Langa, Franck Davhys Reval; Pierre, Morgan A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. (English) Zbl 07314576 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 653-676 (2021). MSC: 65M60 65N30 65K10 35K67 80A22 PDF BibTeX XML Cite \textit{F. D. R. Langa} and \textit{M. Pierre}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 653--676 (2021; Zbl 07314576) Full Text: DOI
Abels, Helmut; Kampmann, Johannes Existence of weak solutions for a sharp interface model for phase separation on biological membranes. (English) Zbl 07314561 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 331-351 (2021). MSC: 35R35 35K93 92C37 PDF BibTeX XML Cite \textit{H. Abels} and \textit{J. Kampmann}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 331--351 (2021; Zbl 07314561) Full Text: DOI
Carl, Siegfried; Le, Vy. K. On systems of parabolic variational inequalities with multivalued terms. (English) Zbl 07308731 Monatsh. Math. 194, No. 2, 227-260 (2021). MSC: 35K86 47H04 PDF BibTeX XML Cite \textit{S. Carl} and \textit{Vy. K. Le}, Monatsh. Math. 194, No. 2, 227--260 (2021; Zbl 07308731) Full Text: DOI
Yokoyama, Satoshi A stochastically perturbed mean curvature flow by colored noise. (English) Zbl 07306260 J. Theor. Probab. 34, No. 1, 214-240 (2021). MSC: 60H15 35K93 74A50 PDF BibTeX XML Cite \textit{S. Yokoyama}, J. Theor. Probab. 34, No. 1, 214--240 (2021; Zbl 07306260) Full Text: DOI
Guan, Xinyu; Si, Jianguo; Si, Wen Parabolic invariant tori in quasi-periodically forced skew-product maps. (English) Zbl 07303699 J. Differ. Equations 277, 234-274 (2021). MSC: 37 47B80 81Q10 37A20 37D25 39A10 PDF BibTeX XML Cite \textit{X. Guan} et al., J. Differ. Equations 277, 234--274 (2021; Zbl 07303699) Full Text: DOI
Biswas, Animikh; Hudson, Joshua; Tian, Jing Persistence time of solutions of the three-dimensional Navier-Stokes equations in Sobolev-Gevrey classes. (English) Zbl 07303698 J. Differ. Equations 277, 191-233 (2021). MSC: 35Q30 76D05 34G20 47N20 35K55 35D30 35A01 PDF BibTeX XML Cite \textit{A. Biswas} et al., J. Differ. Equations 277, 191--233 (2021; Zbl 07303698) Full Text: DOI
Faulhuber, Markus Extremal determinants of Laplace-Beltrami operators for rectangular tori. (English) Zbl 07303569 Math. Z. 297, No. 1-2, 175-195 (2021). MSC: 58J52 26A51 33E05 58J35 11H06 52C05 PDF BibTeX XML Cite \textit{M. Faulhuber}, Math. Z. 297, No. 1--2, 175--195 (2021; Zbl 07303569) Full Text: DOI
Gesztesy, Fritz Book review of: J. Behrndt et al., Boundary value problems, Weyl functions, and differential operators,. (English) Zbl 07301377 Bull. Am. Math. Soc., New Ser. 58, No. 1 (2021). MSC: 00A17 47-02 34-02 47N20 35-02 34B05 35K20 35J25 PDF BibTeX XML
Niinikoski, Joonas Volume preserving mean curvature flows near strictly stable sets in flat torus. (English) Zbl 07297747 J. Differ. Equations 276, 149-186 (2021). MSC: 53E10 35K93 PDF BibTeX XML Cite \textit{J. Niinikoski}, J. Differ. Equations 276, 149--186 (2021; Zbl 07297747) Full Text: DOI
Wang, Renhai; Wang, Bixiang Random dynamics of non-autonomous fractional stochastic \(p\)-Laplacian equations on \(\mathbb{R}^N\). (English) Zbl 07296638 Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021). MSC: 35R60 35R11 35K93 35K15 35B40 35B41 37L30 PDF BibTeX XML Cite \textit{R. Wang} and \textit{B. Wang}, Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021; Zbl 07296638) Full Text: DOI
Fornaro, S.; Metafune, G.; Pallara, D.; Schnaubelt, R. \(L^p\)-spectrum of degenerate hypoelliptic Ornstein-Uhlenbeck operators. (English) Zbl 07285369 J. Funct. Anal. 280, No. 2, Article ID 108807, 22 p. (2021). MSC: 35P05 35J70 35K65 47D06 PDF BibTeX XML Cite \textit{S. Fornaro} et al., J. Funct. Anal. 280, No. 2, Article ID 108807, 22 p. (2021; Zbl 07285369) Full Text: DOI
Lorenzi, Luca; Rhandi, Adbelaziz Semigroups of bounded operators and second-order elliptic and parabolic partial differential equations. (English) Zbl 07274768 Monographs and Research Notes in Mathematics. Boca Raton, FL: CRC Press (ISBN 978-0-367-20629-1/hbk; 978-0-429-26259-3/ebook). 504 p. (2021). MSC: 47-01 47Dxx 35J15 35K10 PDF BibTeX XML Cite \textit{L. Lorenzi} and \textit{A. Rhandi}, Semigroups of bounded operators and second-order elliptic and parabolic partial differential equations. Boca Raton, FL: CRC Press (2021; Zbl 07274768) Full Text: DOI
Namba, T.; Rybka, P.; Voller, V. R. Some comments on using fractional derivative operators in modeling non-local diffusion processes. (English) Zbl 1446.35252 J. Comput. Appl. Math. 381, Article ID 113040, 16 p. (2021). MSC: 35R11 35K20 70H33 PDF BibTeX XML Cite \textit{T. Namba} et al., J. Comput. Appl. Math. 381, Article ID 113040, 16 p. (2021; Zbl 1446.35252) Full Text: DOI
Presho, Michael; Hill, Michael A conservative generalized multiscale finite volume/element method for modeling two-phase flow with capillary pressure. (English) Zbl 1448.35151 J. Comput. Appl. Math. 381, Article ID 113026, 15 p. (2021). MSC: 35J25 35K10 65N30 PDF BibTeX XML Cite \textit{M. Presho} and \textit{M. Hill}, J. Comput. Appl. Math. 381, Article ID 113026, 15 p. (2021; Zbl 1448.35151) Full Text: DOI
Soccorsi, Éric Multidimensional Borg-Levinson inverse spectral problems. (English) Zbl 07315995 Ammari, Kaïs (ed.) et al., Identification and control: some challenges. Summer school, Monastir, Tunisia, June 18–20, 2019. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5547-7/pbk; 978-1-4704-5696-2/ebook). Contemporary Mathematics 757, 19-49 (2020). MSC: 35R30 35J10 35K10 PDF BibTeX XML Cite \textit{É. Soccorsi}, Contemp. Math. 757, 19--49 (2020; Zbl 07315995) Full Text: DOI
Khushtova, F. G. The second boundary value problem in a half-strip for a \(B\)-parabolic equation with the Gerasimov-Caputo time derivative. (Russian. English summary) Zbl 07314755 Vestn. KRAUNTS, Fiz.-Mat. Nauki 2020, No. 4(33), 37-50 (2020). MSC: 35C05 35K20 35R11 PDF BibTeX XML Cite \textit{F. G. Khushtova}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 2020, No. 4(33), 37--50 (2020; Zbl 07314755) Full Text: DOI MNR
Odinabekov, D. M. On the solvability of some operators with several moved and fixed. (Russian. English summary) Zbl 07314753 Vestn. KRAUNTS, Fiz.-Mat. Nauki 2020, No. 4(33), 10-25 (2020). MSC: 35C05 35K20 35R11 PDF BibTeX XML Cite \textit{D. M. Odinabekov}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 2020, No. 4(33), 10--25 (2020; Zbl 07314753) Full Text: DOI MNR
Takayasu, Akitoshi A computer-assisted proof for nonlinear heat equations in the complex plane of time. (English) Zbl 07311529 RIMS Kôkyûroku Bessatsu B82, 47-66 (2020). MSC: 35A20 35B40 35B44 35K55 65G40 65M15 65M70 PDF BibTeX XML Cite \textit{A. Takayasu}, RIMS Kôkyûroku Bessatsu B82, 47--66 (2020; Zbl 07311529) Full Text: Link
Sakaguchi, Shigeru Two-phase heat conductors with a stationary isothermic surface and their related elliptic overdetermined problems. (English) Zbl 07311516 RIMS Kôkyûroku Bessatsu B80, 113-132 (2020). MSC: 35K05 35K10 35B06 35B40 35K15 35K20 35J05 35J25 PDF BibTeX XML Cite \textit{S. Sakaguchi}, RIMS Kôkyûroku Bessatsu B80, 113--132 (2020; Zbl 07311516) Full Text: Link
Takasao, Keisuke Global existence and monotonicity formula for volume preserving mean curvature flow. (English) Zbl 07311514 RIMS Kôkyûroku Bessatsu B80, 81-94 (2020). MSC: 35K93 53C44 PDF BibTeX XML Cite \textit{K. Takasao}, RIMS Kôkyûroku Bessatsu B80, 81--94 (2020; Zbl 07311514) Full Text: Link
Cruz, José M. T. S.; Ševčovič, Daniel On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models. (English) Zbl 07309987 Japan J. Ind. Appl. Math. 37, No. 3, 697-721 (2020). MSC: 45K05 35K58 34G20 91G20 PDF BibTeX XML Cite \textit{J. M. T. S. Cruz} and \textit{D. Ševčovič}, Japan J. Ind. Appl. Math. 37, No. 3, 697--721 (2020; Zbl 07309987) Full Text: DOI
Moroşanu, Gheorghe; Petruşel, Adrian Two-parameter second-order differential inclusions in Hilbert spaces. (English) Zbl 07307053 Ann. Acad. Rom. Sci., Math. Appl. 12, No. 1-2, 274-294 (2020). MSC: 34G25 47J35 47H05 35K20 35L50 PDF BibTeX XML Cite \textit{G. Moroşanu} and \textit{A. Petruşel}, Ann. Acad. Rom. Sci., Math. Appl. 12, No. 1--2, 274--294 (2020; Zbl 07307053) Full Text: Link
Shakhmurov, Veli Regularity properties of nonlinear abstract Schrödinger equations and applications. (English) Zbl 07301542 Int. J. Math. 31, No. 13, Article ID 2050105, 25 p. (2020). MSC: 35Q41 35K15 47B25 47-XX 46E40 PDF BibTeX XML Cite \textit{V. Shakhmurov}, Int. J. Math. 31, No. 13, Article ID 2050105, 25 p. (2020; Zbl 07301542) Full Text: DOI
Giga, Yoshikazu; Požár, Norbert Viscosity solutions for the crystalline mean curvature flow with a nonuniform driving force term. (English) Zbl 07296591 SN Partial Differ. Equ. Appl. 1, No. 6, Paper No. 39, 25 p. (2020). MSC: 35D40 35K67 35K55 35B51 35K93 53E10 PDF BibTeX XML Cite \textit{Y. Giga} and \textit{N. Požár}, SN Partial Differ. Equ. Appl. 1, No. 6, Paper No. 39, 25 p. (2020; Zbl 07296591) Full Text: DOI
Luo, Liping; Luo, Zhenguo; Zeng, Yunhui Oscillation conditions of certain nonlinear impulsive neutral parabolic distributed parameter systems. (Chinese. English summary) Zbl 07294903 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 3, 784-795 (2020). MSC: 35B05 35K55 35R12 PDF BibTeX XML Cite \textit{L. Luo} et al., Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 3, 784--795 (2020; Zbl 07294903)
Tran, Dinh-Ke; Lam, Tran-Phuong-Thuy Nonlocal final value problem governed by semilinear anomalous diffusion equations. (English) Zbl 07293777 Evol. Equ. Control Theory 9, No. 3, 891-914 (2020). MSC: 35R30 35K20 35R09 45D05 45K05 PDF BibTeX XML Cite \textit{D.-K. Tran} and \textit{T.-P.-T. Lam}, Evol. Equ. Control Theory 9, No. 3, 891--914 (2020; Zbl 07293777) Full Text: DOI
Ishige, Kazuhiro; Kawakami, Tatsuki Critical Fujita exponents for semilinear heat equations with quadratically decaying potential. (English) Zbl 07293637 Indiana Univ. Math. J. 69, No. 6, 2171-2207 (2020). MSC: 35B33 35B44 35K58 35K15 PDF BibTeX XML Cite \textit{K. Ishige} and \textit{T. Kawakami}, Indiana Univ. Math. J. 69, No. 6, 2171--2207 (2020; Zbl 07293637) Full Text: DOI
Fragnelli, Genni; Goldstein, Jerome A.; Mininni, Rosa Maria; Romanelli, Silvia Operators of order \(2n\) with interior degeneracy. (English) Zbl 07292999 Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3417-3426 (2020). MSC: 47D06 35K65 47B25 47N20 PDF BibTeX XML Cite \textit{G. Fragnelli} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3417--3426 (2020; Zbl 07292999) Full Text: DOI
Auscher, Pascal; Egert, Moritz; Nyström, Kaj \(L^2\) well-posedness of boundary value problems for parabolic systems with measurable coefficients. (English) Zbl 07286826 J. Eur. Math. Soc. (JEMS) 22, No. 9, 2943-3058 (2020). MSC: 35K51 42B37 26A33 42B25 47A60 47D06 35R05 PDF BibTeX XML Cite \textit{P. Auscher} et al., J. Eur. Math. Soc. (JEMS) 22, No. 9, 2943--3058 (2020; Zbl 07286826) Full Text: DOI
Chernov, Andreĭ Vladimirovich On preservation of global solvability of controlled second kind operator equation. (Russian. English summary) Zbl 07281891 Ufim. Mat. Zh. 12, No. 1, 56-82 (2020); translation in Ufa Math. J. 12, No. 1, 56-81 (2020). MSC: 47J05 47J35 47N10 PDF BibTeX XML Cite \textit{A. V. Chernov}, Ufim. Mat. Zh. 12, No. 1, 56--82 (2020; Zbl 07281891); translation in Ufa Math. J. 12, No. 1, 56--81 (2020) Full Text: DOI MNR
Ding, Hang; Zhou, Jun Global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem. (English) Zbl 1452.35073 Nonlinearity 33, No. 11, 6099-6133 (2020). MSC: 35K20 35K58 35R11 47G20 35B44 35R09 PDF BibTeX XML Cite \textit{H. Ding} and \textit{J. Zhou}, Nonlinearity 33, No. 11, 6099--6133 (2020; Zbl 1452.35073) Full Text: DOI
Aksikas, Ahmed; Aksikas, Ilyasse; Hayes, Robert E.; Forbes, J. Fraser Boundary optimal control design for a system of parabolic-hyperbolic PDEs coupled with an ODE. (English) Zbl 1453.93112 Int. J. Control 93, No. 7, 1499-1509 (2020). MSC: 93C20 93C15 93B52 93B60 49N10 PDF BibTeX XML Cite \textit{A. Aksikas} et al., Int. J. Control 93, No. 7, 1499--1509 (2020; Zbl 1453.93112) Full Text: DOI
El Haji, Badr; El Moumni, Mostafa; Talha, Abdeslam Entropy solutions for nonlinear parabolic equations in Musilak-Orlicz spaces without \(\Delta_2\)-condition. (English) Zbl 1452.35079 Gulf J. Math. 9, No. 1, 1-26 (2020). MSC: 35K59 35K20 35K65 35K67 35D30 PDF BibTeX XML Cite \textit{B. El Haji} et al., Gulf J. Math. 9, No. 1, 1--26 (2020; Zbl 1452.35079) Full Text: Link
Giga, Yoshikazu; Mitake, Hiroyoshi; Tran, Hung V. Remarks on large time behavior of level-set mean curvature flow equations with driving and source terms. (English) Zbl 1452.35034 Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3983-3999 (2020). MSC: 35B40 35K93 35K20 53E10 PDF BibTeX XML Cite \textit{Y. Giga} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3983--3999 (2020; Zbl 1452.35034) Full Text: DOI
Rodriguez, Miguel Angel Rodriguez Banach algebras generated by Toeplitz operators with parabolic quasi-radial quasi-homogeneous symbols. (English) Zbl 07270800 Bol. Soc. Mat. Mex., III. Ser. 26, No. 3, 1243-1271 (2020). MSC: 47B35 47L80 32A36 PDF BibTeX XML Cite \textit{M. A. R. Rodriguez}, Bol. Soc. Mat. Mex., III. Ser. 26, No. 3, 1243--1271 (2020; Zbl 07270800) Full Text: DOI
Růžička, Michael Nonlinear functional analysis. An introduction. 2nd revised edition. (Nichtlineare Funktionalanalysis. Eine Einführung.) (German) Zbl 1448.46002 Masterclass. Berlin: Springer Spektrum (ISBN 978-3-662-62190-5/pbk; 978-3-662-62190-5/ebook). xii, 227 p. (2020). MSC: 46-01 47-01 47H05 47H10 47H11 PDF BibTeX XML Cite \textit{M. Růžička}, Nichtlineare Funktionalanalysis. Eine Einführung. Berlin: Springer Spektrum (2020; Zbl 1448.46002) Full Text: DOI
Beauchard, Karine; Egidi, Michela; Pravda-Starov, Karel Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports. (English) Zbl 1451.93021 C. R., Math., Acad. Sci. Paris 358, No. 6, 651-700 (2020). MSC: 93B05 93C20 35H10 93B28 93B27 PDF BibTeX XML Cite \textit{K. Beauchard} et al., C. R., Math., Acad. Sci. Paris 358, No. 6, 651--700 (2020; Zbl 1451.93021) Full Text: DOI
Nguyen Huy Tuan; Tran Bao Ngoc; Baleanu, Dumitru; O’Regan, Donal On well-posedness of the sub-diffusion equation with conformable derivative model. (English) Zbl 1450.35276 Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105332, 25 p. (2020). MSC: 35R11 35K20 35B65 26A33 35Q56 PDF BibTeX XML Cite \textit{Nguyen Huy Tuan} et al., Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105332, 25 p. (2020; Zbl 1450.35276) Full Text: DOI
Boulanger, Adrien A spectral approach to the linking number in the 3-torus. (English) Zbl 1451.53050 Pac. J. Math. 307, No. 2, 257-281 (2020). MSC: 53C20 57K10 58J35 58J50 PDF BibTeX XML Cite \textit{A. Boulanger}, Pac. J. Math. 307, No. 2, 257--281 (2020; Zbl 1451.53050) Full Text: DOI
Hieber, Matthias; Prüss, Jan Bounded \(H^\infty\)-calculus for a class of nonlocal operators: the bidomain operator in the \(L_q\)-setting. (English) Zbl 1450.35152 Math. Ann. 378, No. 3-4, 1095-1127 (2020). MSC: 35K90 42B20 92C35 47D06 35B65 PDF BibTeX XML Cite \textit{M. Hieber} and \textit{J. Prüss}, Math. Ann. 378, No. 3--4, 1095--1127 (2020; Zbl 1450.35152) Full Text: DOI
Zatoń, Wiktoria Tent space well-posedness for parabolic Cauchy problems with rough coefficients. (English) Zbl 1450.35137 J. Differ. Equations 269, No. 12, 11086-11164 (2020). MSC: 35K46 35B30 PDF BibTeX XML Cite \textit{W. Zatoń}, J. Differ. Equations 269, No. 12, 11086--11164 (2020; Zbl 1450.35137) Full Text: DOI
Su, Qiuyi; Ruan, Shigui Existence of periodic solutions in abstract semilinear equations and applications to biological models. (English) Zbl 1450.35026 J. Differ. Equations 269, No. 12, 11020-11061 (2020). MSC: 35B10 35K90 35L90 35L60 35Q92 37L05 47J35 47D06 PDF BibTeX XML Cite \textit{Q. Su} and \textit{S. Ruan}, J. Differ. Equations 269, No. 12, 11020--11061 (2020; Zbl 1450.35026) Full Text: DOI
Zhao, Jie; Li, Hong; Fang, Zhichao; Liu, Yang; Wang, Huifang A splitting mixed covolume method for viscoelastic wave equations on triangular grids. (English) Zbl 1453.65263 Mediterr. J. Math. 17, No. 5, Paper No. 165, 24 p. (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M15 65M60 65M22 35K45 76A10 74D05 PDF BibTeX XML Cite \textit{J. Zhao} et al., Mediterr. J. Math. 17, No. 5, Paper No. 165, 24 p. (2020; Zbl 1453.65263) Full Text: DOI
Wang, Guofang; Weng, Liangjun A mean curvature type flow with capillary boundary in a unit ball. (English) Zbl 1448.53089 Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 149, 26 p. (2020). MSC: 53E10 35K93 PDF BibTeX XML Cite \textit{G. Wang} and \textit{L. Weng}, Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 149, 26 p. (2020; Zbl 1448.53089) Full Text: DOI
Alibaud, Nathaël; Andreianov, Boris; Ouédraogo, Adama Nonlocal dissipation measure and \(L^1\) kinetic theory for fractional conservation laws. (English) Zbl 1448.35536 Commun. Partial Differ. Equations 45, No. 9, 1213-1251 (2020). MSC: 35R11 35L65 35K59 35D99 PDF BibTeX XML Cite \textit{N. Alibaud} et al., Commun. Partial Differ. Equations 45, No. 9, 1213--1251 (2020; Zbl 1448.35536) Full Text: DOI
Li, Jing; Chen, Li; Surulescu, Christina Global boundedness, hair trigger effect, and pattern formation driven by the parametrization of a nonlocal Fisher-KPP problem. (English) Zbl 1448.35281 J. Differ. Equations 269, No. 11, 9090-9122 (2020). MSC: 35K15 35K58 35B36 35R09 PDF BibTeX XML Cite \textit{J. Li} et al., J. Differ. Equations 269, No. 11, 9090--9122 (2020; Zbl 1448.35281) Full Text: DOI
McMillan, Benjamin B. Geometry and conservation laws for a class of second-order parabolic equations. I: Geometry. (English) Zbl 1448.35015 J. Geom. Phys. 157, Article ID 103824, 29 p. (2020). MSC: 35A30 35K55 58A15 35K93 35K96 PDF BibTeX XML Cite \textit{B. B. McMillan}, J. Geom. Phys. 157, Article ID 103824, 29 p. (2020; Zbl 1448.35015) Full Text: DOI
Senik, N. N. On homogenization of locally periodic elliptic and parabolic operators. (English. Russian original) Zbl 1447.35035 Funct. Anal. Appl. 54, No. 1, 68-72 (2020); translation from Funkts. Anal. Prilozh. 54, No. 1, 87-92 (2020). MSC: 35B27 35J57 35K51 PDF BibTeX XML Cite \textit{N. N. Senik}, Funct. Anal. Appl. 54, No. 1, 68--72 (2020; Zbl 1447.35035); translation from Funkts. Anal. Prilozh. 54, No. 1, 87--92 (2020) Full Text: DOI
Agarwal, Praveen; Abdullaev, Obidjon Kh. A nonlocal problem with integral gluing condition for a third-order loaded equation with parabolic-hyperbolic operator involving fractional derivatives. (English) Zbl 1447.35344 Math. Methods Appl. Sci. 43, No. 6, 3716-3726 (2020). MSC: 35R11 35M10 35A01 35A02 PDF BibTeX XML Cite \textit{P. Agarwal} and \textit{O. Kh. Abdullaev}, Math. Methods Appl. Sci. 43, No. 6, 3716--3726 (2020; Zbl 1447.35344) Full Text: DOI
Tuan, Nguyen Huy; Huynh, Le Nhat; Baleanu, Dumitru; Can, Nguyen Huu On a terminal value problem for a generalization of the fractional diffusion equation with hyper-Bessel operator. (English) Zbl 1447.35390 Math. Methods Appl. Sci. 43, No. 6, 2858-2882 (2020). MSC: 35R30 35R25 35K15 47J06 47H10 35K05 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Math. Methods Appl. Sci. 43, No. 6, 2858--2882 (2020; Zbl 1447.35390) Full Text: DOI
Bao, Ngoc Tran; Baleanu, Dumitru; Minh, Duc Le Thi; Huy, Tuan Nguyen Regularity results for fractional diffusion equations involving fractional derivative with Mittag-Leffler kernel. (English) Zbl 1447.35346 Math. Methods Appl. Sci. 43, No. 12, 7208-7226 (2020). MSC: 35R11 35B65 26A33 35K15 PDF BibTeX XML Cite \textit{N. T. Bao} et al., Math. Methods Appl. Sci. 43, No. 12, 7208--7226 (2020; Zbl 1447.35346) Full Text: DOI
Liu, Qing Large exponent behavior for power-type nonlinear evolution equations and applications. (English) Zbl 1447.35207 J. Evol. Equ. 20, No. 3, 777-810 (2020). MSC: 35K93 35D40 35B40 PDF BibTeX XML Cite \textit{Q. Liu}, J. Evol. Equ. 20, No. 3, 777--810 (2020; Zbl 1447.35207) Full Text: DOI
Bryan, Paul; Ivaki, Mohammad N. Harnack estimate for mean curvature flow on the sphere. (English) Zbl 1445.35231 Asian J. Math. 24, No. 1, 165-176 (2020). MSC: 35K93 53E10 58J35 PDF BibTeX XML Cite \textit{P. Bryan} and \textit{M. N. Ivaki}, Asian J. Math. 24, No. 1, 165--176 (2020; Zbl 1445.35231) Full Text: DOI
Bouin, Emeric; Dolbeault, Jean; Mischler, Stéphane; Mouhot, Clément; Schmeiser, Christian Hypocoercivity without confinement. (English) Zbl 1448.82035 Pure Appl. Anal. 2, No. 2, 203-232 (2020). MSC: 82C40 76P05 35H10 35K65 35P15 35P25 35Q84 PDF BibTeX XML Cite \textit{E. Bouin} et al., Pure Appl. Anal. 2, No. 2, 203--232 (2020; Zbl 1448.82035) Full Text: DOI
Kumano-go, Naoto; Uchida, Keiya Phase space path integral on torus for the fundamental solution of higher-order parabolic equations. (English) Zbl 1446.81025 J. Pseudo-Differ. Oper. Appl. 11, No. 3, 1059-1083 (2020). MSC: 81S40 35S05 35K25 81S30 PDF BibTeX XML Cite \textit{N. Kumano-go} and \textit{K. Uchida}, J. Pseudo-Differ. Oper. Appl. 11, No. 3, 1059--1083 (2020; Zbl 1446.81025) Full Text: DOI
Bui, The Anh; Duong, Xuan Thinh Sharp weighted norm inequalities for singular integrals with non-smooth kernels. (English) Zbl 1446.42013 Math. Z. 295, No. 3-4, 1733-1750 (2020). MSC: 42B20 58J35 35J10 PDF BibTeX XML Cite \textit{T. A. Bui} and \textit{X. T. Duong}, Math. Z. 295, No. 3--4, 1733--1750 (2020; Zbl 1446.42013) Full Text: DOI
Paronetto, Fabio Further existence results for elliptic-parabolic and forward-backward parabolic equations. (English) Zbl 1445.35256 Calc. Var. Partial Differ. Equ. 59, No. 4, Paper No. 137, 30 p. (2020). MSC: 35M10 35R20 35K90 35B65 PDF BibTeX XML Cite \textit{F. Paronetto}, Calc. Var. Partial Differ. Equ. 59, No. 4, Paper No. 137, 30 p. (2020; Zbl 1445.35256) Full Text: DOI
Wang, Xueying; Zhao, Xiao-Qiang Target reproduction numbers for reaction-diffusion population models. (English) Zbl 1445.35214 J. Math. Biol. 81, No. 2, 625-647 (2020). MSC: 35K57 35K51 35B20 92D25 PDF BibTeX XML Cite \textit{X. Wang} and \textit{X.-Q. Zhao}, J. Math. Biol. 81, No. 2, 625--647 (2020; Zbl 1445.35214) Full Text: DOI
Shakhmurov, Veli Nonlocal fractional differential equations and applications. (English) Zbl 07229684 Complex Anal. Oper. Theory 14, No. 4, Paper No. 49, 15 p. (2020). MSC: 47Gxx 34L30 34A12 34A40 47Dxx 43Axx PDF BibTeX XML Cite \textit{V. Shakhmurov}, Complex Anal. Oper. Theory 14, No. 4, Paper No. 49, 15 p. (2020; Zbl 07229684) Full Text: DOI
Spruck, Joel; Xiao, Ling Complete translating solitons to the mean curvature flow in \(\mathbb{R}^3\) with nonnegative mean curvature. (English) Zbl 1445.35110 Am. J. Math. 142, No. 3, 993-1015 (2020). MSC: 35C08 35K93 53E10 PDF BibTeX XML Cite \textit{J. Spruck} and \textit{L. Xiao}, Am. J. Math. 142, No. 3, 993--1015 (2020; Zbl 1445.35110) Full Text: DOI
Thompson, James Functional inequalities for Feynman-Kac semigroups. (English) Zbl 07229214 J. Theor. Probab. 33, No. 3, 1523-1540 (2020). Reviewer: Michael Perelmuter (Kyjiw) MSC: 47D08 58J65 58J35 PDF BibTeX XML Cite \textit{J. Thompson}, J. Theor. Probab. 33, No. 3, 1523--1540 (2020; Zbl 07229214) Full Text: DOI
Tambue, Antoine; Mukam, Jean Daniel Optimal error estimate of the finite element approximation of second order semilinear non-autonomous parabolic PDEs. (English) Zbl 1445.65035 Indag. Math., New Ser. 31, No. 4, 714-727 (2020). MSC: 65M60 65N30 65M22 65M15 65M12 35K58 35K10 PDF BibTeX XML Cite \textit{A. Tambue} and \textit{J. D. Mukam}, Indag. Math., New Ser. 31, No. 4, 714--727 (2020; Zbl 1445.65035) Full Text: DOI
Akagi, Goro; Ishige, Kazuhiro; Sato, Ryuichi The Cauchy problem for the Finsler heat equation. (English) Zbl 1445.35193 Adv. Calc. Var. 13, No. 3, 257-278 (2020). MSC: 35K15 35A01 35K59 PDF BibTeX XML Cite \textit{G. Akagi} et al., Adv. Calc. Var. 13, No. 3, 257--278 (2020; Zbl 1445.35193) Full Text: DOI
Ma, Xiaonan From local index theory to Bergman kernel: a heat kernel approach. (English) Zbl 07225728 Chen, Jingyi (ed.) et al., Geometric analysis. In honor of Gang Tian’s 60th birthday. Cham: Birkhäuser (ISBN 978-3-030-34952-3/hbk; 978-3-030-34953-0/ebook). Progress in Mathematics 333, 265-286 (2020). MSC: 58J20 58J35 PDF BibTeX XML Cite \textit{X. Ma}, Prog. Math. 333, 265--286 (2020; Zbl 07225728) Full Text: DOI
Shakhmurov, Veli Fractional differential operators in vector-valued spaces and applications. (English) Zbl 1439.35546 Math. Inequal. Appl. 23, No. 2, 521-538 (2020). MSC: 35R11 35J25 35K90 47F05 43A95 PDF BibTeX XML Cite \textit{V. Shakhmurov}, Math. Inequal. Appl. 23, No. 2, 521--538 (2020; Zbl 1439.35546) Full Text: DOI
Vabishchevich, Petr N. Identification of a time-dependent right-hand side of an unsteady equation with a fractional power of an elliptic operator. (English) Zbl 07223016 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 12th international conference, LSSC 2019, Sozopol, Bulgaria, June 10–14, 2019. Revised selected papers. Cham: Springer (ISBN 978-3-030-41031-5/pbk; 978-3-030-41032-2/ebook). Lecture Notes in Computer Science 11958, 105-112 (2020). MSC: 65 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Lect. Notes Comput. Sci. 11958, 105--112 (2020; Zbl 07223016) Full Text: DOI
Sakaguchi, Shigeru Some characterizations of parallel hyperplanes in multi-layered heat conductors. (English. French summary) Zbl 1448.35274 J. Math. Pures Appl. (9) 140, 185-210 (2020). MSC: 35K05 35K15 35R05 35B06 35B40 35K20 35J05 35J25 PDF BibTeX XML Cite \textit{S. Sakaguchi}, J. Math. Pures Appl. (9) 140, 185--210 (2020; Zbl 1448.35274) Full Text: DOI
Meshkova, Yu. M. Homogenization of periodic parabolic systems in the \(L_2(\mathbb{R}^d)\)-norm with the corrector taken into account. (English. Russian original) Zbl 1442.35021 St. Petersbg. Math. J. 31, No. 4, 675-718 (2020); translation from Algebra Anal. 31, No. 4, 137-197 (2019). MSC: 35B27 35K45 PDF BibTeX XML Cite \textit{Yu. M. Meshkova}, St. Petersbg. Math. J. 31, No. 4, 675--718 (2020; Zbl 1442.35021); translation from Algebra Anal. 31, No. 4, 137--197 (2019) Full Text: DOI
Kim, Ildoo; Kim, Kyeong-Hun On the \(L_p\)-boundedness of the stochastic singular integral operators and its application to \(L_p\)-regularity theory of stochastic partial differential equations. (English) Zbl 1448.60140 Trans. Am. Math. Soc. 373, No. 8, 5653-5684 (2020). Reviewer: Yuliya S. Mishura (Kyïv) MSC: 60H15 42B20 35S10 35K30 35B45 60H20 PDF BibTeX XML Cite \textit{I. Kim} and \textit{K.-H. Kim}, Trans. Am. Math. Soc. 373, No. 8, 5653--5684 (2020; Zbl 1448.60140) Full Text: DOI
Naik, Muna; Sarkar, Rudra P. Characterization of eigenfunctions of the Laplace-Beltrami operator through heat propagation in small time. (English) Zbl 1451.58012 Monatsh. Math. 192, No. 4, 883-903 (2020). Reviewer: Jorge Vargas (Córdoba) MSC: 58J50 53C35 58J35 43A85 22E30 PDF BibTeX XML Cite \textit{M. Naik} and \textit{R. P. Sarkar}, Monatsh. Math. 192, No. 4, 883--903 (2020; Zbl 1451.58012) Full Text: DOI
He, Yanli; Qu, Siyao; Li, Kun Bistable wave fronts in a stage-structured reaction-diffusion model for a single species with distributed maturation delay. (English) Zbl 1444.35095 Bull. Iran. Math. Soc. 46, No. 3, 831-850 (2020). MSC: 35K40 34K10 35A18 35C07 35K57 35R20 35Q92 92D25 PDF BibTeX XML Cite \textit{Y. He} et al., Bull. Iran. Math. Soc. 46, No. 3, 831--850 (2020; Zbl 1444.35095) Full Text: DOI
Verezhak, Hanna; Gorodetskyi, Vasyl A nonlocal in time problem for evolutionary singular equations in generalized spaces of type \(\mathring{S}\). (English) Zbl 1451.35269 J. Funct. Spaces 2020, Article ID 6873414, 15 p. (2020). MSC: 35S10 35K67 46F10 46F05 PDF BibTeX XML Cite \textit{H. Verezhak} and \textit{V. Gorodetskyi}, J. Funct. Spaces 2020, Article ID 6873414, 15 p. (2020; Zbl 1451.35269) Full Text: DOI
Kal’menov, T. Sh.; Otelbaev, M.; Arepova, G. D. Bitsadze-Samarskii boundary conditions for an elliptic-parabolic volume potential with smooth matching. (English. Russian original) Zbl 1443.35029 Differ. Equ. 56, No. 6, 740-755 (2020); translation from Differ. Uravn. 56, No. 6, 752-767 (2020). MSC: 35J05 35J25 PDF BibTeX XML Cite \textit{T. Sh. Kal'menov} et al., Differ. Equ. 56, No. 6, 740--755 (2020; Zbl 1443.35029); translation from Differ. Uravn. 56, No. 6, 752--767 (2020) Full Text: DOI
Petrov, P. S.; Antoine, X. Pseudodifferential adiabatic mode parabolic equations in curvilinear coordinates and their numerical solution. (English) Zbl 1436.65221 J. Comput. Phys. 410, Article ID 109392, 9 p. (2020). MSC: 65Z05 86A05 35J05 PDF BibTeX XML Cite \textit{P. S. Petrov} and \textit{X. Antoine}, J. Comput. Phys. 410, Article ID 109392, 9 p. (2020; Zbl 1436.65221) Full Text: DOI
Ciotir, Ioana Stochastic porous media equations with divergence Itô noise. (English) Zbl 1439.35236 Evol. Equ. Control Theory 9, No. 2, 375-398 (2020). MSC: 35K55 35R60 60H15 76S05 PDF BibTeX XML Cite \textit{I. Ciotir}, Evol. Equ. Control Theory 9, No. 2, 375--398 (2020; Zbl 1439.35236) Full Text: DOI
Georgiev, Svetlin G.; Zennir, Khaled Multiple fixed-point theorems and applications in the theory of ODEs, FDEs and PDEs. (English) Zbl 1445.47002 Monographs and Research Notes in Mathematics. Boca Raton, FL: CRC Press (ISBN 978-0-367-46432-5/hbk; 978-1-003-02872-7/ebook). viii, 296 p. (2020). MSC: 47-02 47H10 47H08 47N20 34Bxx 34A37 34A08 35Kxx 35Jxx 35Lxx PDF BibTeX XML Cite \textit{S. G. Georgiev} and \textit{K. Zennir}, Multiple fixed-point theorems and applications in the theory of ODEs, FDEs and PDEs. Boca Raton, FL: CRC Press (2020; Zbl 1445.47002) Full Text: DOI
Amar, Micol; Andreucci, D.; Gianni, R.; Timofte, C. Concentration and homogenization in electrical conduction in heterogeneous media involving the Laplace-Beltrami operator. (English) Zbl 1442.35019 Calc. Var. Partial Differ. Equ. 59, No. 3, Paper No. 99, 31 p. (2020). Reviewer: Adrian Muntean (Karlstad) MSC: 35B27 35K70 74Q10 PDF BibTeX XML Cite \textit{M. Amar} et al., Calc. Var. Partial Differ. Equ. 59, No. 3, Paper No. 99, 31 p. (2020; Zbl 1442.35019) Full Text: DOI
Courte, Luca; Bhattacharya, Kaushik; Dondl, Patrick Bounds on precipitate hardening of line and surface defects in solids. (English) Zbl 1440.35323 Z. Angew. Math. Phys. 71, No. 3, Paper No. 99, 14 p. (2020). MSC: 35Q74 35D40 26A33 35R11 35K93 74C99 74E15 PDF BibTeX XML Cite \textit{L. Courte} et al., Z. Angew. Math. Phys. 71, No. 3, Paper No. 99, 14 p. (2020; Zbl 1440.35323) Full Text: DOI
Balaadich, Farah; Azroul, Elhoussine Existence and uniqueness results for quasilinear parabolic systems in Orlicz spaces. (English) Zbl 1444.35106 J. Dyn. Control Syst. 26, No. 3, 407-421 (2020). MSC: 35K59 35Q30 46E30 35K51 49J45 PDF BibTeX XML Cite \textit{F. Balaadich} and \textit{E. Azroul}, J. Dyn. Control Syst. 26, No. 3, 407--421 (2020; Zbl 1444.35106) Full Text: DOI
Yariv, Ehud Transient diffusion from high-capacity solute beacons. (English) Zbl 07208157 Appl. Math. Lett. 103, Article ID 106182, 6 p. (2020). Reviewer: Ilya A. Chernov (Petrozavodsk) MSC: 76R50 35C20 35J05 35K05 35K15 PDF BibTeX XML Cite \textit{E. Yariv}, Appl. Math. Lett. 103, Article ID 106182, 6 p. (2020; Zbl 07208157) Full Text: DOI
Folino, Raffaele; Garrione, Maurizio; Strani, Marta Stability properties and dynamics of solutions to viscous conservation laws with mean curvature operator. (English) Zbl 1448.35310 J. Evol. Equ. 20, No. 2, 517-551 (2020). MSC: 35K59 35B25 35B35 35B36 35K20 35K93 35B40 35P15 PDF BibTeX XML Cite \textit{R. Folino} et al., J. Evol. Equ. 20, No. 2, 517--551 (2020; Zbl 1448.35310) Full Text: DOI
Lindemulder, Nick; Veraar, Mark The heat equation with rough boundary conditions and holomorphic functional calculus. (English) Zbl 1448.35283 J. Differ. Equations 269, No. 7, 5832-5899 (2020). MSC: 35K20 47A60 46B70 46E35 46E40 PDF BibTeX XML Cite \textit{N. Lindemulder} and \textit{M. Veraar}, J. Differ. Equations 269, No. 7, 5832--5899 (2020; Zbl 1448.35283) Full Text: DOI
Baravdish, George; Cheng, Yuanji; Svensson, Olof; Åström, Freddie Generalizations of \(p\)-Laplace operator for image enhancement. II. (English) Zbl 1448.35295 Commun. Pure Appl. Anal. 19, No. 7, 3477-3500 (2020). MSC: 35K55 35D40 35J92 35Q94 35R30 94A08 PDF BibTeX XML Cite \textit{G. Baravdish} et al., Commun. Pure Appl. Anal. 19, No. 7, 3477--3500 (2020; Zbl 1448.35295) Full Text: DOI
Shakhmurov, Veli B. Nonlocal elliptic problems and applications. (English) Zbl 07206639 Mosc. Math. J. 20, No. 1, 185-210 (2020). MSC: 35Kxx 46Bxx 47Hxx 43Axx PDF BibTeX XML Cite \textit{V. B. Shakhmurov}, Mosc. Math. J. 20, No. 1, 185--210 (2020; Zbl 07206639) Full Text: Link
Li, Hengyan; Yan, Weiping Explicit self-similar solutions for a class of zero mean curvature equation and minimal surface equation. (English) Zbl 1439.35116 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111814, 10 p. (2020). MSC: 35C06 35K93 35B44 35C05 35J60 74H35 83C15 PDF BibTeX XML Cite \textit{H. Li} and \textit{W. Yan}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111814, 10 p. (2020; Zbl 1439.35116) Full Text: DOI
Kunze, Markus; Maichine, Abdallah; Rhandi, Abdelaziz Vector-valued Schrödinger operators in \(L^p\)-spaces. (English) Zbl 1448.35287 Discrete Contin. Dyn. Syst., Ser. S 13, No. 5, 1529-1541 (2020). MSC: 35K40 47D08 47D06 PDF BibTeX XML Cite \textit{M. Kunze} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 5, 1529--1541 (2020; Zbl 1448.35287) Full Text: DOI
Zhang, Yongjia On the equivalence between noncollapsing and bounded entropy for ancient solutions to the Ricci flow. (English) Zbl 1439.53083 J. Reine Angew. Math. 762, 35-51 (2020). MSC: 53E20 35K55 PDF BibTeX XML Cite \textit{Y. Zhang}, J. Reine Angew. Math. 762, 35--51 (2020; Zbl 1439.53083) Full Text: DOI
Liu, Qing The vanishing exponent limit for motion by a power of mean curvature. (English) Zbl 1442.35200 Interfaces Free Bound. 22, No. 1, 51-84 (2020). MSC: 35K55 35B40 35D40 35K10 35K93 53E10 PDF BibTeX XML Cite \textit{Q. Liu}, Interfaces Free Bound. 22, No. 1, 51--84 (2020; Zbl 1442.35200) Full Text: DOI
Beltritti, Gaston; Rossi, Julio D. Nonlocal averages in space and time given by medians and the mean curvature flow. (English) Zbl 1448.45003 Z. Anal. Anwend. 39, No. 2, 223-243 (2020). Reviewer: Vincenzo Vespri (Firenze) MSC: 45G10 45J05 35K93 PDF BibTeX XML Cite \textit{G. Beltritti} and \textit{J. D. Rossi}, Z. Anal. Anwend. 39, No. 2, 223--243 (2020; Zbl 1448.45003) Full Text: DOI
Nelson, Peter; Dos Santos, Renato Soares Brownian motion in attenuated or renormalized inverse-square Poisson potential. (English. French summary) Zbl 1434.60228 Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 1, 1-35 (2020). MSC: 60J65 60G55 60K37 35J10 35P15 PDF BibTeX XML Cite \textit{P. Nelson} and \textit{R. S. Dos Santos}, Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 1, 1--35 (2020; Zbl 1434.60228) Full Text: DOI Euclid
Migórski, Stanisław Optimal control of history-dependent evolution inclusions with applications to frictional contact. (English) Zbl 1439.49019 J. Optim. Theory Appl. 185, No. 2, 574-596 (2020). MSC: 49J40 49J27 35K86 35L86 74M10 PDF BibTeX XML Cite \textit{S. Migórski}, J. Optim. Theory Appl. 185, No. 2, 574--596 (2020; Zbl 1439.49019) Full Text: DOI
Kurima, Shunsuke Time discretization of an initial value problem for a simultaneous abstract evolution equation applying to parabolic-hyperbolic phase-field systems. (English) Zbl 1437.65120 ESAIM, Math. Model. Numer. Anal. 54, No. 3, 977-1002 (2020). MSC: 65M12 65M15 35A35 47N20 35G30 35L70 35A01 PDF BibTeX XML Cite \textit{S. Kurima}, ESAIM, Math. Model. Numer. Anal. 54, No. 3, 977--1002 (2020; Zbl 1437.65120) Full Text: DOI
Ganguly, Debdip; Pinchover, Yehuda On the equivalence of heat kernels of second-order parabolic operators. (English) Zbl 1447.58024 J. Anal. Math. 140, No. 2, 549-589 (2020). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 58J35 35K08 PDF BibTeX XML Cite \textit{D. Ganguly} and \textit{Y. Pinchover}, J. Anal. Math. 140, No. 2, 549--589 (2020; Zbl 1447.58024) Full Text: DOI
Exner, Pavel; Lotoreichik, Vladimir Spectral asymptotics of the Dirichlet Laplacian on a generalized parabolic layer. (English) Zbl 1439.35355 Integral Equations Oper. Theory 92, No. 2, Paper No. 15, 26 p. (2020). Reviewer: Denis Borisov (Ufa) MSC: 35P20 35J05 PDF BibTeX XML Cite \textit{P. Exner} and \textit{V. Lotoreichik}, Integral Equations Oper. Theory 92, No. 2, Paper No. 15, 26 p. (2020; Zbl 1439.35355) Full Text: DOI
Ouaili, Lydia Minimal time of null controllability of two parabolic equations. (English) Zbl 1442.93010 Math. Control Relat. Fields 10, No. 1, 89-112 (2020). MSC: 93B05 34L10 35K20 93C20 PDF BibTeX XML Cite \textit{L. Ouaili}, Math. Control Relat. Fields 10, No. 1, 89--112 (2020; Zbl 1442.93010) Full Text: DOI
Eikmeier, André; Emmrich, Etienne; Kreusler, Hans-Christian Nonlinear evolution equations with exponentially decaying memory: existence via time discretisation, uniqueness, and stability. (English) Zbl 07194988 Comput. Methods Appl. Math. 20, No. 1, 89-108 (2020). MSC: 47J35 45K05 34K30 35K90 35R09 65J08 65M12 PDF BibTeX XML Cite \textit{A. Eikmeier} et al., Comput. Methods Appl. Math. 20, No. 1, 89--108 (2020; Zbl 07194988) Full Text: DOI
Beale, J. Thomas Solving partial differential equations on closed surfaces with planar Cartesian grids. (English) Zbl 1448.65091 SIAM J. Sci. Comput. 42, No. 2, A1052-A1070 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65M50 65R20 58J35 58J45 86A05 35Q86 PDF BibTeX XML Cite \textit{J. T. Beale}, SIAM J. Sci. Comput. 42, No. 2, A1052--A1070 (2020; Zbl 1448.65091) Full Text: DOI
Antoniouk, Alexandra V.; Khrennikov, Andrei Yu.; Kochubei, Anatoly N. Multidimensional nonlinear pseudo-differential evolution equation with \(p\)-adic spatial variables. (English) Zbl 07193644 J. Pseudo-Differ. Oper. Appl. 11, No. 1, 311-343 (2020). Reviewer: Manuel Cruz-López (Guanajuato) MSC: 35S10 47J35 11S80 60J25 76S05 35K65 35R11 PDF BibTeX XML Cite \textit{A. V. Antoniouk} et al., J. Pseudo-Differ. Oper. Appl. 11, No. 1, 311--343 (2020; Zbl 07193644) Full Text: DOI
Garcke, H.; Gößwein, M. On the surface diffusion flow with triple junctions in higher space dimensions. (English) Zbl 1439.53079 Geom. Flows 5, 1-39 (2020). Reviewer: Rodica Luca (Iaşi) MSC: 53E10 35K52 35K93 35R35 35K55 PDF BibTeX XML Cite \textit{H. Garcke} and \textit{M. Gößwein}, Geom. Flows 5, 1--39 (2020; Zbl 1439.53079) Full Text: DOI
Folino, Raffaele; Strani, Marta On the speed rate of convergence of solutions to conservation laws with nonlinear diffusions. (English) Zbl 1445.35221 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111762, 34 p. (2020). MSC: 35K59 35B25 35B35 35B36 35B40 35L65 35P15 35K20 PDF BibTeX XML Cite \textit{R. Folino} and \textit{M. Strani}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111762, 34 p. (2020; Zbl 1445.35221) Full Text: DOI