 65M15 65Y05 PDF BibTeX XML Cite \textit{U. Langer} et al., SIAM J. Sci. Comput. 43, No. 2, A744--A771 (2021; Zbl 07330835) Full Text: DOI
Hannukainen, Antti; Hyvönen, Nuutti; Perkkiö, Lauri Inverse heat source problem and experimental design for determining iron loss distribution. (English) Zbl 07330833 SIAM J. Sci. Comput. 43, No. 2, B243-B270 (2021). MSC: 65N21 62K05 35K20 PDF BibTeX XML Cite \textit{A. Hannukainen} et al., SIAM J. Sci. Comput. 43, No. 2, B243--B270 (2021; Zbl 07330833) Full Text: DOI
Zhan, Huashui; Feng, Zhaosheng Optimal partial boundary condition for degenerate parabolic equations. (English) Zbl 07330799 J. Differ. Equations 284, 156-182 (2021). MSC: 35K20 35K65 35B35 PDF BibTeX XML Cite \textit{H. Zhan} and \textit{Z. Feng}, J. Differ. Equations 284, 156--182 (2021; Zbl 07330799) Full Text: DOI
Jiang, Su Zhen; Wu, Yu Jiang Recovering a time-dependent potential function in a multi-term time fractional diffusion equation by using a nonlinear condition. (English) Zbl 07330240 J. Inverse Ill-Posed Probl. 29, No. 2, 233-248 (2021). MSC: 35R30 35R11 35R25 35K20 65M32 PDF BibTeX XML Cite \textit{S. Z. Jiang} and \textit{Y. J. Wu}, J. Inverse Ill-Posed Probl. 29, No. 2, 233--248 (2021; Zbl 07330240) Full Text: DOI
Shang, Yunxia; Li, Shumin Conditional stability in a backward Cahn-Hilliard equation via a Carleman estimate. Estimates for linear Cahn-Hilliard equations. (English) Zbl 07330235 J. Inverse Ill-Posed Probl. 29, No. 2, 159-171 (2021). MSC: 35K25 35K35 35K58 35R25 35R30 PDF BibTeX XML Cite \textit{Y. Shang} and \textit{S. Li}, J. Inverse Ill-Posed Probl. 29, No. 2, 159--171 (2021; Zbl 07330235) Full Text: DOI
Li, Xue-Yang; Xiao, Ai-Guo Space-fractional diffusion equation with variable coefficients: well-posedness and Fourier pseudospectral approximation. (English) Zbl 07329959 J. Sci. Comput. 87, No. 1, Paper No. 28, 34 p. (2021). MSC: 35R11 35K20 65M12 65M70 65T40 PDF BibTeX XML Cite \textit{X.-Y. Li} and \textit{A.-G. Xiao}, J. Sci. Comput. 87, No. 1, Paper No. 28, 34 p. (2021; Zbl 07329959) Full Text: DOI
Li, Xiao; Ju, Lili; Hoang, Thi-Thao-Phuong Overlapping domain decomposition based exponential time differencing methods for semilinear parabolic equations. (English) Zbl 07329842 BIT 61, No. 1, 1-36 (2021). MSC: 65 35K55 65M12 65M55 65R20 PDF BibTeX XML Cite \textit{X. Li} et al., BIT 61, No. 1, 1--36 (2021; Zbl 07329842) Full Text: DOI
Ildefonso Diaz, Jesús; Hilhorst, Danielle; Kyriazopoulos, Paris A parabolic system with strong absorption modeling dry-land vegetation. (English) Zbl 07329782 Electron. J. Differ. Equ. 2021, Paper No. 08, 19 p. (2021). MSC: 35K51 35K58 35K65 35R35 PDF BibTeX XML Cite \textit{J. Ildefonso Diaz} et al., Electron. J. Differ. Equ. 2021, Paper No. 08, 19 p. (2021; Zbl 07329782) Full Text: Link
Han, Yuzhu Blow-up phenomena for a fourth-order parabolic equation with a general nonlinearity. (English) Zbl 07329768 J. Dyn. Control Syst. 27, No. 2, 261-270 (2021). MSC: 35B44 35K35 35K58 PDF BibTeX XML Cite \textit{Y. Han}, J. Dyn. Control Syst. 27, No. 2, 261--270 (2021; Zbl 07329768) Full Text: DOI
Li, Fang; You, Bo Optimal distributed control for a model of homogeneous incompressible two-phase flows. (English) Zbl 07329762 J. Dyn. Control Syst. 27, No. 1, 153-177 (2021). MSC: 35Q35 35B40 35K51 37L55 PDF BibTeX XML Cite \textit{F. Li} and \textit{B. You}, J. Dyn. Control Syst. 27, No. 1, 153--177 (2021; Zbl 07329762) Full Text: DOI
Wittbold, Petra; Wolejko, Patryk; Zacher, Rico Bounded weak solutions of time-fractional porous medium type and more general nonlinear and degenerate evolutionary integro-differential equations. (English) Zbl 07329647 J. Math. Anal. Appl. 499, No. 1, Article ID 125007, 20 p. (2021). MSC: 35R11 35R09 35K20 35K65 35K59 35D30 PDF BibTeX XML Cite \textit{P. Wittbold} et al., J. Math. Anal. Appl. 499, No. 1, Article ID 125007, 20 p. (2021; Zbl 07329647) Full Text: DOI
Du, Yihong; Gui, Changfeng; Wang, Kelei; Zhou, Maolin Semi-waves with \(\Lambda\)-shaped free boundary for nonlinear Stefan problems: existence. (English) Zbl 07329494 Proc. Am. Math. Soc. 149, No. 5, 2091-2104 (2021). MSC: 35R35 35C07 35K20 35K58 PDF BibTeX XML Cite \textit{Y. Du} et al., Proc. Am. Math. Soc. 149, No. 5, 2091--2104 (2021; Zbl 07329494) Full Text: DOI
Ferreira, R.; De Pablo, A. Blow-up rates for a fractional heat equation. (English) Zbl 07329486 Proc. Am. Math. Soc. 149, No. 5, 2011-2018 (2021). MSC: 35B44 35K20 35K58 35R11 PDF BibTeX XML Cite \textit{R. Ferreira} and \textit{A. De Pablo}, Proc. Am. Math. Soc. 149, No. 5, 2011--2018 (2021; Zbl 07329486) Full Text: DOI
Wang, Jia-Bing; Wang, Jie; Cao, Jia-Feng Blowup and global existence of a free boundary problem with weak spatial source. (English) Zbl 07328931 Appl. Anal. 100, No. 5, 964-974 (2021). MSC: 35R35 35K57 35K20 35B33 35B44 PDF BibTeX XML Cite \textit{J.-B. Wang} et al., Appl. Anal. 100, No. 5, 964--974 (2021; Zbl 07328931) Full Text: DOI
Altmann, R.; Maier, R.; Unger, B. Semi-explicit discretization schemes for weakly coupled elliptic-parabolic problems. (English) Zbl 07328915 Math. Comput. 90, No. 329, 1089-1118 (2021). MSC: 65M12 65L80 65M60 76S05 PDF BibTeX XML Cite \textit{R. Altmann} et al., Math. Comput. 90, No. 329, 1089--1118 (2021; Zbl 07328915) Full Text: DOI
Suzuki, Masamitsu Local existence and nonexistence for fractional in time weakly coupled reaction-diffusion systems. (English) Zbl 07328519 SN Partial Differ. Equ. Appl. 2, No. 1, Paper No. 2, 27 p. (2021). MSC: 35R11 35K57 35K51 35A01 26A33 46E35 PDF BibTeX XML Cite \textit{M. Suzuki}, SN Partial Differ. Equ. Appl. 2, No. 1, Paper No. 2, 27 p. (2021; Zbl 07328519) Full Text: DOI
Cavallina, Lorenzo; Magnanini, Rolando; Sakaguchi, Shigeru Two-phase heat conductors with a surface of the constant flow property. (English) Zbl 07327648 J. Geom. Anal. 31, No. 1, 312-345 (2021). MSC: 35N30 35N25 35K20 35B06 35B40 35J25 PDF BibTeX XML Cite \textit{L. Cavallina} et al., J. Geom. Anal. 31, No. 1, 312--345 (2021; Zbl 07327648) Full Text: DOI
Ambrazevičius, A.; Skakauskas, V. Solvability of a coupled quasilinear reaction-diffusion system. (English) Zbl 07327339 Appl. Anal. 100, No. 4, 791-803 (2021). MSC: 35K51 35K57 35K59 35K61 35B09 92E20 PDF BibTeX XML Cite \textit{A. Ambrazevičius} and \textit{V. Skakauskas}, Appl. Anal. 100, No. 4, 791--803 (2021; Zbl 07327339) Full Text: DOI
Lee, Jihoon; Toi, Vu Manh Global attractors and exponential stability of partly dissipative reaction diffusion systems with exponential growth nonlinearity. (English) Zbl 07327336 Appl. Anal. 100, No. 4, 735-751 (2021). MSC: 35B41 35B35 35B65 35K51 35K57 35K58 PDF BibTeX XML Cite \textit{J. Lee} and \textit{V. M. Toi}, Appl. Anal. 100, No. 4, 735--751 (2021; Zbl 07327336) Full Text: DOI
Cantin, Guillaume; Aziz-Alaoui, M. A. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. (English) Zbl 07327297 Commun. Pure Appl. Anal. 20, No. 2, 623-650 (2021). MSC: 35B41 35K51 35K57 35K90 92D25 PDF BibTeX XML Cite \textit{G. Cantin} and \textit{M. A. Aziz-Alaoui}, Commun. Pure Appl. Anal. 20, No. 2, 623--650 (2021; Zbl 07327297) Full Text: DOI
Tuan, Nguyen Huy; Au, Vo Van; Xu, Runzhang Semilinear Caputo time-fractional pseudo-parabolic equations. (English) Zbl 07327296 Commun. Pure Appl. Anal. 20, No. 2, 583-621 (2021). MSC: 35R11 35B44 26A33 33E12 35B40 35K70 35K20 44A20 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Commun. Pure Appl. Anal. 20, No. 2, 583--621 (2021; Zbl 07327296) Full Text: DOI
Zheng, Guojie; Xu, Dihong; Wang, Taige A unique continuation property for a class of parabolic differential inequalities in a bounded domain. (English) Zbl 07327294 Commun. Pure Appl. Anal. 20, No. 2, 547-558 (2021). MSC: 35B60 35K20 35R45 93B07 93D15 PDF BibTeX XML Cite \textit{G. Zheng} et al., Commun. Pure Appl. Anal. 20, No. 2, 547--558 (2021; Zbl 07327294) Full Text: DOI
Xing, Chao; Pan, Jiaojiao; Luo, Hong Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. (English) Zbl 07327288 Commun. Pure Appl. Anal. 20, No. 1, 427-448 (2021). MSC: 35B32 35B35 35K52 35K57 37L10 35Q92 PDF BibTeX XML Cite \textit{C. Xing} et al., Commun. Pure Appl. Anal. 20, No. 1, 427--448 (2021; Zbl 07327288) Full Text: DOI
Strani, Marta A note on the slow convergence of solutions to conservation laws with mean curvature diffusions. (English) Zbl 07327110 Complex Var. Elliptic Equ. 66, No. 1, 53-70 (2021). MSC: 35B40 35B35 35B25 35K20 35K93 35B36 35L02 PDF BibTeX XML Cite \textit{M. Strani}, Complex Var. Elliptic Equ. 66, No. 1, 53--70 (2021; Zbl 07327110) Full Text: DOI
Schätzler, Leah The obstacle problem for degenerate doubly nonlinear equations of porous medium type. (English) Zbl 07326835 Ann. Mat. Pura Appl. (4) 200, No. 2, 641-683 (2021). MSC: 35K86 35K20 35K65 49J40 49J45 PDF BibTeX XML Cite \textit{L. Schätzler}, Ann. Mat. Pura Appl. (4) 200, No. 2, 641--683 (2021; Zbl 07326835) Full Text: DOI
Langer, Ulrich; Steinbach, Olaf; Tröltzsch, Fredi; Yang, Huidong Space-time finite element discretization of parabolic optimal control problems with energy regularization. (English) Zbl 07326333 SIAM J. Numer. Anal. 59, No. 2, 675-695 (2021). MSC: 65 35K20 49J20 65M15 65M50 65M60 PDF BibTeX XML Cite \textit{U. Langer} et al., SIAM J. Numer. Anal. 59, No. 2, 675--695 (2021; Zbl 07326333) Full Text: DOI
Pan, Xu; Wang, Liangchen Improvement of conditions for boundedness in a fully parabolic chemotaxis system with nonlinear signal production. (English. French summary) Zbl 07326185 C. R., Math., Acad. Sci. Paris 359, No. 2, 161-168 (2021). MSC: 35K51 35K59 35B44 35B35 92C17 PDF BibTeX XML Cite \textit{X. Pan} and \textit{L. Wang}, C. R., Math., Acad. Sci. Paris 359, No. 2, 161--168 (2021; Zbl 07326185) Full Text: DOI
Colli, Pierluigi; Gilardi, Gianni; Munteanu, Ionut Stabilisation of a linearised Cahn-Hilliard system for phase separation by proportional boundary feedbacks. (English) Zbl 07325686 Int. J. Control 94, No. 2, 452-460 (2021). MSC: 93D15 93C20 35K52 35Q79 PDF BibTeX XML Cite \textit{P. Colli} et al., Int. J. Control 94, No. 2, 452--460 (2021; Zbl 07325686) Full Text: DOI
Coclite, Giuseppe Maria; Holden, Helge; Risebro, Nils Henrik Singular diffusion with Neumann boundary conditions. (English) Zbl 07324164 Nonlinearity 34, No. 3, 1633-1662 (2021). MSC: 35K20 35K59 35K65 65N06 PDF BibTeX XML Cite \textit{G. M. Coclite} et al., Nonlinearity 34, No. 3, 1633--1662 (2021; Zbl 07324164) Full Text: DOI
Tang, H. S.; Li, L.; Grossberg, M.; Liu, Y. J.; Jia, Y. M.; Li, S. S.; Dong, W. B. An exploratory study on machine learning to couple numerical solutions of partial differential equations. (English) Zbl 07323672 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105729, 11 p. (2021). Reviewer: Chandrasekhar Salimath (Bengaluru) MSC: 65N55 65N06 68T07 35J05 35K20 PDF BibTeX XML Cite \textit{H. S. Tang} et al., Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105729, 11 p. (2021; Zbl 07323672) Full Text: DOI
Abels, Helmut Book review of: A. Miranville, The Cahn-Hilliard equation: recent advances and applications. (English) Zbl 07323058 Jahresber. Dtsch. Math.-Ver. 123, No. 1, 57-62 (2021). MSC: 00A17 35-02 76-02 35K35 35K59 35B41 PDF BibTeX XML Cite \textit{H. Abels}, Jahresber. Dtsch. Math.-Ver. 123, No. 1, 57--62 (2021; Zbl 07323058) Full Text: DOI
Knopf, Patrik; Signori, Andrea On the nonlocal Cahn-Hilliard equation with nonlocal dynamic boundary condition and boundary penalization. (English) Zbl 07319432 J. Differ. Equations 280, 236-291 (2021). MSC: 35A01 35A02 35A15 35K61 35B40 35B41 45K05 47H05 47J35 80A22 PDF BibTeX XML Cite \textit{P. Knopf} and \textit{A. Signori}, J. Differ. Equations 280, 236--291 (2021; Zbl 07319432) Full Text: DOI
Zhou, Peng; Tang, De; Xiao, Dongmei On Lotka-Volterra competitive parabolic systems: exclusion, coexistence and bistability. (English) Zbl 07319406 J. Differ. Equations 282, 596-625 (2021). MSC: 35K51 35P15 37C65 92D25 PDF BibTeX XML Cite \textit{P. Zhou} et al., J. Differ. Equations 282, 596--625 (2021; Zbl 07319406) Full Text: DOI
Triki, Faouzi Coefficient identification in parabolic equations with final data. (English. French summary) Zbl 07319318 J. Math. Pures Appl. (9) 148, 342-359 (2021). MSC: 35R30 35K20 35K15 PDF BibTeX XML Cite \textit{F. Triki}, J. Math. Pures Appl. (9) 148, 342--359 (2021; Zbl 07319318) Full Text: DOI
Rizzi, Luca; Rossi, Tommaso Heat content asymptotics for sub-Riemannian manifolds. (English. French summary) Zbl 07319316 J. Math. Pures Appl. (9) 148, 267-307 (2021). MSC: 35R01 35K20 35B40 53C17 58J60 PDF BibTeX XML Cite \textit{L. Rizzi} and \textit{T. Rossi}, J. Math. Pures Appl. (9) 148, 267--307 (2021; Zbl 07319316) Full Text: DOI
Di Giovanni, Francesco Rotationally symmetric Ricci flow on \(\mathbb{R}^{n + 1}\). (English) Zbl 07319250 Adv. Math. 381, Article ID 107621, 33 p. (2021). MSC: 53E20 35K61 PDF BibTeX XML Cite \textit{F. Di Giovanni}, Adv. Math. 381, Article ID 107621, 33 p. (2021; Zbl 07319250) Full Text: DOI
Ren, Huilong; Zhuang, Xiaoying; Trung, Nguyen-Thoi; Rabczuk, Timon Nonlocal operator method for the Cahn-Hilliard phase field model. (English) Zbl 07319179 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105687, 26 p. (2021). MSC: 35A35 35K35 35K58 65M12 PDF BibTeX XML Cite \textit{H. Ren} et al., Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105687, 26 p. (2021; Zbl 07319179) Full Text: DOI
Mukherjee, N.; Volpert, V. Bifurcation scenario of Turing patterns in prey-predator model with nonlocal consumption in the prey dynamics. (English) Zbl 07319170 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105677, 12 p. (2021). MSC: 35B32 35B36 35K51 35K57 35R09 92D25 PDF BibTeX XML Cite \textit{N. Mukherjee} and \textit{V. Volpert}, Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105677, 12 p. (2021; Zbl 07319170) Full Text: DOI
Kurt, Halil Ibrahim; Shen, Wenxian Finite-time blow-up prevention by logistic source in parabolic-elliptic chemotaxis models with singular sensitivity in any dimensional setting. (English) Zbl 1455.35269 SIAM J. Math. Anal. 53, No. 1, 973-1003 (2021). MSC: 35Q92 92C17 35K55 35B44 35K51 35K57 PDF BibTeX XML Cite \textit{H. I. Kurt} and \textit{W. Shen}, SIAM J. Math. Anal. 53, No. 1, 973--1003 (2021; Zbl 1455.35269) Full Text: DOI
Lan, Do; Son, Dang Thanh; Tang, Bao Quoc; Thuy, Le Thi Quasilinear parabolic equations with first order terms and \(L^1\)-data in moving domains. (English) Zbl 07317426 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 206, Article ID 112233, 29 p. (2021). MSC: 35K20 35K59 35K90 35K92 35D30 PDF BibTeX XML Cite \textit{D. Lan} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 206, Article ID 112233, 29 p. (2021; Zbl 07317426) Full Text: DOI
Zhan, Huashui; Feng, Zhaosheng Existence and stability of the doubly nonlinear anisotropic parabolic equation. (English) Zbl 07317181 J. Math. Anal. Appl. 497, No. 1, Article ID 124850, 23 p. (2021). MSC: 35K59 35K92 35K20 35D30 PDF BibTeX XML Cite \textit{H. Zhan} and \textit{Z. Feng}, J. Math. Anal. Appl. 497, No. 1, Article ID 124850, 23 p. (2021; Zbl 07317181) Full Text: DOI
Mahata, Shantiram; Sinha, Rajen Kumar Finite element method for fractional parabolic integro-differential equations with smooth and nonsmooth initial data. (English) Zbl 07316881 J. Sci. Comput. 87, No. 1, Paper No. 7, 32 p. (2021). MSC: 65 35R09 35R11 65M60 65N15 PDF BibTeX XML Cite \textit{S. Mahata} and \textit{R. K. Sinha}, J. Sci. Comput. 87, No. 1, Paper No. 7, 32 p. (2021; Zbl 07316881) Full Text: DOI
Bzeih, Moussa; El Arwadi, Toufic; Wehbe, Ali; Rincon, Mauro A.; Madureira, Rodrigo L. R. Numerical analysis and simulation for a wave equation with dynamical boundary control. (English) Zbl 07316880 J. Sci. Comput. 87, No. 1, Paper No. 6, 28 p. (2021). MSC: 35R37 35K10 65M60 65M15 PDF BibTeX XML Cite \textit{M. Bzeih} et al., J. Sci. Comput. 87, No. 1, Paper No. 6, 28 p. (2021; Zbl 07316880) Full Text: DOI
Lee, Jihoon Gromov-Hausdorff stability of reaction diffusion equations with Neumann boundary conditions under perturbations of the domain. (English) Zbl 07316099 J. Math. Anal. Appl. 496, No. 1, Article ID 124788, 19 p. (2021). MSC: 35B30 35B41 35K20 35K57 35K58 PDF BibTeX XML Cite \textit{J. Lee}, J. Math. Anal. Appl. 496, No. 1, Article ID 124788, 19 p. (2021; Zbl 07316099) Full Text: DOI
Zhao, Xu; Qin, Xulong; Zhou, Wenshu Boundary layer behavior of the non-Newtonian filtration equation with a small physical parameter. (English) Zbl 07315389 J. Math. Anal. Appl. 495, No. 1, Article ID 124723, 14 p. (2021). MSC: 35B25 35Q35 35K20 35K92 76W05 PDF BibTeX XML Cite \textit{X. Zhao} et al., J. Math. Anal. Appl. 495, No. 1, Article ID 124723, 14 p. (2021; Zbl 07315389) Full Text: DOI
Thieu, T. K. Thoa; Colangeli, Matteo; Muntean, Adrian Uniqueness and stability with respect to parameters of solutions to a fluid-like driven system for active-passive pedestrian dynamics. (English) Zbl 07315370 J. Math. Anal. Appl. 495, No. 1, Article ID 124702, 13 p. (2021). MSC: 35K51 35K58 PDF BibTeX XML Cite \textit{T. K. T. Thieu} et al., J. Math. Anal. Appl. 495, No. 1, Article ID 124702, 13 p. (2021; Zbl 07315370) Full Text: DOI
Stevenson, Rob; Westerdiep, Jan Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic evolution equations. (English) Zbl 07315145 IMA J. Numer. Anal. 41, No. 1, 28-47 (2021). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{R. Stevenson} and \textit{J. Westerdiep}, IMA J. Numer. Anal. 41, No. 1, 28--47 (2021; Zbl 07315145) Full Text: DOI
Zhu, Linhe; Liu, Wenshan Spatial dynamics and optimization method for a network propagation model in a shifting environment. (English) Zbl 07314933 Discrete Contin. Dyn. Syst. 41, No. 4, 1843-1874 (2021). MSC: 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{L. Zhu} and \textit{W. Liu}, Discrete Contin. Dyn. Syst. 41, No. 4, 1843--1874 (2021; Zbl 07314933) Full Text: DOI
Zhou, Ziwei; Bao, Jiguang; Wang, Bo A Liouville theorem of parabolic Monge-Ampère equations in half-space. (English) Zbl 07314922 Discrete Contin. Dyn. Syst. 41, No. 4, 1561-1578 (2021). MSC: 35K96 35K20 35B53 35B45 PDF BibTeX XML Cite \textit{Z. Zhou} et al., Discrete Contin. Dyn. Syst. 41, No. 4, 1561--1578 (2021; Zbl 07314922) Full Text: DOI
Fernandes, Juliana; Maia, Liliane Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. (English) Zbl 07314910 Discrete Contin. Dyn. Syst. 41, No. 3, 1297-1318 (2021). MSC: 35K58 35K20 35B51 35B44 PDF BibTeX XML Cite \textit{J. Fernandes} and \textit{L. Maia}, Discrete Contin. Dyn. Syst. 41, No. 3, 1297--1318 (2021; Zbl 07314910) Full Text: DOI
Umakoshi, Haruki A semilinear heat equation with initial data in negative Sobolev spaces. (English) Zbl 07314580 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 745-767 (2021). MSC: 35K58 35K91 35K20 35A01 35A02 35B65 35D30 PDF BibTeX XML Cite \textit{H. Umakoshi}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 745--767 (2021; Zbl 07314580) Full Text: DOI
Langa, Franck Davhys Reval; Pierre, Morgan A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. (English) Zbl 07314576 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 653-676 (2021). Reviewer: Chandrasekhar Salimath (Bengaluru) MSC: 65M60 65N30 65K10 35K67 80A22 PDF BibTeX XML Cite \textit{F. D. R. Langa} and \textit{M. Pierre}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 653--676 (2021; Zbl 07314576) Full Text: DOI
Fellner, Klemens; Morgan, Jeff; Tang, Bao Quoc Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. (English) Zbl 07314575 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 635-651 (2021). MSC: 35K51 35K57 35K58 92D25 PDF BibTeX XML Cite \textit{K. Fellner} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 635--651 (2021; Zbl 07314575) Full Text: DOI
Dambrine, M.; Puig, B.; Vallet, G. A mathematical model for marine dinoflagellates blooms. (English) Zbl 07314574 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 615-633 (2021). MSC: 35Q92 92C80 35K61 35A01 35A02 PDF BibTeX XML Cite \textit{M. Dambrine} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 615--633 (2021; Zbl 07314574) Full Text: DOI
Augner, Björn; Bothe, Dieter The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. (English) Zbl 07314571 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 533-574 (2021). MSC: 35K57 35K51 35K59 80A30 92E20 PDF BibTeX XML Cite \textit{B. Augner} and \textit{D. Bothe}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 533--574 (2021; Zbl 07314571) Full Text: DOI
Frenzel, Thomas; Liero, Matthias Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. (English) Zbl 07314564 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 395-425 (2021). MSC: 35B27 35K20 35K10 35K57 35Q84 PDF BibTeX XML Cite \textit{T. Frenzel} and \textit{M. Liero}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 395--425 (2021; Zbl 07314564) Full Text: DOI
Disser, Karoline Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. (English) Zbl 07314560 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 321-330 (2021). MSC: 35K61 35K57 35B45 35A01 PDF BibTeX XML Cite \textit{K. Disser}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 321--330 (2021; Zbl 07314560) Full Text: DOI
Omuraliev, A. S.; Abylaeva, E. D.; Esengul kyzy, P. Parabolic problem with a power-law boundary layer. (English. Russian original) Zbl 07314329 Differ. Equ. 57, No. 1, 75-85 (2021); translation from Differ. Uravn. 57, No. 1, 76-86 (2021). MSC: 35B25 35K20 PDF BibTeX XML Cite \textit{A. S. Omuraliev} et al., Differ. Equ. 57, No. 1, 75--85 (2021; Zbl 07314329); translation from Differ. Uravn. 57, No. 1, 76--86 (2021) Full Text: DOI
Tao, Youshan; Winkler, Michael Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. (English) Zbl 07314171 Discrete Contin. Dyn. Syst. 41, No. 1, 439-454 (2021). MSC: 35B44 35K57 92C17 35K51 35K59 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{M. Winkler}, Discrete Contin. Dyn. Syst. 41, No. 1, 439--454 (2021; Zbl 07314171) Full Text: DOI
Cao, Waixiang; Wang, Chunmei New primal-dual weak Galerkin finite element methods for convection-diffusion problems. (English) Zbl 07311185 Appl. Numer. Math. 162, 171-191 (2021). MSC: 65N30 65N15 35K20 PDF BibTeX XML Cite \textit{W. Cao} and \textit{C. Wang}, Appl. Numer. Math. 162, 171--191 (2021; Zbl 07311185) Full Text: DOI
Li, Tingyue; Xu, Dinghua; Zhang, Qifeng High-order compact schemes for semilinear parabolic moving boundary problems. (English) Zbl 07310828 Appl. Numer. Math. 161, 452-468 (2021). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{T. Li} et al., Appl. Numer. Math. 161, 452--468 (2021; Zbl 07310828) Full Text: DOI
Pasha, Syed Ahmed; Nawaz, Yasir; Arif, Muhammad Shoaib A third-order accurate in time method for boundary layer flow problems. (English) Zbl 07310801 Appl. Numer. Math. 161, 13-26 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65M12 76D07 80A19 80A21 35K10 35K55 PDF BibTeX XML Cite \textit{S. A. Pasha} et al., Appl. Numer. Math. 161, 13--26 (2021; Zbl 07310801) Full Text: DOI
Kandel, Hom N.; Liang, Dong The mass-preserving solution-flux scheme for multi-layer interface parabolic equations. (English) Zbl 07310762 Appl. Numer. Math. 160, 42-64 (2021). MSC: 65M06 65N06 65M12 65N12 35K15 35Q79 PDF BibTeX XML Cite \textit{H. N. Kandel} and \textit{D. Liang}, Appl. Numer. Math. 160, 42--64 (2021; Zbl 07310762) Full Text: DOI
Albuja, Guillermo; Ávila, Andrés I. A family of new globally convergent linearization schemes for solving Richards’ equation. (English) Zbl 07310757 Appl. Numer. Math. 159, 281-296 (2021). MSC: 65M06 65N30 65H10 35K65 76S05 35Q35 PDF BibTeX XML Cite \textit{G. Albuja} and \textit{A. I. Ávila}, Appl. Numer. Math. 159, 281--296 (2021; Zbl 07310757) Full Text: DOI
Khanmamedov, Azer On the 2D Cahn-Hilliard/Allen-Cahn equation with the inertial term. (English) Zbl 07310646 J. Math. Anal. Appl. 494, No. 2, Article ID 124603, 19 p. (2021). MSC: 35B41 35K35 35K58 PDF BibTeX XML Cite \textit{A. Khanmamedov}, J. Math. Anal. Appl. 494, No. 2, Article ID 124603, 19 p. (2021; Zbl 07310646) Full Text: DOI
Jin, Bangti; Zhou, Zhi An inverse potential problem for subdiffusion: stability and reconstruction. (English) Zbl 07310610 Inverse Probl. 37, No. 1, Article ID 015006, 26 p. (2021). MSC: 35R30 35K20 35R11 PDF BibTeX XML Cite \textit{B. Jin} and \textit{Z. Zhou}, Inverse Probl. 37, No. 1, Article ID 015006, 26 p. (2021; Zbl 07310610) Full Text: DOI
Han, Weimin; Wang, Cheng Numerical analysis of a parabolic hemivariational inequality for semipermeable media. (English) Zbl 07309596 J. Comput. Appl. Math. 389, Article ID 113326, 19 p. (2021). MSC: 65M60 65M06 65N30 65M15 65M12 PDF BibTeX XML Cite \textit{W. Han} and \textit{C. Wang}, J. Comput. Appl. Math. 389, Article ID 113326, 19 p. (2021; Zbl 07309596) Full Text: DOI
Guo, Hongjun; Monobe, Harunori \(V\)-shaped fronts around an obstacle. (English) Zbl 07307522 Math. Ann. 379, No. 1-2, 661-689 (2021). MSC: 35K57 35A18 35B08 35B30 35C07 35K20 PDF BibTeX XML Cite \textit{H. Guo} and \textit{H. Monobe}, Math. Ann. 379, No. 1--2, 661--689 (2021; Zbl 07307522) Full Text: DOI
McCue, Scott W.; El-Hachem, Maud; Simpson, Matthew J. Exact sharp-fronted travelling wave solutions of the Fisher-KPP equation. (English) Zbl 07307181 Appl. Math. Lett. 114, Article ID 106918, 9 p. (2021). MSC: 35C07 35K57 35K20 PDF BibTeX XML Cite \textit{S. W. McCue} et al., Appl. Math. Lett. 114, Article ID 106918, 9 p. (2021; Zbl 07307181) Full Text: DOI
Mansouri, D.; Bendoukha, S.; Abdelmalek, S.; Youkana, A. On the complete synchronization of a time-fractional reaction-diffusion system with the Newton-Leipnik nonlinearity. (English) Zbl 07305515 Appl. Anal. 100, No. 3, 675-694 (2021). MSC: 35R11 35K51 35K57 PDF BibTeX XML Cite \textit{D. Mansouri} et al., Appl. Anal. 100, No. 3, 675--694 (2021; Zbl 07305515) Full Text: DOI
Mabdaoui, M.; Essafi, L.; Rhoudaf, M. Rothe’s method for a nonlinear parabolic problem in Musielak-Orlicz spaces. (English) Zbl 07305254 Appl. Anal. 100, No. 2, 428-463 (2021). MSC: 35K59 35K20 35J60 35A01 35A02 46E30 PDF BibTeX XML Cite \textit{M. Mabdaoui} et al., Appl. Anal. 100, No. 2, 428--463 (2021; Zbl 07305254) Full Text: DOI
Liu, Bingchen; Li, Fengjie; Zhao, Ziyan Non-simultaneous blow-up profile and boundary layer estimate in nonlinear parabolic problems. (English) Zbl 07305253 Appl. Anal. 100, No. 2, 417-427 (2021). MSC: 35B44 35K51 35K58 35B40 35B33 65N25 PDF BibTeX XML Cite \textit{B. Liu} et al., Appl. Anal. 100, No. 2, 417--427 (2021; Zbl 07305253) Full Text: DOI
Tuan, Nguyen Huy; Huynh, Le Nhat; Zhou, Yong Regularization of a backward problem for 2-D time-fractional diffusion equations with discrete random noise. (English) Zbl 07305249 Appl. Anal. 100, No. 2, 335-360 (2021). MSC: 35R25 35R11 35K20 47J06 47H10 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Appl. Anal. 100, No. 2, 335--360 (2021; Zbl 07305249) Full Text: DOI
Guo, Jing; Wang, Cheng; Wise, Steven M.; Yue, Xingye An improved error analysis for a second-order numerical scheme for the Cahn-Hilliard equation. (English) Zbl 07305225 J. Comput. Appl. Math. 388, Article ID 113300, 17 p. (2021). MSC: 65M06 35K30 65M12 65M15 65T40 PDF BibTeX XML Cite \textit{J. Guo} et al., J. Comput. Appl. Math. 388, Article ID 113300, 17 p. (2021; Zbl 07305225) Full Text: DOI
Huang, Weizhang; Kamenski, Lennard; Lang, Jens Conditioning of implicit Runge-Kutta integration for finite element approximation of linear diffusion equations on anisotropic meshes. (English) Zbl 07305180 J. Comput. Appl. Math. 387, Article ID 112497, 18 p. (2021). MSC: 65M60 65M06 65L06 65N30 65M50 65F08 65F10 65F35 65F15 35K10 PDF BibTeX XML Cite \textit{W. Huang} et al., J. Comput. Appl. Math. 387, Article ID 112497, 18 p. (2021; Zbl 07305180) Full Text: DOI
Xu, Qiuyan; An, Hengbin A class of domain decomposition based nonlinear explicit-implicit iteration algorithms for solving diffusion equations with discontinuous coefficient. (English) Zbl 07305149 J. Comput. Appl. Math. 386, Article ID 113232, 24 p. (2021). MSC: 65M55 65M06 35K55 85A25 80A21 85-08 35Q85 PDF BibTeX XML Cite \textit{Q. Xu} and \textit{H. An}, J. Comput. Appl. Math. 386, Article ID 113232, 24 p. (2021; Zbl 07305149) Full Text: DOI
Chen, Xiuqing; Jüngel, Ansgar When do cross-diffusion systems have an entropy structure? (English) Zbl 07303703 J. Differ. Equations 278, 60-72 (2021). MSC: 35K51 35K59 92C17 35Q79 15A23 15A24 PDF BibTeX XML Cite \textit{X. Chen} and \textit{A. Jüngel}, J. Differ. Equations 278, 60--72 (2021; Zbl 07303703) Full Text: DOI
Duan, Chenghua; Chen, Wenbin; Liu, Chun; Yue, Xingye; Zhou, Shenggao Structure-preserving numerical methods for nonlinear Fokker-Planck equations with nonlocal interactions by an energetic variational approach. (English) Zbl 07303438 SIAM J. Sci. Comput. 43, No. 1, B82-B107 (2021). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65M12 35K65 76S05 76M20 82C31 35A15 35Q84 35Q35 PDF BibTeX XML Cite \textit{C. Duan} et al., SIAM J. Sci. Comput. 43, No. 1, B82--B107 (2021; Zbl 07303438) Full Text: DOI
Wang, Zhi-An; Xu, Jiao On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion. (English) Zbl 07303132 J. Math. Biol. 82, No. 1-2, Paper No. 7, 37 p. (2021). MSC: 35K51 35B40 35B44 35K57 92D25 PDF BibTeX XML Cite \textit{Z.-A. Wang} and \textit{J. Xu}, J. Math. Biol. 82, No. 1--2, Paper No. 7, 37 p. (2021; Zbl 07303132) Full Text: DOI
Ciani, Simone; Figueiredo, Giovany M.; Suárez, Antonio Existence of positive eigenfunctions to an anisotropic elliptic operator via the sub-supersolution method. (English) Zbl 07302511 Arch. Math. 116, No. 1, 85-95 (2021). MSC: 35J92 35K65 35B65 35B45 35K20 PDF BibTeX XML Cite \textit{S. Ciani} et al., Arch. Math. 116, No. 1, 85--95 (2021; Zbl 07302511) Full Text: DOI
Cupps, Brian P.; Morgan, Jeff; Tang, Bao Quoc Uniform boundedness for reaction-diffusion systems with mass dissipation. (English) Zbl 07302456 SIAM J. Math. Anal. 53, No. 1, 323-350 (2021). MSC: 35K51 35A01 35A09 35K57 35K58 35Q92 PDF BibTeX XML Cite \textit{B. P. Cupps} et al., SIAM J. Math. Anal. 53, No. 1, 323--350 (2021; Zbl 07302456) Full Text: DOI
Bourahma, M.; Benkirane, A.; Bennouna, J. Entropy solutions for nonlinear parabolic equations with nonstandard growth in non-reflexive Orlicz spaces. (English) Zbl 07302083 Mediterr. J. Math. 18, No. 1, Paper No. 20, 23 p. (2021). MSC: 35K59 35K20 35Q68 35Q35 46E30 PDF BibTeX XML Cite \textit{M. Bourahma} et al., Mediterr. J. Math. 18, No. 1, Paper No. 20, 23 p. (2021; Zbl 07302083) Full Text: DOI
Kalantarova, Habiba V.; Novick-Cohen, Amy Self-similar grooving solutions to the Mullins’ equation. (English) Zbl 07301463 Q. Appl. Math. 79, No. 1, 1-26 (2021). MSC: 35C06 35K35 35C10 PDF BibTeX XML Cite \textit{H. V. Kalantarova} and \textit{A. Novick-Cohen}, Q. Appl. Math. 79, No. 1, 1--26 (2021; Zbl 07301463) Full Text: DOI
Xu, Chen; Chen, Chuanjun; Yang, Xiaofeng Efficient, non-iterative, and decoupled numerical scheme for a new modified binary phase-field surfactant system. (English) Zbl 07300825 Numer. Algorithms 86, No. 2, 863-885 (2021). MSC: 65M06 65M60 65M12 35K55 PDF BibTeX XML Cite \textit{C. Xu} et al., Numer. Algorithms 86, No. 2, 863--885 (2021; Zbl 07300825) Full Text: DOI
Tokutome, Kimiki; Yamada, Toshihiro Acceleration of automatic differentiation of solutions to parabolic partial differential equations: a higher order discretization. (English) Zbl 07300815 Numer. Algorithms 86, No. 2, 593-635 (2021). MSC: 65M75 65C20 PDF BibTeX XML Cite \textit{K. Tokutome} and \textit{T. Yamada}, Numer. Algorithms 86, No. 2, 593--635 (2021; Zbl 07300815) Full Text: DOI
Negreanu, M.; Vargas, A. M. Continuous and discrete periodic asymptotic behavior of solutions to a competitive chemotaxis PDEs system. (English) Zbl 07299005 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105592, 21 p. (2021). MSC: 35B40 35K51 35K59 92C17 92D25 35B10 65M06 PDF BibTeX XML Cite \textit{M. Negreanu} and \textit{A. M. Vargas}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105592, 21 p. (2021; Zbl 07299005) Full Text: DOI
Hairer, Martin; Pardoux, Étienne Fluctuations around a homogenised semilinear random PDE. (English) Zbl 07298824 Arch. Ration. Mech. Anal. 239, No. 1, 151-217 (2021). MSC: 35R60 35B27 35K20 35K58 60H05 PDF BibTeX XML Cite \textit{M. Hairer} and \textit{É. Pardoux}, Arch. Ration. Mech. Anal. 239, No. 1, 151--217 (2021; Zbl 07298824) Full Text: DOI
Bernardin, C.; Gonçalves, P.; Jiménez-Oviedo, B. A microscopic model for a one parameter class of fractional Laplacians with Dirichlet boundary conditions. (English) Zbl 07298819 Arch. Ration. Mech. Anal. 239, No. 1, 1-48 (2021); correction ibid. 239, No. 1, 49-50 (2021). MSC: 35R11 35K57 35K20 35B40 82C22 35Q79 35D30 60K35 PDF BibTeX XML Cite \textit{C. Bernardin} et al., Arch. Ration. Mech. Anal. 239, No. 1, 1--48 (2021; Zbl 07298819) Full Text: DOI
Shi, Dongyang; Li, Chaoqun Superconvergence analysis of two-grid methods for bacteria equations. (English) Zbl 07298618 Numer. Algorithms 86, No. 1, 123-152 (2021). MSC: 65M60 65M06 65M55 65Z05 65M12 35K40 92C50 PDF BibTeX XML Cite \textit{D. Shi} and \textit{C. Li}, Numer. Algorithms 86, No. 1, 123--152 (2021; Zbl 07298618) Full Text: DOI
Cancès, Clément; Nabet, Flore; Vohralík, Martin Convergence and a posteriori error analysis for energy-stable finite element approximations of degenerate parabolic equations. (English) Zbl 07298446 Math. Comput. 90, No. 328, 517-563 (2021). MSC: 65M60 65M06 65M12 35K65 65M15 35Q84 PDF BibTeX XML Cite \textit{C. Cancès} et al., Math. Comput. 90, No. 328, 517--563 (2021; Zbl 07298446) Full Text: DOI
Alves, Claudianor O.; Boudjeriou, Tahir Existence of solution for a class of heat equation involving the \(p(x)\) Laplacian with triple regime. (English) Zbl 07298439 Z. Angew. Math. Phys. 72, No. 1, Paper No. 2, 18 p. (2021). MSC: 35K92 35K20 35K59 65M60 35B44 PDF BibTeX XML Cite \textit{C. O. Alves} and \textit{T. Boudjeriou}, Z. Angew. Math. Phys. 72, No. 1, Paper No. 2, 18 p. (2021; Zbl 07298439) Full Text: DOI
Engu, Satyanarayana; Sahoo, Manas R.; Berke, Venkatramana P. Solutions to viscous Burgers equations with time dependent source term. (English) Zbl 07298214 Electron. J. Differ. Equ. 2021, Paper No. 02, 16 p. (2021). MSC: 35C15 35K20 35K58 35B09 35B40 PDF BibTeX XML Cite \textit{S. Engu} et al., Electron. J. Differ. Equ. 2021, Paper No. 02, 16 p. (2021; Zbl 07298214) Full Text: Link
Xu, Xiangsheng Nonlinear diffusion in the Keller-Segel model of parabolic-parabolic type. (English) Zbl 07297750 J. Differ. Equations 276, 264-286 (2021). MSC: 35B45 35B65 35Q92 35K51 PDF BibTeX XML Cite \textit{X. Xu}, J. Differ. Equations 276, 264--286 (2021; Zbl 07297750) Full Text: DOI
Chen, Wen-Jie; Han, Zhong-Jie Stability in locally degenerate dual-phase-lag heat conduction. (English) Zbl 1455.35016 Appl. Anal. 100, No. 1, 75-92 (2021). MSC: 35B40 35K51 93D20 35B35 PDF BibTeX XML Cite \textit{W.-J. Chen} and \textit{Z.-J. Han}, Appl. Anal. 100, No. 1, 75--92 (2021; Zbl 1455.35016) Full Text: DOI
Dai, Shibin; Liu, Qiang; Promislow, Keith Weak solutions for the functionalized Cahn-Hilliard equation with degenerate mobility. (English) Zbl 1455.35130 Appl. Anal. 100, No. 1, 1-16 (2021). MSC: 35K35 35K59 35D30 PDF BibTeX XML Cite \textit{S. Dai} et al., Appl. Anal. 100, No. 1, 1--16 (2021; Zbl 1455.35130) Full Text: DOI