Kumar, Devendra; Deswal, Komal; Singh, Satpal A highly accurate algorithm for retrieving the predicted behavior of problems with piecewise-smooth initial data. (English) Zbl 1484.65260 Appl. Numer. Math. 173, 279-294 (2022). MSC: 65M70 65M06 65N35 65D07 65M12 65M15 35K10 PDF BibTeX XML Cite \textit{D. Kumar} et al., Appl. Numer. Math. 173, 279--294 (2022; Zbl 1484.65260) Full Text: DOI OpenURL
Tahir, Shko Ali; Sari, Murat Simulations of nonlinear parabolic PDEs with forcing function without linearization. (English) Zbl 07438436 Math. Slovaca 71, No. 4, 1005-1018 (2021). MSC: 65Mxx 65D07 35K55 34K28 PDF BibTeX XML Cite \textit{S. A. Tahir} and \textit{M. Sari}, Math. Slovaca 71, No. 4, 1005--1018 (2021; Zbl 07438436) Full Text: DOI OpenURL
Sari, Murat; Tahir, Shko Ali Synchronization of the nonlinear advection-diffusion-reaction processes. (English) Zbl 1478.35127 Math. Methods Appl. Sci. 44, No. 15, 11970-11984 (2021). MSC: 35K51 35K57 35K58 35A35 65D07 PDF BibTeX XML Cite \textit{M. Sari} and \textit{S. A. Tahir}, Math. Methods Appl. Sci. 44, No. 15, 11970--11984 (2021; Zbl 1478.35127) Full Text: DOI OpenURL
Daba, Imiru Takele; Duressa, Gemechis File Hybrid algorithm for singularly perturbed delay parabolic partial differential equations. (English) Zbl 1486.65099 Appl. Appl. Math. 16, No. 1, 397-416 (2021). MSC: 65M06 65N06 65D07 35B25 35K67 35R07 PDF BibTeX XML Cite \textit{I. T. Daba} and \textit{G. F. Duressa}, Appl. Appl. Math. 16, No. 1, 397--416 (2021; Zbl 1486.65099) Full Text: Link OpenURL
Shivhare, Meenakshi; Podila, Pramod Chakravarthy; Kumar, Devendra A uniformly convergent quadratic B-spline collocation method for singularly perturbed parabolic partial differential equations with two small parameters. (English) Zbl 1471.65164 J. Math. Chem. 59, No. 1, 186-215 (2021). MSC: 65M70 65M06 65N35 65D07 65M12 65M15 35B25 35K20 PDF BibTeX XML Cite \textit{M. Shivhare} et al., J. Math. Chem. 59, No. 1, 186--215 (2021; Zbl 1471.65164) Full Text: DOI OpenURL
Bhal, Santosh Kumar; Danumjaya, P.; Fairweather, G. The Crank-Nicolson orthogonal spline collocation method for one-dimensional parabolic problems with interfaces. (English) Zbl 1456.65059 J. Comput. Appl. Math. 383, Article ID 113119, 10 p. (2021). MSC: 65M06 65N35 65M12 65D07 65D32 35K20 PDF BibTeX XML Cite \textit{S. K. Bhal} et al., J. Comput. Appl. Math. 383, Article ID 113119, 10 p. (2021; Zbl 1456.65059) Full Text: DOI OpenURL
Qin, Dandan; Tang, Xinxin; Huang, Wenzhu B-spline finite element method for fourth order parabolic equations with variable coefficient. (Chinese. English summary) Zbl 1474.65362 J. Jilin Univ., Sci. 58, No. 5, 1100-1106 (2020). MSC: 65M60 65D07 65M06 65N30 35K41 PDF BibTeX XML Cite \textit{D. Qin} et al., J. Jilin Univ., Sci. 58, No. 5, 1100--1106 (2020; Zbl 1474.65362) Full Text: DOI OpenURL
Rathish Kumar, B. V.; Priyadarshi, Gopal Haar wavelet method for two-dimensional parabolic inverse problem with a control parameter. (English) Zbl 1466.65107 Rend. Circ. Mat. Palermo (2) 69, No. 3, 961-976 (2020). MSC: 65M32 65T60 65M70 65M22 65D07 35K20 PDF BibTeX XML Cite \textit{B. V. Rathish Kumar} and \textit{G. Priyadarshi}, Rend. Circ. Mat. Palermo (2) 69, No. 3, 961--976 (2020; Zbl 1466.65107) Full Text: DOI OpenURL
Dube, Mbakisi; Patidar, Kailash C. A robust nonstandard finite difference scheme for pricing real estate index options. (English) Zbl 1460.35350 J. Difference Equ. Appl. 26, No. 11-12, 1471-1493 (2020). MSC: 35Q91 91G20 91G60 35K20 65M06 65M12 65D07 PDF BibTeX XML Cite \textit{M. Dube} and \textit{K. C. Patidar}, J. Difference Equ. Appl. 26, No. 11--12, 1471--1493 (2020; Zbl 1460.35350) Full Text: DOI OpenURL
Shevaldin, V. T. Local approximation by parabolic splines in the mean for large averaging intervals. (English. Russian original) Zbl 1455.41002 Math. Notes 108, No. 5, 733-742 (2020); translation from Mat. Zametki 108, No. 5, 771-781 (2020). Reviewer: Martin D. Buhmann (Gießen) MSC: 41A15 PDF BibTeX XML Cite \textit{V. T. Shevaldin}, Math. Notes 108, No. 5, 733--742 (2020; Zbl 1455.41002); translation from Mat. Zametki 108, No. 5, 771--781 (2020) Full Text: DOI OpenURL
Yousaf, Aatika; Abdeljawad, Thabet; Yaseen, Muhammad; Abbas, Muhammad Novel cubic trigonometric B-spline approach based on the Hermite formula for solving the convection-diffusion equation. (English) Zbl 1459.65203 Math. Probl. Eng. 2020, Article ID 8908964, 17 p. (2020). MSC: 65M70 65D07 65M12 65M06 35K15 PDF BibTeX XML Cite \textit{A. Yousaf} et al., Math. Probl. Eng. 2020, Article ID 8908964, 17 p. (2020; Zbl 1459.65203) Full Text: DOI OpenURL
Zhang, Haixiang; Yang, Xuehua; Xu, Da An efficient spline collocation method for a nonlinear fourth-order reaction subdiffusion equation. (English) Zbl 1450.65092 J. Sci. Comput. 85, No. 1, Paper No. 7, 17 p. (2020). MSC: 65M06 65N35 65D07 65N12 35K61 35R11 26A33 PDF BibTeX XML Cite \textit{H. Zhang} et al., J. Sci. Comput. 85, No. 1, Paper No. 7, 17 p. (2020; Zbl 1450.65092) Full Text: DOI OpenURL
Kumar, P. Murali Mohan; Ravi Kanth, A. S. V. Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline. (English) Zbl 1463.65227 Comput. Appl. Math. 39, No. 3, Paper No. 233, 19 p. (2020). MSC: 65M06 65M12 35K20 35B25 65D07 35B45 35B50 35R07 PDF BibTeX XML Cite \textit{P. M. M. Kumar} and \textit{A. S. V. Ravi Kanth}, Comput. Appl. Math. 39, No. 3, Paper No. 233, 19 p. (2020; Zbl 1463.65227) Full Text: DOI OpenURL
Ilati, Mohammad DMLPG method for specifying a control function in two-dimensional parabolic inverse PDEs. (English) Zbl 1447.65063 Comput. Math. Appl. 80, No. 5, 604-616 (2020). MSC: 65M32 65D15 65D07 35K20 PDF BibTeX XML Cite \textit{M. Ilati}, Comput. Math. Appl. 80, No. 5, 604--616 (2020; Zbl 1447.65063) Full Text: DOI OpenURL
Zeng, Jiaoyan; Chen, Yanping; Liu, Guichang Rough polyharmonic splines method for optimal control problem governed by parabolic systems with rough coefficient. (English) Zbl 1445.49013 Comput. Math. Appl. 80, No. 1, 121-139 (2020). MSC: 49K20 49M99 65D07 PDF BibTeX XML Cite \textit{J. Zeng} et al., Comput. Math. Appl. 80, No. 1, 121--139 (2020; Zbl 1445.49013) Full Text: DOI OpenURL
Kravetc, Tatiana; Dalmo, Rune Finite element application of ERBS extraction. (English) Zbl 1465.65096 J. Comput. Appl. Math. 379, Article ID 112947, 12 p. (2020). MSC: 65M60 65D07 65D12 41A15 35K20 80A19 35Q79 PDF BibTeX XML Cite \textit{T. Kravetc} and \textit{R. Dalmo}, J. Comput. Appl. Math. 379, Article ID 112947, 12 p. (2020; Zbl 1465.65096) Full Text: DOI OpenURL
Montardini, Monica; Negri, Matteo; Sangalli, Giancarlo; Tani, Mattia Space-time least-squares isogeometric method and efficient solver for parabolic problems. (English) Zbl 07169742 Math. Comput. 89, No. 323, 1193-1227 (2020). MSC: 65F08 65M60 65D07 35K05 PDF BibTeX XML Cite \textit{M. Montardini} et al., Math. Comput. 89, No. 323, 1193--1227 (2020; Zbl 07169742) Full Text: DOI arXiv OpenURL
Pew, Jack; Li, Zhi; Tannahill, Connor; Muir, Paul; Fairweather, Graeme Performance analysis of error-control B-spline Gaussian collocation software for PDEs. (English) Zbl 1442.65296 Comput. Math. Appl. 77, No. 7, 1888-1901 (2019). MSC: 65M70 65M15 65M50 35K20 35K55 PDF BibTeX XML Cite \textit{J. Pew} et al., Comput. Math. Appl. 77, No. 7, 1888--1901 (2019; Zbl 1442.65296) Full Text: DOI Link OpenURL
Langer, Ulrich; Matculevich, Svetlana; Repin, Sergey Adaptive space-time isogeometric analysis for parabolic evolution problems. (English) Zbl 1453.65330 Langer, Ulrich (ed.) et al., Space-time methods. Applications to partial differential equations. Berlin: De Gruyter. Radon Ser. Comput. Appl. Math. 25, 141-183 (2019). MSC: 65M60 35K20 65M15 65M55 65M12 35B45 65D07 35A15 65M50 PDF BibTeX XML Cite \textit{U. Langer} et al., Radon Ser. Comput. Appl. Math. 25, 141--183 (2019; Zbl 1453.65330) Full Text: DOI arXiv OpenURL
Valizadeh, Navid; Rabczuk, Timon Isogeometric analysis for phase-field models of geometric PDEs and high-order PDEs on stationary and evolving surfaces. (English) Zbl 1441.65023 Comput. Methods Appl. Mech. Eng. 351, 599-642 (2019). MSC: 65D17 65M60 35K55 65D07 PDF BibTeX XML Cite \textit{N. Valizadeh} and \textit{T. Rabczuk}, Comput. Methods Appl. Mech. Eng. 351, 599--642 (2019; Zbl 1441.65023) Full Text: DOI OpenURL
Green, Kevin R.; Spiteri, Raymond J. Extended BACOLI: solving one-dimensional multiscale parabolic PDE systems with error control. (English) Zbl 1471.65139 ACM Trans. Math. Softw. 45, No. 1, Article No. 8, 19 p. (2019). MSC: 65M60 65M50 65M15 65D07 65Y15 PDF BibTeX XML Cite \textit{K. R. Green} and \textit{R. J. Spiteri}, ACM Trans. Math. Softw. 45, No. 1, Article No. 8, 19 p. (2019; Zbl 1471.65139) Full Text: DOI OpenURL
Mantzaflaris, Angelos; Scholz, Felix; Toulopoulos, Ioannis Low-rank space-time decoupled isogeometric analysis for parabolic problems with varying coefficients. (English) Zbl 1464.65123 Comput. Methods Appl. Math. 19, No. 1, 123-136 (2019). MSC: 65M60 65D07 65M12 65M15 PDF BibTeX XML Cite \textit{A. Mantzaflaris} et al., Comput. Methods Appl. Math. 19, No. 1, 123--136 (2019; Zbl 1464.65123) Full Text: DOI Link OpenURL
Jiwari, Ram; Pandit, Sapna; Koksal, Mehmet Emir A class of numerical algorithms based on cubic trigonometric B-spline functions for numerical simulation of nonlinear parabolic problems. (English) Zbl 1438.65251 Comput. Appl. Math. 38, No. 3, Paper No. 140, 22 p. (2019). MSC: 65M70 35K55 65D07 65L06 PDF BibTeX XML Cite \textit{R. Jiwari} et al., Comput. Appl. Math. 38, No. 3, Paper No. 140, 22 p. (2019; Zbl 1438.65251) Full Text: DOI OpenURL
Qin, Dandan; Du, Yanwei; Liu, Bo; Huang, Wenzhu A B-spline finite element method for nonlinear differential equations describing crystal surface growth with variable coefficient. (English) Zbl 1459.65024 Adv. Difference Equ. 2019, Paper No. 175, 16 p. (2019). MSC: 65D07 65M60 41A15 65N30 65M12 PDF BibTeX XML Cite \textit{D. Qin} et al., Adv. Difference Equ. 2019, Paper No. 175, 16 p. (2019; Zbl 1459.65024) Full Text: DOI OpenURL
Tol, H. J.; de Visser, C. C.; Kotsonis, M. Model reduction of parabolic PDEs using multivariate splines. (English) Zbl 1415.93072 Int. J. Control 92, No. 1, 175-190 (2019). MSC: 93B11 35K99 93C20 93D15 93C05 93B52 PDF BibTeX XML Cite \textit{H. J. Tol} et al., Int. J. Control 92, No. 1, 175--190 (2019; Zbl 1415.93072) Full Text: DOI OpenURL
Langer, Ulrich; Matculevich, Svetlana; Repin, Sergey Functional type error control for stabilised space-time IgA approximations to parabolic problems. (English) Zbl 1465.65097 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 11th international conference, LSSC 2017, Sozopol, Bulgaria, June 5–9, 2017. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 10665, 55-65 (2018). MSC: 65M60 65M50 65M15 65D07 35K20 PDF BibTeX XML Cite \textit{U. Langer} et al., Lect. Notes Comput. Sci. 10665, 55--65 (2018; Zbl 1465.65097) Full Text: DOI Link OpenURL
Langer, U.; Neumüller, M.; Toulopoulos, I. Multipatch space-time isogeometric analysis of parabolic diffusion problems. (English) Zbl 1465.65099 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 11th international conference, LSSC 2017, Sozopol, Bulgaria, June 5–9, 2017. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 10665, 21-32 (2018). MSC: 65M60 65M15 65M22 65D07 65Y05 35K20 PDF BibTeX XML Cite \textit{U. Langer} et al., Lect. Notes Comput. Sci. 10665, 21--32 (2018; Zbl 1465.65099) Full Text: DOI OpenURL
Arora, Shelly; Kaur, Inderpreet Applications of quintic Hermite collocation with time discretization to singularly perturbed problems. (English) Zbl 1427.65278 Appl. Math. Comput. 316, 409-421 (2018). MSC: 65M70 35K20 35K57 65D07 65M12 PDF BibTeX XML Cite \textit{S. Arora} and \textit{I. Kaur}, Appl. Math. Comput. 316, 409--421 (2018; Zbl 1427.65278) Full Text: DOI OpenURL
Tripathi, Lok Pati; Pani, Amiya K.; Fairweather, Graeme A qualocation method for parabolic partial integro-differential equations in one space variable. (English) Zbl 1407.65229 Dick, Josef (ed.) et al., Contemporary computational mathematics – a celebration of the 80th birthday of Ian Sloan. In 2 volumes. Cham: Springer. 1147-1174 (2018). MSC: 65M70 35R09 45K05 65M06 65D07 PDF BibTeX XML Cite \textit{L. P. Tripathi} et al., in: Contemporary computational mathematics -- a celebration of the 80th birthday of Ian Sloan. In 2 volumes. Cham: Springer. 1147--1174 (2018; Zbl 1407.65229) Full Text: DOI OpenURL
Bilenko, V. I.; Bozhonok, K. V.; Dzyadyk, S. Yu.; Stelya, O. B. Piecewise polynomial algorithms for the analysis of processes in inhomogeneous media. (English. Russian original) Zbl 06969974 Cybern. Syst. Anal. 54, No. 4, 636-642 (2018); translation from Kibern. Sist. Anal. 2018, No. 4, 135-141 (2018). MSC: 65-XX PDF BibTeX XML Cite \textit{V. I. Bilenko} et al., Cybern. Syst. Anal. 54, No. 4, 636--642 (2018; Zbl 06969974); translation from Kibern. Sist. Anal. 2018, No. 4, 135--141 (2018) Full Text: DOI OpenURL
Ghasemi, M. An efficient algorithm based on extrapolation for the solution of nonlinear parabolic equations. (English) Zbl 1401.65114 Int. J. Nonlinear Sci. Numer. Simul. 19, No. 1, 37-51 (2018). MSC: 65M70 35K55 41A15 65D07 65M12 65M15 PDF BibTeX XML Cite \textit{M. Ghasemi}, Int. J. Nonlinear Sci. Numer. Simul. 19, No. 1, 37--51 (2018; Zbl 1401.65114) Full Text: DOI OpenURL
Aminikhah, Hossein; Alavi, Javad An efficient B-spline difference method for solving system of nonlinear parabolic PDEs. (English) Zbl 1468.65091 S\(\vec{\text{e}}\)MA J. 75, No. 2, 335-348 (2018). MSC: 65M06 41A15 65D07 65M12 PDF BibTeX XML Cite \textit{H. Aminikhah} and \textit{J. Alavi}, S\(\vec{\text{e}}\)MA J. 75, No. 2, 335--348 (2018; Zbl 1468.65091) Full Text: DOI OpenURL
Kouibia, Abdelouahed; Pasadas, Miguel; Belhaj, Zakaria Numerical approximation using evolution PDE variational splines. (English) Zbl 1384.65071 Numer. Methods Partial Differ. Equations 34, No. 1, 5-18 (2018). Reviewer: Marius Ghergu (Dublin) MSC: 65M60 35K20 65M12 65D07 PDF BibTeX XML Cite \textit{A. Kouibia} et al., Numer. Methods Partial Differ. Equations 34, No. 1, 5--18 (2018; Zbl 1384.65071) Full Text: DOI Link OpenURL
Gosse, Laurent \(\mathcal L\)-splines and viscosity limits for well-balanced schemes acting on linear parabolic equations. (English) Zbl 1380.65157 Acta Appl. Math. 153, No. 1, 101-124 (2018). MSC: 65M06 65D07 35K57 PDF BibTeX XML Cite \textit{L. Gosse}, Acta Appl. Math. 153, No. 1, 101--124 (2018; Zbl 1380.65157) Full Text: DOI OpenURL
Quarteroni, Alfio Numerical models for differential problems. 3rd edition. (English) Zbl 1436.65003 MS&A. Modeling, Simulation and Applications 16. Cham: Springer (ISBN 978-3-319-49315-2/hbk; 978-3-319-49316-9/ebook). xvii, 692 p. (2018). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65-01 65Mxx 65Nxx 76D05 76M10 76M12 76M22 65D07 65K10 PDF BibTeX XML Cite \textit{A. Quarteroni}, Numerical models for differential problems. 3rd edition. Cham: Springer (2018; Zbl 1436.65003) Full Text: DOI OpenURL
Strelkova, Elena V. Approximation by local parabolic splines constructed on the basis of interpolation in the mean. (English) Zbl 1450.65014 Ural Math. J. 3, No. 1, 81-94 (2017). MSC: 65D15 65D07 PDF BibTeX XML Cite \textit{E. V. Strelkova}, Ural Math. J. 3, No. 1, 81--94 (2017; Zbl 1450.65014) Full Text: DOI MNR OpenURL
Blatov, I. A.; Zadorin, A. I.; Kitaeva, E. V. On the uniform convergence of parabolic spline interpolation on the class of functions with large gradients in the boundary layer. (Russian, English) Zbl 1399.65042 Sib. Zh. Vychisl. Mat. 20, No. 2, 131-144 (2017); translation in Numer. Analysis Appl. 10, No. 2, 108-119 (2017). MSC: 65D07 65D05 65L20 65L50 PDF BibTeX XML Cite \textit{I. A. Blatov} et al., Sib. Zh. Vychisl. Mat. 20, No. 2, 131--144 (2017; Zbl 1399.65042); translation in Numer. Analysis Appl. 10, No. 2, 108--119 (2017) Full Text: DOI OpenURL
Lai, Ming-Jun; Lanterman, James A polygonal spline method for general second-order elliptic equations and its applications. (English) Zbl 1385.65058 Fasshauer, Gregory E. (ed.) et al., Approximation theory XV: San Antonio 2016. Selected papers based on the presentations at the international conference, San Antonio, TX, USA, May 22–25, 2016. Cham: Springer (ISBN 978-3-319-59911-3/hbk; 978-3-319-59912-0/ebook). Springer Proceedings in Mathematics & Statistics 201, 119-154 (2017). MSC: 65N30 35J25 65N12 35M10 PDF BibTeX XML Cite \textit{M.-J. Lai} and \textit{J. Lanterman}, Springer Proc. Math. Stat. 201, 119--154 (2017; Zbl 1385.65058) Full Text: DOI OpenURL
Rath, Alexander Global error estimation for stiff differential equations. (English) Zbl 1383.65087 München: Dr. Hut; Darmstadt: TU Darmstadt, Fachbereich Mathematik (Diss.) (ISBN 978-3-8439-3134-2/pbk). viii, 95 p. (2017). MSC: 65L70 65L04 65L05 65L20 34A34 65L06 65M20 PDF BibTeX XML Cite \textit{A. Rath}, Global error estimation for stiff differential equations. München: Dr. Hut; Darmstadt: TU Darmstadt, Fachbereich Mathematik (Diss.) (2017; Zbl 1383.65087) OpenURL
Andreev, Roman Preconditioning the augmented Lagrangian method for instationary mean field games with diffusion. (English) Zbl 1386.35156 SIAM J. Sci. Comput. 39, No. 6, A2763-A2783 (2017). MSC: 35K45 49J20 49M29 65F10 65M12 65M55 65M60 65N22 65Y05 91A10 91A07 PDF BibTeX XML Cite \textit{R. Andreev}, SIAM J. Sci. Comput. 39, No. 6, A2763--A2783 (2017; Zbl 1386.35156) Full Text: DOI OpenURL
Blatov, I. A.; Zadorin, A. I.; Kitaeva, E. V. Parabolic spline interpolation for functions with large gradient in the boundary layer. (English. Russian original) Zbl 1379.41007 Sib. Math. J. 58, No. 4, 578-590 (2017); translation from Sib. Mat. Zh. 58, No. 4, 745-760 (2017). Reviewer: V. Leontiev (Ul’yanovsk) MSC: 41A15 65D07 PDF BibTeX XML Cite \textit{I. A. Blatov} et al., Sib. Math. J. 58, No. 4, 578--590 (2017; Zbl 1379.41007); translation from Sib. Mat. Zh. 58, No. 4, 745--760 (2017) Full Text: DOI OpenURL
Mittal, R. C.; Tripathi, Amit Numerical solutions of two-dimensional unsteady convection-diffusion problems using modified bi-cubic B-spline finite elements. (English) Zbl 1365.65229 Int. J. Comput. Math. 94, No. 1, 1-21 (2017). MSC: 65M70 35K20 65Y20 65M12 65L06 65M60 PDF BibTeX XML Cite \textit{R. C. Mittal} and \textit{A. Tripathi}, Int. J. Comput. Math. 94, No. 1, 1--21 (2017; Zbl 1365.65229) Full Text: DOI OpenURL
Zhu, Shengfeng; Dedè, Luca; Quarteroni, Alfio Isogeometric analysis and proper orthogonal decomposition for parabolic problems. (English) Zbl 1380.65295 Numer. Math. 135, No. 2, 333-370 (2017). MSC: 65M60 35K20 65D07 65M12 65M15 PDF BibTeX XML Cite \textit{S. Zhu} et al., Numer. Math. 135, No. 2, 333--370 (2017; Zbl 1380.65295) Full Text: DOI OpenURL
Pourgholi, Reza; Saeedi, Akram Applications of cubic B-splines collocation method for solving nonlinear inverse parabolic partial differential equations. (English) Zbl 1358.65063 Numer. Methods Partial Differ. Equations 33, No. 1, 88-104 (2017). Reviewer: Francisco Pérez Acosta (La Laguna) MSC: 65M32 65M70 65M30 35K55 35R25 35R30 65M60 65D07 PDF BibTeX XML Cite \textit{R. Pourgholi} and \textit{A. Saeedi}, Numer. Methods Partial Differ. Equations 33, No. 1, 88--104 (2017; Zbl 1358.65063) Full Text: DOI OpenURL
Langer, Ulrich; Moore, Stephen E.; Neumüller, Martin Space-time isogeometric analysis of parabolic evolution problems. (English) Zbl 1436.76027 Comput. Methods Appl. Mech. Eng. 306, 342-363 (2016). MSC: 76M10 65M60 35K20 65D07 65M15 65M55 PDF BibTeX XML Cite \textit{U. Langer} et al., Comput. Methods Appl. Mech. Eng. 306, 342--363 (2016; Zbl 1436.76027) Full Text: DOI arXiv OpenURL
Qi, Yingnan A high order finite difference method for solving the one-dimensional parabolic equation. (Chinese. English summary) Zbl 1374.65142 J. Northwest Norm. Univ., Nat. Sci. 52, No. 6, 29-34 (2016). MSC: 65M06 35K20 65D07 65M12 PDF BibTeX XML Cite \textit{Y. Qi}, J. Northwest Norm. Univ., Nat. Sci. 52, No. 6, 29--34 (2016; Zbl 1374.65142) Full Text: DOI OpenURL
Khan, Arshad; Sultana, Talat Numerical solution of fourth order parabolic partial differential equation using parametric septic splines. (English) Zbl 1359.65153 Hacet. J. Math. Stat. 45, No. 4, 1067-1082 (2016). MSC: 65M06 35K35 65M12 65D07 74K10 74H45 74S20 PDF BibTeX XML Cite \textit{A. Khan} and \textit{T. Sultana}, Hacet. J. Math. Stat. 45, No. 4, 1067--1082 (2016; Zbl 1359.65153) Full Text: DOI OpenURL
Gabbasov, Nazim S. Order-optimal methods for integro-differential equations in the singular case. (English. Russian original) Zbl 1359.65306 Differ. Equ. 52, No. 9, 1209-1218 (2016); translation from Differ. Uravn. 52, No. 9, 1252-1261 (2016). Reviewer: Neville Ford (Chester) MSC: 65R20 45A05 45J05 65D07 PDF BibTeX XML Cite \textit{N. S. Gabbasov}, Differ. Equ. 52, No. 9, 1209--1218 (2016; Zbl 1359.65306); translation from Differ. Uravn. 52, No. 9, 1252--1261 (2016) Full Text: DOI OpenURL
Mirshekari, Elham; Spiteri, Raymond J. Extending BACOLI to solve the monodomain model. (English) Zbl 1355.65002 Bélair, Jacques (ed.) et al., Mathematical and computational approaches in advancing modern science and engineering. Based on the international conference on applied mathematics, modeling and computational science, AMMCS, jointly held with the annual meeting of the Canadian applied and industrial mathematics, CAIMS, June 7–15, 2015. Cham: Springer (ISBN 978-3-319-30377-2/hbk; 978-3-319-30379-6/ebook). 447-457 (2016). MSC: 65-04 35-04 65D07 65M70 35Kxx 92-08 PDF BibTeX XML Cite \textit{E. Mirshekari} and \textit{R. J. Spiteri}, in: Mathematical and computational approaches in advancing modern science and engineering. Based on the international conference on applied mathematics, modeling and computational science, AMMCS, jointly held with the annual meeting of the Canadian applied and industrial mathematics, CAIMS, June 7--15, 2015. Cham: Springer. 447--457 (2016; Zbl 1355.65002) Full Text: DOI OpenURL
Chen, Xuejuan; Chen, Jinghua Numerical simulation for the space fractional Fisher’s nonlinear equation. (Chinese. English summary) Zbl 1363.65149 J. Xiamen Univ., Nat. Sci. 55, No. 3, 360-365 (2016). MSC: 65M20 65D07 65M06 65M12 65M22 35R11 35K55 PDF BibTeX XML Cite \textit{X. Chen} and \textit{J. Chen}, J. Xiamen Univ., Nat. Sci. 55, No. 3, 360--365 (2016; Zbl 1363.65149) Full Text: DOI OpenURL
Saha Ray, Santanu Numerical analysis with algorithms and programming. (English) Zbl 1359.65002 Boca Raton, FL: CRC Press (ISBN 978-1-4987-4174-3/hbk; 978-1-4987-4182-8/ebook). xix, 685 p. (2016). Reviewer: Hang Lau (Montréal) MSC: 65-01 68N15 65Y15 65H05 65H10 65D05 65D07 65D25 65D32 65B15 65F05 65F10 65L06 65L10 65L12 65L60 65F15 65D10 65M06 35K20 35L20 65N06 35J05 65N30 PDF BibTeX XML Cite \textit{S. Saha Ray}, Numerical analysis with algorithms and programming. Boca Raton, FL: CRC Press (2016; Zbl 1359.65002) OpenURL
Dhawan, S.; Bhowmik, Samir Kumar; Kumar, Sheo Galerkin-least square B-spline approach toward advection-diffusion equation. (English) Zbl 1410.76165 Appl. Math. Comput. 261, 128-140 (2015). MSC: 76M10 65M60 35K20 PDF BibTeX XML Cite \textit{S. Dhawan} et al., Appl. Math. Comput. 261, 128--140 (2015; Zbl 1410.76165) Full Text: DOI OpenURL
Kumar, B. V. Rathish; Kumar, Sunil Convergence of three-step Taylor Galerkin finite element scheme based monotone Schwarz iterative method for singularly perturbed differential-difference equation. (English) Zbl 1326.65132 Numer. Funct. Anal. Optim. 36, No. 8, 1029-1045 (2015). MSC: 65M60 65M12 35K20 PDF BibTeX XML Cite \textit{B. V. R. Kumar} and \textit{S. Kumar}, Numer. Funct. Anal. Optim. 36, No. 8, 1029--1045 (2015; Zbl 1326.65132) Full Text: DOI OpenURL
Strelkova, E. V.; Shevaldin, V. T. On Lebesgue constants of local parabolic splines. (English. Russian original) Zbl 1332.65025 Proc. Steklov Inst. Math. 289, Suppl. 1, S192-S198 (2015); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 21, No. 1, 213-219 (2015). Reviewer: Nicoleta Breaz (Alba Iulia) MSC: 65D07 41A15 65D05 PDF BibTeX XML Cite \textit{E. V. Strelkova} and \textit{V. T. Shevaldin}, Proc. Steklov Inst. Math. 289, S192--S198 (2015; Zbl 1332.65025); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 21, No. 1, 213--219 (2015) Full Text: DOI OpenURL
Li, Xinxiu Operational method for solving fractional differential equations using cubic B-spline approximation. (English) Zbl 1333.65078 Int. J. Comput. Math. 91, No. 12, 2584-2602 (2014). MSC: 65L05 35R11 34A08 35K15 65D07 PDF BibTeX XML Cite \textit{X. Li}, Int. J. Comput. Math. 91, No. 12, 2584--2602 (2014; Zbl 1333.65078) Full Text: DOI OpenURL
Quarteroni, Alfio; Sacco, Riccardo; Saleri, Fausto; Gervasio, Paola Numerical mathematics. 4th ed. (Matematica numerica.) (Italian) Zbl 1293.65001 Unitext 77. La Matematica per il 3+2. Milan: Springer (ISBN 978-88-470-5643-5/pbk; 978-88-470-5644-2/ebook). xvii, 529 p. (2014). Reviewer: Raffaella Pavani (Milano) MSC: 65-01 65Dxx 65Fxx 65Hxx 65Lxx 65Mxx 65Nxx PDF BibTeX XML Cite \textit{A. Quarteroni} et al., Matematica numerica (Italian). 4th ed. Milan: Springer (2014; Zbl 1293.65001) Full Text: DOI OpenURL
Mohanty, Ranjan K.; Dahiya, Vijay; Khosla, Noopur Spline in compression methods for singularly perturbed 1D parabolic equations in singular coefficients. (English) Zbl 1369.65019 Open J. Discrete Math. 2, No. 2, 70-77 (2012). MSC: 65D07 35B25 35K20 PDF BibTeX XML Cite \textit{R. K. Mohanty} et al., Open J. Discrete Math. 2, No. 2, 70--77 (2012; Zbl 1369.65019) Full Text: DOI OpenURL
Avazzadeh, Z.; Beygi Rizi, Z.; Maalek Ghaini, F. M.; Loghmani, G. B. A numerical solution of nonlinear parabolic-type Volterra partial integro-differential equations using radial basis functions. (English) Zbl 1351.74153 Eng. Anal. Bound. Elem. 36, No. 5, 881-893 (2012). MSC: 74S20 65M06 45K05 65R10 PDF BibTeX XML Cite \textit{Z. Avazzadeh} et al., Eng. Anal. Bound. Elem. 36, No. 5, 881--893 (2012; Zbl 1351.74153) Full Text: DOI OpenURL
Mittal, R. C.; Jain, R. K. Cubic B-splines collocation method for solving nonlinear parabolic partial differential equations with Neumann boundary conditions. (English) Zbl 1266.65175 Commun. Nonlinear Sci. Numer. Simul. 17, No. 12, 4616-4625 (2012). MSC: 65M70 35K55 65M20 65M60 65L06 PDF BibTeX XML Cite \textit{R. C. Mittal} and \textit{R. K. Jain}, Commun. Nonlinear Sci. Numer. Simul. 17, No. 12, 4616--4625 (2012; Zbl 1266.65175) Full Text: DOI OpenURL
Mittal, R. C.; Jain, R. K. Application of quintic B-splines collocation method on some Rosenau type nonlinear higher order evolution equations. (English) Zbl 1261.65105 Int. J. Nonlinear Sci. 13, No. 2, 142-152 (2012). MSC: 65M70 35K61 65M15 65M60 PDF BibTeX XML Cite \textit{R. C. Mittal} and \textit{R. K. Jain}, Int. J. Nonlinear Sci. 13, No. 2, 142--152 (2012; Zbl 1261.65105) OpenURL
Dmitriev, V. I.; Ingtem, J. G. Numerical differentiation using spline functions. (English. Russian original) Zbl 1262.65037 Comput. Math. Model. 23, No. 3, 312-318 (2012); translation from Prikl. Mat. Inf. 38, 58-65 (2011). MSC: 65D25 65D07 PDF BibTeX XML Cite \textit{V. I. Dmitriev} and \textit{J. G. Ingtem}, Comput. Math. Model. 23, No. 3, 312--318 (2012; Zbl 1262.65037); translation from Prikl. Mat. Inf. 38, 58--65 (2011) Full Text: DOI OpenURL
Kunoth, Angela; Schneider, Christian; Wiechers, Katharina Multiscale methods for the valuation of American options with stochastic volatility. (English) Zbl 1255.91307 Int. J. Comput. Math. 89, No. 9, 1145-1163 (2012). MSC: 91B70 91G60 65M55 35J86 65N30 65D07 PDF BibTeX XML Cite \textit{A. Kunoth} et al., Int. J. Comput. Math. 89, No. 9, 1145--1163 (2012; Zbl 1255.91307) Full Text: DOI Link OpenURL
Sangwan, Vivek; Kumar, B. V. Rathish Finite element analysis for mass-lumped three-step Taylor Galerkin method for time dependent singularly perturbed problems with exponentially fitted splines. (English) Zbl 1366.74076 Numer. Funct. Anal. Optim. 33, No. 6, 638-660 (2012). MSC: 74S05 65M06 35K55 PDF BibTeX XML Cite \textit{V. Sangwan} and \textit{B. V. R. Kumar}, Numer. Funct. Anal. Optim. 33, No. 6, 638--660 (2012; Zbl 1366.74076) Full Text: DOI OpenURL
Mittal, R. C.; Jain, R. K. B-splines methods with redefined basis functions for solving fourth order parabolic partial differential equations. (English) Zbl 1220.65142 Appl. Math. Comput. 217, No. 23, 9741-9755 (2011). MSC: 65M70 35K35 65M12 65D07 PDF BibTeX XML Cite \textit{R. C. Mittal} and \textit{R. K. Jain}, Appl. Math. Comput. 217, No. 23, 9741--9755 (2011; Zbl 1220.65142) Full Text: DOI OpenURL
Dhawan, S.; Kapoor, Saurabh Numerical simulation of advection-diffusion equation. (English) Zbl 1207.65117 Int. J. Math. Model. Numer. Optim. 2, No. 1, 13-27 (2011). MSC: 65M60 35K20 PDF BibTeX XML Cite \textit{S. Dhawan} and \textit{S. Kapoor}, Int. J. Math. Model. Numer. Optim. 2, No. 1, 13--27 (2011; Zbl 1207.65117) Full Text: DOI OpenURL
Kadalbajoo, Mohan K.; Arora, Puneet Taylor-Galerkin B-spline finite element method for the one-dimensional advection-diffusion equation. (English) Zbl 1197.65135 Numer. Methods Partial Differ. Equations 26, No. 5, 1206-1223 (2010). MSC: 65M60 35K20 PDF BibTeX XML Cite \textit{M. K. Kadalbajoo} and \textit{P. Arora}, Numer. Methods Partial Differ. Equations 26, No. 5, 1206--1223 (2010; Zbl 1197.65135) Full Text: DOI OpenURL
Christara, Christina C.; Chen, Tong; Dang, Duy Minh Quadratic spline collocation for one-dimensional linear parabolic partial differential equations. (English) Zbl 1189.65235 Numer. Algorithms 53, No. 4, 511-553 (2010). Reviewer: Marius Ghergu (Dublin) MSC: 65M70 65M06 35K20 65M12 91G60 PDF BibTeX XML Cite \textit{C. C. Christara} et al., Numer. Algorithms 53, No. 4, 511--553 (2010; Zbl 1189.65235) Full Text: DOI OpenURL
Kadalbajoo, Mohan K.; Arora, Puneet Space-time Galerkin least-squares method for the one-dimensional advection-diffusion equation. (English) Zbl 1182.65154 Int. J. Comput. Math. 87, No. 1, 103-118 (2010). MSC: 65M60 65M12 35K20 PDF BibTeX XML Cite \textit{M. K. Kadalbajoo} and \textit{P. Arora}, Int. J. Comput. Math. 87, No. 1, 103--118 (2010; Zbl 1182.65154) Full Text: DOI OpenURL
Rashidinia, J.; Mohammadi, R. Numerical methods based on non-polynomial sextic spline for solution of variable coefficient fourth-order wave equations. (English) Zbl 1423.74509 Int. J. Comput. Methods Eng. Sci. Mech. 10, No. 4, 266-276 (2009). MSC: 74K10 74S30 65D07 35K25 35B35 PDF BibTeX XML Cite \textit{J. Rashidinia} and \textit{R. Mohammadi}, Int. J. Comput. Methods Eng. Sci. Mech. 10, No. 4, 266--276 (2009; Zbl 1423.74509) Full Text: DOI OpenURL
Subbotin, Yu. N. Form-preserving exponential approximation. (English. Russian original) Zbl 1184.65023 Russ. Math. 53, No. 11, 46-52 (2009); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2009, No. 11, 53-60 (2009). Reviewer: Antonio López-Carmona (Granada) MSC: 65D07 41A15 65D05 PDF BibTeX XML Cite \textit{Yu. N. Subbotin}, Russ. Math. 53, No. 11, 46--52 (2009; Zbl 1184.65023); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2009, No. 11, 53--60 (2009) Full Text: DOI OpenURL
Bialecki, B.; Ganesh, M.; Mustapha, K. An ADI Petrov-Galerkin method with quadrature for parabolic problems. (English) Zbl 1179.65124 Numer. Methods Partial Differ. Equations 25, No. 5, 1129-1148 (2009). Reviewer: Murli Gupta (Washington, D. C.) MSC: 65M60 35K20 65M12 65M15 65M22 65F10 PDF BibTeX XML Cite \textit{B. Bialecki} et al., Numer. Methods Partial Differ. Equations 25, No. 5, 1129--1148 (2009; Zbl 1179.65124) Full Text: DOI OpenURL
Pal, Srimanta Numerical methods. Principles, analysis and algorithms. (English) Zbl 1196.65001 Oxford: Oxford University Press (ISBN 978-0-19-569375-1/pbk). xii, 812 p. (2009). Reviewer: Georg Hebermehl (Berlin) MSC: 65-01 65Fxx 65Lxx 65Mxx 65Nxx 65Yxx 65D05 65D07 65D30 65G50 65H04 65H05 65H10 92B20 97M50 00A06 65C05 65R20 PDF BibTeX XML Cite \textit{S. Pal}, Numerical methods. Principles, analysis and algorithms. Oxford: Oxford University Press (2009; Zbl 1196.65001) OpenURL
Ueno, Toshihide; Okada, Masami Non-separable splines and numerical computation of evolution equations by the Galerkin methods. (English) Zbl 1159.65082 J. Comput. Appl. Math. 223, No. 1, 159-176 (2009). Reviewer: Rolf Dieter Grigorieff (Berlin) MSC: 65M20 65M70 37K10 35Q53 65M60 65L06 35K55 35L60 PDF BibTeX XML Cite \textit{T. Ueno} and \textit{M. Okada}, J. Comput. Appl. Math. 223, No. 1, 159--176 (2009; Zbl 1159.65082) Full Text: DOI OpenURL
Subbotin, Yu. N. Approximations by polynomial and trigonometric splines of third order preserving some properties of approximated functions. (English. Russian original) Zbl 1237.65014 Proc. Steklov Inst. Math. 259, Suppl. 2, S231-S242 (2007); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 13, No. 2 (2007). MSC: 65D15 65D07 PDF BibTeX XML Cite \textit{Yu. N. Subbotin}, Proc. Steklov Inst. Math. 259, S231--S242 (2007; Zbl 1237.65014); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 13, No. 2 (2007) Full Text: DOI OpenURL
Dehghan, Mehdi; Shokri, Ali A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions. (English) Zbl 1126.65092 Comput. Math. Appl. 54, No. 1, 136-146 (2007). MSC: 65M70 35K15 81Q05 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{A. Shokri}, Comput. Math. Appl. 54, No. 1, 136--146 (2007; Zbl 1126.65092) Full Text: DOI OpenURL
Akyildiz, F. Talay; Vajravelu, K. Orthogonal cubic spline collocation method for the nonlinear parabolic equation arising in non-Newtonian fluid flow. (English) Zbl 1388.76220 Appl. Math. Comput. 189, No. 1, 462-471 (2007). MSC: 76M22 76D07 76A05 PDF BibTeX XML Cite \textit{F. T. Akyildiz} and \textit{K. Vajravelu}, Appl. Math. Comput. 189, No. 1, 462--471 (2007; Zbl 1388.76220) Full Text: DOI OpenURL
Geyikli, Turabi Modelling solitary waves of a fifth-order nonlinear wave equation. (English) Zbl 1122.65087 Int. J. Comput. Math. 84, No. 7, 1079-1087 (2007). MSC: 65M60 35K55 35Q51 65M06 PDF BibTeX XML Cite \textit{T. Geyikli}, Int. J. Comput. Math. 84, No. 7, 1079--1087 (2007; Zbl 1122.65087) Full Text: DOI OpenURL
Buike, Margarita; Buikis, Andris System of various mathematical models for transport processes in layered strata with interlayers. (English) Zbl 1121.65105 WSEAS Trans. Math. 6, No. 4, 551-558 (2007). MSC: 65M70 35K15 65D07 PDF BibTeX XML Cite \textit{M. Buike} and \textit{A. Buikis}, WSEAS Trans. Math. 6, No. 4, 551--558 (2007; Zbl 1121.65105) OpenURL
Shevaldin, V. T. Approximation by local parabolic splines with arbitrary knots. (Russian. English summary) Zbl 1075.41008 Sib. Zh. Vychisl. Mat. 8, No. 1, 77-88 (2005). MSC: 41A15 65D07 PDF BibTeX XML Cite \textit{V. T. Shevaldin}, Sib. Zh. Vychisl. Mat. 8, No. 1, 77--88 (2005; Zbl 1075.41008) OpenURL
Bialecki, B.; Ganesh, M.; Mustapha, K. A Crank-Nicolson Petrov-Galerkin method with quadrature for semi-linear parabolic problems. (English) Zbl 1081.65092 Numer. Methods Partial Differ. Equations 21, No. 5, 918-937 (2005). Reviewer: Michael Jung (Dresden) MSC: 65M60 65M06 65M12 35K55 PDF BibTeX XML Cite \textit{B. Bialecki} et al., Numer. Methods Partial Differ. Equations 21, No. 5, 918--937 (2005; Zbl 1081.65092) Full Text: DOI OpenURL
Sallam, S.; Naim Anwar, M.; Abdel-Aziz, M. R. Unconditionally stable \(C^1\)-cubic spline collocation method for solving parabolic equations. (English) Zbl 1059.65082 Int. J. Comput. Math. 81, No. 7, 813-821 (2004). MSC: 65M12 65M20 65M70 35K05 PDF BibTeX XML Cite \textit{S. Sallam} et al., Int. J. Comput. Math. 81, No. 7, 813--821 (2004; Zbl 1059.65082) Full Text: DOI OpenURL
Wang, Rong; Keast, Patrick; Muir, Paul A comparison of adaptive software for 1D parabolic PDEs. (English) Zbl 1052.65085 J. Comput. Appl. Math. 169, No. 1, 127-150 (2004). MSC: 65M20 65M50 65M70 35K55 65L80 65M15 65Y15 PDF BibTeX XML Cite \textit{R. Wang} et al., J. Comput. Appl. Math. 169, No. 1, 127--150 (2004; Zbl 1052.65085) Full Text: DOI OpenURL
Wang, R.; Keast, P.; Muir, P. A high-order global spatially adaptive collocation method for 1-D parabolic PDEs. (English) Zbl 1049.65110 Appl. Numer. Math. 50, No. 2, 239-260 (2004). MSC: 65M70 35K55 65M15 65M50 PDF BibTeX XML Cite \textit{R. Wang} et al., Appl. Numer. Math. 50, No. 2, 239--260 (2004; Zbl 1049.65110) Full Text: DOI OpenURL
Pallav, R. R.; Pedas, A. A. The collocation method with parabolic splines for integral equations with singularities. (English. Russian original) Zbl 1070.65139 Differ. Equ. 39, No. 9, 1343-1352 (2003); translation from Differ. Uravn. 39, No. 9, 1272-1281 (2003). MSC: 65R20 45C05 45E10 PDF BibTeX XML Cite \textit{R. R. Pallav} and \textit{A. A. Pedas}, Differ. Equ. 39, No. 9, 1343--1352 (2003; Zbl 1070.65139); translation from Differ. Uravn. 39, No. 9, 1272--1281 (2003) Full Text: DOI OpenURL
Mai-Duy, N.; Tran-Cong, T. Indirect RBFN method with thin plate splines for numerical solution of differential equations. (English) Zbl 1148.76351 CMES, Comput. Model. Eng. Sci. 4, No. 1, 85-102 (2003). MSC: 76M25 65D07 PDF BibTeX XML Cite \textit{N. Mai-Duy} and \textit{T. Tran-Cong}, CMES, Comput. Model. Eng. Sci. 4, No. 1, 85--102 (2003; Zbl 1148.76351) OpenURL
Cattani, Carlo; Laserra, Ettore Spline-wavelets techniques for heat propagation. (English) Zbl 1049.65104 J. Inf. Optim. Sci. 24, No. 3, 485-496 (2003). Reviewer: Karel Najzar (Praha) MSC: 65M70 65T60 65M15 35K05 35K20 PDF BibTeX XML Cite \textit{C. Cattani} and \textit{E. Laserra}, J. Inf. Optim. Sci. 24, No. 3, 485--496 (2003; Zbl 1049.65104) Full Text: DOI OpenURL
Daǧ, Idris; Özer, M. Naci Approximation of the RLW equation by the least square cubic \(B\)-spline finite element method. (English) Zbl 0990.65110 Appl. Math. Modelling 25, No. 3, 221-231 (2001). Reviewer: K.B.Schneider (Marseille) MSC: 65M60 35K55 35Q53 PDF BibTeX XML Cite \textit{I. Daǧ} and \textit{M. N. Özer}, Appl. Math. Modelling 25, No. 3, 221--231 (2001; Zbl 0990.65110) Full Text: DOI OpenURL
Nazarenko, M. O. Isogeometric spline reconstruction of plane curves. (English. Ukrainian original) Zbl 0976.41011 Ukr. Math. J. 52, No. 1, 108-114 (2000); translation from Ukr. Mat. Zh. 52, No. 1, 100-105 (2000). MSC: 41A15 41A63 PDF BibTeX XML Cite \textit{M. O. Nazarenko}, Ukr. Mat. Zh. 52, No. 1, 100--105 (2000; Zbl 0976.41011); translation from Ukr. Mat. Zh. 52, No. 1, 100--105 (2000) Full Text: DOI OpenURL
Khalifa, Ahmed K.; Farea, Hussain A. Numerical treatment of the nerve conduction equation. (English) Zbl 0970.65107 Int. J. Comput. Math. 76, No. 2, 149-158 (2000). Reviewer: Laura-Iulia Aniţa (Iaşi) MSC: 65M70 35K55 92C20 PDF BibTeX XML Cite \textit{A. K. Khalifa} and \textit{H. A. Farea}, Int. J. Comput. Math. 76, No. 2, 149--158 (2000; Zbl 0970.65107) Full Text: DOI OpenURL
Zerroukat, M.; Djidjeli, K.; Charafi, A. Explicit and implicit meshless methods for linear advection-diffusion-type partial differential equations. (English) Zbl 0968.65053 Int. J. Numer. Methods Eng. 48, No. 1, 19-35 (2000). Reviewer: Gisbert Stoyan (Budapest) MSC: 65M06 65M12 35K15 65M70 PDF BibTeX XML Cite \textit{M. Zerroukat} et al., Int. J. Numer. Methods Eng. 48, No. 1, 19--35 (2000; Zbl 0968.65053) Full Text: DOI OpenURL
Quarteroni, Alfio; Sacco, Riccardo; Saleri, Fausto Numerical mathematics. (English) Zbl 0957.65001 Texts in Applied Mathematics. 37. New York, NY: Springer. xx, 654 p. (2000). Reviewer: Werner H.Schmidt (Greifswald) MSC: 65-01 00A06 65D32 65D05 65D07 65F05 65F10 65F15 65F50 65Gxx 65Hxx 65Kxx 65Lxx 65Mxx 74K10 78A55 82D37 92C35 92C55 PDF BibTeX XML Cite \textit{A. Quarteroni} et al., Numerical mathematics. New York, NY: Springer (2000; Zbl 0957.65001) OpenURL
Banks, H. T.; Zia, L. L. Pointwise convergence of approximation schemes for parameter estimation in parabolic equations. (English) Zbl 0940.65100 Appl. Math. Lett. 12, No. 7, 27-30 (1999). MSC: 65M32 65M60 35R30 65M12 35K15 PDF BibTeX XML Cite \textit{H. T. Banks} and \textit{L. L. Zia}, Appl. Math. Lett. 12, No. 7, 27--30 (1999; Zbl 0940.65100) Full Text: DOI OpenURL
Muleshkov, A. S.; Golberg, M. A.; Chen, C. S. Particular solutions of Helmholtz-type operators using higher order polyharmonic splines. (English) Zbl 0938.65139 Comput. Mech. 23, No. 5-6, 411-419 (1999). Reviewer: R.Gorenflo (Berlin) MSC: 65N35 35J05 35K05 65M20 35K15 PDF BibTeX XML Cite \textit{A. S. Muleshkov} et al., Comput. Mech. 23, No. 5--6, 411--419 (1999; Zbl 0938.65139) Full Text: DOI OpenURL
Zhu, S.-P.; Liu, H.-W.; Lu, X.-P. A combination of LTDRM and ATPS in solving diffusion problems. (English) Zbl 0980.65110 Noye, John (ed.) et al., Computational techniques and applications: CTAC97. Papers from the 8th Biennial conference, Adelaide, Australia, September 29-October 1, 1997. Singapore: World Scientific. 783-790 (1998). MSC: 65M70 35K15 PDF BibTeX XML Cite \textit{S. P. Zhu} et al., in: Computational techniques and applications: CTAC97. Papers from the 8th Biennial conference, Adelaide, Australia, September 29--October 1, 1997. Singapore: World Scientific. 783--790 (1998; Zbl 0980.65110) OpenURL
Zhu, Song-Ping; Liu, Huan-Wen On the application of multiquadric bases in conjunction with the LTDRM method to solve nonlinear diffusion equations. (English) Zbl 0943.65118 Appl. Math. Comput. 96, No. 2-3, 161-175 (1998). MSC: 65M70 35K55 65M12 44A10 35A22 PDF BibTeX XML Cite \textit{S.-P. Zhu} and \textit{H.-W. Liu}, Appl. Math. Comput. 96, No. 2--3, 161--175 (1998; Zbl 0943.65118) Full Text: DOI OpenURL
Sapidis, Nickolas; Sarantidis, Ilias; Kaklis, Panagiotis A spline-in-tension with a parabolic limit-curve. (English) Zbl 0927.65018 Nowacki, Horst (ed.) et al., Creating fair and shape-preserving curves and surfaces. Based on the international workshop organized by the EU Network FAIRSHAPE, held in Kleinmachnow, Germany, September 14–17, 1997. Stuttgart: Teubner. 109-119 (1998). MSC: 65D17 65D05 65D07 PDF BibTeX XML Cite \textit{N. Sapidis} et al., in: Creating fair and shape-preserving curves and surfaces. Based on the international workshop organized by the EU Network FAIRSHAPE, held in Kleinmachnow, Germany, September 14--17, 1997. Stuttgart: Teubner. 109--119 (1998; Zbl 0927.65018) OpenURL
Kireev, V. I.; Biryukova, T. K. Polynomial integro-differential 1D and 2D splines. (Russian. English summary) Zbl 0906.65006 Vychisl. Tekhnol. 3, No. 3, 19-34 (1998). Reviewer: V.L.Miroshnichenko (Novosibirsk) MSC: 65D05 65D07 65D10 PDF BibTeX XML Cite \textit{V. I. Kireev} and \textit{T. K. Biryukova}, Vychisl. Tekhnol. 3, No. 3, 19--34 (1998; Zbl 0906.65006) OpenURL
Stelya, O. B. On the existence of a certain cubic spline. (English. Ukrainian original) Zbl 0985.65009 J. Math. Sci., New York 102, No. 6, 3832-3836 (2000); translation from Obchisl. Prikl. Mat. 81, 124-129 (1997). MSC: 65D07 65Z05 41A25 PDF BibTeX XML Cite \textit{O. B. Stelya}, Obchisl. Prikl. Mat. 81, 124--129 (1997; Zbl 0985.65009); translation from Obchisl. Prikl. Mat. 81, 124--129 (1997) OpenURL
Hamina, M. On the numerical solution of a non-linear heat conduction problem. (English) Zbl 0901.65060 Constanda, C. (ed.) et al., Integral methods in science and engineering. Vol. II: Approximation methods. Proceedings of the 4th international conference, IMSE ’96, Oulu, Finland, June 17–20, 1996. Harlow: Longman. Pitman Res. Notes Math. Ser. 375, 93-98 (1997). MSC: 65M60 35K55 PDF BibTeX XML Cite \textit{M. Hamina}, in: Integral methods in science and engineering. Vol. II: Approximation methods. Proceedings of the 4th international conference, IMSE '96, Oulu, Finland, June 17--20, 1996. Harlow: Longman. 93--98 (1997; Zbl 0901.65060) OpenURL
Blatov, Igor A.; Blatova, Victoria V.; Rozhec, Yurii B.; Strygin, Vadim V. Galerkin-Petrov method for strongly nonlinear singularly perturbed boundary value problems on special meshes. (English) Zbl 0887.65089 Appl. Numer. Math. 25, No. 4, 321-332 (1997). Reviewer: N.Parhi (Berhampur) MSC: 65L10 34B15 65L60 65L70 34E15 65L50 PDF BibTeX XML Cite \textit{I. A. Blatov} et al., Appl. Numer. Math. 25, No. 4, 321--332 (1997; Zbl 0887.65089) Full Text: DOI OpenURL