Kato, Nobuyuki; Misawa, Masashi; Yamaura, Yoshihiko The discrete Morse flow method for parabolic \(p\)-Laplacian systems. (English) Zbl 07334040 Ann. Mat. Pura Appl. (4) 200, No. 3, 1245-1275 (2021). MSC: 35A05 35B65 35J50 35K45 35K65 39A12 PDF BibTeX XML Cite \textit{N. Kato} et al., Ann. Mat. Pura Appl. (4) 200, No. 3, 1245--1275 (2021; Zbl 07334040) Full Text: DOI
Christoforou, Cleopatra The relative entropy method for inhomogeneous systems of balance laws. (English) Zbl 07333602 Q. Appl. Math. 79, No. 2, 201-227 (2021). MSC: 35L65 35A02 35B35 35Q74 35Q35 35L45 35K45 PDF BibTeX XML Cite \textit{C. Christoforou}, Q. Appl. Math. 79, No. 2, 201--227 (2021; Zbl 07333602) Full Text: DOI
Belonogov, Vladimir Andreevich; Pyatkov, Sergey Grigorievich On the regular solvability of some classes of transmission problems in a cylindrical space domain. (English) Zbl 07333482 Sib. Èlektron. Mat. Izv. 18, 176-206 (2021). MSC: 35E05 PDF BibTeX XML Cite \textit{V. A. Belonogov} and \textit{S. G. Pyatkov}, Sib. Èlektron. Mat. Izv. 18, 176--206 (2021; Zbl 07333482) Full Text: DOI
Wang, Mingxin; Zhang, Qianying; Zhao, Xiao-Qiang Dynamics for a diffusive competition model with seasonal succession and different free boundaries. (English) Zbl 07332797 J. Differ. Equations 285, 536-582 (2021). MSC: 35K51 35R35 92B05 35B40 PDF BibTeX XML Cite \textit{M. Wang} et al., J. Differ. Equations 285, 536--582 (2021; Zbl 07332797) Full Text: DOI
Munteanu, Ionuţ Boundary stabilizing actuators for multi-phase fluids in a channel. (English) Zbl 07332789 J. Differ. Equations 285, 175-210 (2021). MSC: 93D15 93C20 35K52 35Q35 35K55 76D05 PDF BibTeX XML Cite \textit{I. Munteanu}, J. Differ. Equations 285, 175--210 (2021; Zbl 07332789) Full Text: DOI
Zhuang, Yuehong; Escher, Joachim Travelling wave solutions in dilatant non-Newtonian thin films with second-order viscosity. (English) Zbl 07332650 Appl. Anal. 100, No. 6, 1229-1246 (2021). MSC: 35C07 35K40 35K65 35Q35 76A20 PDF BibTeX XML Cite \textit{Y. Zhuang} and \textit{J. Escher}, Appl. Anal. 100, No. 6, 1229--1246 (2021; Zbl 07332650) Full Text: DOI
Guo, Shangjiang; Li, Shangzhi; Sounvoravong, Bounsanong Oscillatory and stationary patterns in a diffusive model with delay effect. (English) Zbl 07331747 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2150035, 21 p. (2021). MSC: 35B32 35B35 35B36 35K51 35K57 58E09 PDF BibTeX XML Cite \textit{S. Guo} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2150035, 21 p. (2021; Zbl 07331747) Full Text: DOI
Mackenzie, John; Rowlatt, Christopher; Insall, Robert A conservative finite element ALE scheme for mass-conservative reaction-diffusion equations on evolving two-dimensional domains. (English) Zbl 07331664 SIAM J. Sci. Comput. 43, No. 1, B132-B166 (2021). MSC: 65 35K57 35K61 65M12 65M60 92C17 PDF BibTeX XML Cite \textit{J. Mackenzie} et al., SIAM J. Sci. Comput. 43, No. 1, B132--B166 (2021; Zbl 07331664) Full Text: DOI
Izuhara, Hirofumi; Monobe, Harunori; Wu, Chang-Hong The formation of spreading front: the singular limit of three-component reaction-diffusion models. (English) Zbl 07331659 J. Math. Biol. 82, No. 5, Paper No. 38, 33 p. (2021). MSC: 35Q92 35K57 35K45 92D25 PDF BibTeX XML Cite \textit{H. Izuhara} et al., J. Math. Biol. 82, No. 5, Paper No. 38, 33 p. (2021; Zbl 07331659) Full Text: DOI
Shi, Qingyan; Shi, Junping; Wang, Hao Spatial movement with distributed memory. (English) Zbl 07331654 J. Math. Biol. 82, No. 4, Paper No. 33, 32 p. (2021). MSC: 35B32 35B36 35K51 35K59 92B05 35K57 PDF BibTeX XML Cite \textit{Q. Shi} et al., J. Math. Biol. 82, No. 4, Paper No. 33, 32 p. (2021; Zbl 07331654) Full Text: DOI
Bensoussan, Alain; Frehse, Jens; Yam, Sheung Chi Phillip Systems of quasilinear parabolic equations in \(\mathbb{R}^n\) and systems of quadratic backward stochastic differential equations. (English. French summary) Zbl 07331624 J. Math. Pures Appl. (9) 149, 135-185 (2021). MSC: 35K59 35K45 35B37 49N70 60H15 91A06 PDF BibTeX XML Cite \textit{A. Bensoussan} et al., J. Math. Pures Appl. (9) 149, 135--185 (2021; Zbl 07331624) Full Text: DOI
Ohavi, Isaac Quasi linear parabolic PDE posed on a network with non linear Neumann boundary condition at vertices. (English) Zbl 07330941 J. Math. Anal. Appl. 500, No. 1, Article ID 125154, 29 p. (2021). MSC: 35K51 35K59 35K61 35A09 35R02 PDF BibTeX XML Cite \textit{I. Ohavi}, J. Math. Anal. Appl. 500, No. 1, Article ID 125154, 29 p. (2021; Zbl 07330941) Full Text: DOI
Ildefonso Diaz, Jesús; Hilhorst, Danielle; Kyriazopoulos, Paris A parabolic system with strong absorption modeling dry-land vegetation. (English) Zbl 07329782 Electron. J. Differ. Equ. 2021, Paper No. 08, 19 p. (2021). MSC: 35K51 35K58 35K65 35R35 PDF BibTeX XML Cite \textit{J. Ildefonso Diaz} et al., Electron. J. Differ. Equ. 2021, Paper No. 08, 19 p. (2021; Zbl 07329782) Full Text: Link
Li, Fang; You, Bo Optimal distributed control for a model of homogeneous incompressible two-phase flows. (English) Zbl 07329762 J. Dyn. Control Syst. 27, No. 1, 153-177 (2021). MSC: 35Q35 35B40 35K51 37L55 PDF BibTeX XML Cite \textit{F. Li} and \textit{B. You}, J. Dyn. Control Syst. 27, No. 1, 153--177 (2021; Zbl 07329762) Full Text: DOI
Xu, Fengdan; Zhou, Qian; Nie, Yuanyuan Approximate controllability of a class of semilinear coupled degenerate systems. (English) Zbl 07329756 J. Dyn. Control Syst. 27, No. 1, 31-49 (2021). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 93B05 93C20 35K65 93C10 PDF BibTeX XML Cite \textit{F. Xu} et al., J. Dyn. Control Syst. 27, No. 1, 31--49 (2021; Zbl 07329756) Full Text: DOI
Laurent, Camille; Léautaud, Matthieu On uniform observability of gradient flows in the vanishing viscosity limit. (Sur l’observabilité uniforme des flots de gradient dans la limite de viscosité évanescente.) (English. French summary) Zbl 07329544 J. Éc. Polytech., Math. 8, 439-506 (2021). MSC: 93B07 93B05 93C20 35B25 35F05 35K05 93C73 PDF BibTeX XML Cite \textit{C. Laurent} and \textit{M. Léautaud}, J. Éc. Polytech., Math. 8, 439--506 (2021; Zbl 07329544) Full Text: DOI
Li, Yachun; Peng, Yue-Jun; Zhao, Liang Convergence rate from hyperbolic systems of balance laws to parabolic systems. (English) Zbl 07328938 Appl. Anal. 100, No. 5, 1079-1095 (2021). MSC: 35B25 35B40 35K45 35L45 35L60 35B65 PDF BibTeX XML Cite \textit{Y. Li} et al., Appl. Anal. 100, No. 5, 1079--1095 (2021; Zbl 07328938) Full Text: DOI
Suzuki, Masamitsu Local existence and nonexistence for fractional in time weakly coupled reaction-diffusion systems. (English) Zbl 07328519 SN Partial Differ. Equ. Appl. 2, No. 1, Paper No. 2, 27 p. (2021). MSC: 35R11 35K57 35K51 35A01 26A33 46E35 PDF BibTeX XML Cite \textit{M. Suzuki}, SN Partial Differ. Equ. Appl. 2, No. 1, Paper No. 2, 27 p. (2021; Zbl 07328519) Full Text: DOI
Calderbank, David M. J.; Slovák, Jan; Souček, Vladimír Subriemannian metrics and the metrizability of parabolic geometries. (English) Zbl 07328177 J. Geom. Anal. 31, No. 2, 1671-1702 (2021). MSC: 53B15 53C17 14M15 17B10 22E46 53C15 53C30 58A32 58J70 93C10 PDF BibTeX XML Cite \textit{D. M. J. Calderbank} et al., J. Geom. Anal. 31, No. 2, 1671--1702 (2021; Zbl 07328177) Full Text: DOI
Phan, Chi; You, Yuncheng; Su, Jianzhong Global dynamics of partly diffusive Hindmarsh-Rose equations in neurodynamics. (English) Zbl 07327894 Dyn. Partial Differ. Equ. 18, No. 1, 33-47 (2021). MSC: 35B41 35K58 35Q92 37N25 92C20 PDF BibTeX XML Cite \textit{C. Phan} et al., Dyn. Partial Differ. Equ. 18, No. 1, 33--47 (2021; Zbl 07327894) Full Text: DOI
Ammari, Kaïs; Hmidi, Taoufik Ergodicity effects on transport-diffusion equations with localized damping. (English) Zbl 07327892 Dyn. Partial Differ. Equ. 18, No. 1, 1-10 (2021). MSC: 35B40 35K15 35Q49 37A10 37A30 PDF BibTeX XML Cite \textit{K. Ammari} and \textit{T. Hmidi}, Dyn. Partial Differ. Equ. 18, No. 1, 1--10 (2021; Zbl 07327892) Full Text: DOI
Cavallina, Lorenzo; Magnanini, Rolando; Sakaguchi, Shigeru Two-phase heat conductors with a surface of the constant flow property. (English) Zbl 07327648 J. Geom. Anal. 31, No. 1, 312-345 (2021). MSC: 35N30 35N25 35K20 35B06 35B40 35J25 PDF BibTeX XML Cite \textit{L. Cavallina} et al., J. Geom. Anal. 31, No. 1, 312--345 (2021; Zbl 07327648) Full Text: DOI
Ambrazevičius, A.; Skakauskas, V. Solvability of a coupled quasilinear reaction-diffusion system. (English) Zbl 07327339 Appl. Anal. 100, No. 4, 791-803 (2021). MSC: 35K51 35K57 35K59 35K61 35B09 92E20 PDF BibTeX XML Cite \textit{A. Ambrazevičius} and \textit{V. Skakauskas}, Appl. Anal. 100, No. 4, 791--803 (2021; Zbl 07327339) Full Text: DOI
Lee, Jihoon; Toi, Vu Manh Global attractors and exponential stability of partly dissipative reaction diffusion systems with exponential growth nonlinearity. (English) Zbl 07327336 Appl. Anal. 100, No. 4, 735-751 (2021). MSC: 35B41 35B35 35B65 35K51 35K57 35K58 PDF BibTeX XML Cite \textit{J. Lee} and \textit{V. M. Toi}, Appl. Anal. 100, No. 4, 735--751 (2021; Zbl 07327336) Full Text: DOI
Cantin, Guillaume; Aziz-Alaoui, M. A. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. (English) Zbl 07327297 Commun. Pure Appl. Anal. 20, No. 2, 623-650 (2021). MSC: 35B41 35K51 35K57 35K90 92D25 PDF BibTeX XML Cite \textit{G. Cantin} and \textit{M. A. Aziz-Alaoui}, Commun. Pure Appl. Anal. 20, No. 2, 623--650 (2021; Zbl 07327297) Full Text: DOI
Zheng, Guojie; Xu, Dihong; Wang, Taige A unique continuation property for a class of parabolic differential inequalities in a bounded domain. (English) Zbl 07327294 Commun. Pure Appl. Anal. 20, No. 2, 547-558 (2021). MSC: 35B60 35K20 35R45 93B07 93D15 PDF BibTeX XML Cite \textit{G. Zheng} et al., Commun. Pure Appl. Anal. 20, No. 2, 547--558 (2021; Zbl 07327294) Full Text: DOI
Xing, Chao; Pan, Jiaojiao; Luo, Hong Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. (English) Zbl 07327288 Commun. Pure Appl. Anal. 20, No. 1, 427-448 (2021). MSC: 35B32 35B35 35K52 35K57 37L10 35Q92 PDF BibTeX XML Cite \textit{C. Xing} et al., Commun. Pure Appl. Anal. 20, No. 1, 427--448 (2021; Zbl 07327288) Full Text: DOI
Zhao, Wenqiang; Zhang, Yijin High-order Wong-Zakai approximations for non-autonomous stochastic \(p\)-Laplacian equations on \(\mathbb{R}^N\). (English) Zbl 07327279 Commun. Pure Appl. Anal. 20, No. 1, 243-280 (2021). MSC: 35R60 35B40 35B41 35B65 35K15 35K92 60H15 PDF BibTeX XML Cite \textit{W. Zhao} and \textit{Y. Zhang}, Commun. Pure Appl. Anal. 20, No. 1, 243--280 (2021; Zbl 07327279) Full Text: DOI
Tajani, Asmae; El Alaoui, Fatima-Zahrae; Boutoulout, Ali Regional controllability of a class of time-fractional systems. (English) Zbl 07326312 Hammouch, Zakia (ed.) et al., Nonlinear analysis: problems, applications and computational methods. Proceedings of the 6th international congress of the Moroccan Society of Applied Mathematics, Beni-Mellal, Morocco, November 7–9, 2019. Cham: Springer (ISBN 978-3-030-62298-5/pbk; 978-3-030-62299-2/ebook). Lecture Notes in Networks and Systems 168, 141-155 (2021). MSC: 35R11 35K90 47D06 93B05 PDF BibTeX XML Cite \textit{A. Tajani} et al., Lect. Notes Netw. Syst. 168, 141--155 (2021; Zbl 07326312) Full Text: DOI
Pan, Xu; Wang, Liangchen Improvement of conditions for boundedness in a fully parabolic chemotaxis system with nonlinear signal production. (English. French summary) Zbl 07326185 C. R., Math., Acad. Sci. Paris 359, No. 2, 161-168 (2021). MSC: 35K51 35K59 35B44 35B35 92C17 PDF BibTeX XML Cite \textit{X. Pan} and \textit{L. Wang}, C. R., Math., Acad. Sci. Paris 359, No. 2, 161--168 (2021; Zbl 07326185) Full Text: DOI
Colli, Pierluigi; Gilardi, Gianni; Munteanu, Ionut Stabilisation of a linearised Cahn-Hilliard system for phase separation by proportional boundary feedbacks. (English) Zbl 07325686 Int. J. Control 94, No. 2, 452-460 (2021). MSC: 93D15 93C20 35K52 35Q79 PDF BibTeX XML Cite \textit{P. Colli} et al., Int. J. Control 94, No. 2, 452--460 (2021; Zbl 07325686) Full Text: DOI
Fernández-Cara, E.; Límaco, J.; Marín-Gayte, I. Theoretical and numerical local null controllability of a quasi-linear parabolic equation in dimensions 2 and 3. (English) Zbl 07323733 J. Franklin Inst. 358, No. 5, 2846-2871 (2021). MSC: 93B05 93C20 35A35 35K59 PDF BibTeX XML Cite \textit{E. Fernández-Cara} et al., J. Franklin Inst. 358, No. 5, 2846--2871 (2021; Zbl 07323733) Full Text: DOI
Freitas, Mirelson M.; Ramos, Anderson J. A.; Özer, A.Ö.; Almeida Júnior, Dilberto da Silva Long-time dynamics for a fractional piezoelectric system with magnetic effects and Fourier’s law. (English) Zbl 07319452 J. Differ. Equations 280, 891-927 (2021). MSC: 35B40 35B41 35R11 37L30 74A15 74F05 74F15 74K10 PDF BibTeX XML Cite \textit{M. M. Freitas} et al., J. Differ. Equations 280, 891--927 (2021; Zbl 07319452) Full Text: DOI
Chen, Yu-Shuo; Giletti, Thomas; Guo, Jong-Shenq Persistence of preys in a diffusive three species predator-prey system with a pair of strong-weak competing preys. (English) Zbl 07319418 J. Differ. Equations 281, 341-378 (2021). MSC: 35K40 35K57 34B40 92D25 35K55 35B05 35B40 PDF BibTeX XML Cite \textit{Y.-S. Chen} et al., J. Differ. Equations 281, 341--378 (2021; Zbl 07319418) Full Text: DOI
Brauner, Claude-Michel; Roussarie, Robert; Shang, Peipei; Zhang, Linwan Existence of a traveling wave solution in a free interface problem with fractional order kinetics. (English) Zbl 07319412 J. Differ. Equations 281, 105-147 (2021). MSC: 35R35 35C07 34C05 34A26 80A25 35K57 35B35 35K40 80A25 PDF BibTeX XML Cite \textit{C.-M. Brauner} et al., J. Differ. Equations 281, 105--147 (2021; Zbl 07319412) Full Text: DOI
Zhou, Peng; Tang, De; Xiao, Dongmei On Lotka-Volterra competitive parabolic systems: exclusion, coexistence and bistability. (English) Zbl 07319406 J. Differ. Equations 282, 596-625 (2021). MSC: 35K51 35P15 37C65 92D25 PDF BibTeX XML Cite \textit{P. Zhou} et al., J. Differ. Equations 282, 596--625 (2021; Zbl 07319406) Full Text: DOI
Mukherjee, N.; Volpert, V. Bifurcation scenario of Turing patterns in prey-predator model with nonlocal consumption in the prey dynamics. (English) Zbl 07319170 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105677, 12 p. (2021). MSC: 35B32 35B36 35K51 35K57 35R09 92D25 PDF BibTeX XML Cite \textit{N. Mukherjee} and \textit{V. Volpert}, Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105677, 12 p. (2021; Zbl 07319170) Full Text: DOI
Wang, Hanxiao Extended backward stochastic Volterra integral equations, quasilinear parabolic equations, and Feynman-Kac formula. (English) Zbl 07318765 Stoch. Dyn. 21, No. 1, Article ID 2150004, 37 p. (2021). MSC: 60H20 45D05 35K40 35K59 PDF BibTeX XML Cite \textit{H. Wang}, Stoch. Dyn. 21, No. 1, Article ID 2150004, 37 p. (2021; Zbl 07318765) Full Text: DOI
Kurt, Halil Ibrahim; Shen, Wenxian Finite-time blow-up prevention by logistic source in parabolic-elliptic chemotaxis models with singular sensitivity in any dimensional setting. (English) Zbl 1455.35269 SIAM J. Math. Anal. 53, No. 1, 973-1003 (2021). MSC: 35Q92 92C17 35K55 35B44 35K51 35K57 PDF BibTeX XML Cite \textit{H. I. Kurt} and \textit{W. Shen}, SIAM J. Math. Anal. 53, No. 1, 973--1003 (2021; Zbl 1455.35269) Full Text: DOI
Rodrigues, Sérgio S. Oblique projection exponential dynamical observer for nonautonomous linear parabolic-like equations. (English) Zbl 07315930 SIAM J. Control Optim. 59, No. 1, 464-488 (2021). Reviewer: Kaïs Ammari (Monastir) MSC: 93C20 93B53 PDF BibTeX XML Cite \textit{S. S. Rodrigues}, SIAM J. Control Optim. 59, No. 1, 464--488 (2021; Zbl 07315930) Full Text: DOI
Feng, Yun; Wang, Yaonan; Wang, Jun-Wei; Li, Han-Xiong Abnormal spatio-temporal source estimation for a linear unstable parabolic distributed parameter system: an adaptive PDE observer perspective. (English) Zbl 07315745 J. Franklin Inst. 358, No. 2, 1656-1672 (2021). MSC: 93C20 93C40 93B53 93C05 PDF BibTeX XML Cite \textit{Y. Feng} et al., J. Franklin Inst. 358, No. 2, 1656--1672 (2021; Zbl 07315745) Full Text: DOI
Thieu, T. K. Thoa; Colangeli, Matteo; Muntean, Adrian Uniqueness and stability with respect to parameters of solutions to a fluid-like driven system for active-passive pedestrian dynamics. (English) Zbl 07315370 J. Math. Anal. Appl. 495, No. 1, Article ID 124702, 13 p. (2021). MSC: 35K51 35K58 PDF BibTeX XML Cite \textit{T. K. T. Thieu} et al., J. Math. Anal. Appl. 495, No. 1, Article ID 124702, 13 p. (2021; Zbl 07315370) Full Text: DOI
Zhu, Linhe; Liu, Wenshan Spatial dynamics and optimization method for a network propagation model in a shifting environment. (English) Zbl 07314933 Discrete Contin. Dyn. Syst. 41, No. 4, 1843-1874 (2021). MSC: 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{L. Zhu} and \textit{W. Liu}, Discrete Contin. Dyn. Syst. 41, No. 4, 1843--1874 (2021; Zbl 07314933) Full Text: DOI
Jiang, Yunping Global graph of metric entropy on expanding Blaschke products. (English) Zbl 07314917 Discrete Contin. Dyn. Syst. 41, No. 3, 1469-1482 (2021). Reviewer: Hasan Akin (Gaziantep) MSC: 37A05 37A35 37F15 37A30 37E10 28D20 PDF BibTeX XML Cite \textit{Y. Jiang}, Discrete Contin. Dyn. Syst. 41, No. 3, 1469--1482 (2021; Zbl 07314917) Full Text: DOI
Fellner, Klemens; Morgan, Jeff; Tang, Bao Quoc Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. (English) Zbl 07314575 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 635-651 (2021). MSC: 35K51 35K57 35K58 92D25 PDF BibTeX XML Cite \textit{K. Fellner} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 635--651 (2021; Zbl 07314575) Full Text: DOI
Dambrine, M.; Puig, B.; Vallet, G. A mathematical model for marine dinoflagellates blooms. (English) Zbl 07314574 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 615-633 (2021). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q92 92C80 35K61 35A01 35A02 PDF BibTeX XML Cite \textit{M. Dambrine} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 615--633 (2021; Zbl 07314574) Full Text: DOI
Brauner, Claude-Michel; Lorenzi, Luca Instability of free interfaces in premixed flame propagation. (English) Zbl 07314572 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 575-596 (2021). MSC: 35R35 35C07 35B35 35K40 47D06 80A25 PDF BibTeX XML Cite \textit{C.-M. Brauner} and \textit{L. Lorenzi}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 575--596 (2021; Zbl 07314572) Full Text: DOI
Augner, Björn; Bothe, Dieter The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. (English) Zbl 07314571 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 533-574 (2021). MSC: 35K57 35K51 35K59 80A30 92E20 PDF BibTeX XML Cite \textit{B. Augner} and \textit{D. Bothe}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 533--574 (2021; Zbl 07314571) Full Text: DOI
Laamri, El Haj; Pierre, Michel Stationary reaction-diffusion systems in \(L^1\) revisited. (English) Zbl 07314568 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 455-464 (2021). MSC: 35J57 35K10 35K40 35K57 PDF BibTeX XML Cite \textit{E. H. Laamri} and \textit{M. Pierre}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 455--464 (2021; Zbl 07314568) Full Text: DOI
Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen Deep quench approximation and optimal control of general Cahn-Hilliard systems with fractional operators and double obstacle potentials. (English) Zbl 07314557 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 243-271 (2021). MSC: 35K90 35K45 49K20 49K27 35R11 PDF BibTeX XML Cite \textit{P. Colli} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 243--271 (2021; Zbl 07314557) Full Text: DOI
Tao, Youshan; Winkler, Michael Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. (English) Zbl 07314171 Discrete Contin. Dyn. Syst. 41, No. 1, 439-454 (2021). MSC: 35B44 35K57 92C17 35K51 35K59 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{M. Winkler}, Discrete Contin. Dyn. Syst. 41, No. 1, 439--454 (2021; Zbl 07314171) Full Text: DOI
Ducrot, Arnaud; Giletti, Thomas; Guo, Jong-Shenq; Shimojo, Masahiko Asymptotic spreading speeds for a predator-prey system with two predators and one prey. (English) Zbl 07312081 Nonlinearity 34, No. 2, 669-704 (2021). MSC: 35C07 35K45 35K57 92D25 PDF BibTeX XML Cite \textit{A. Ducrot} et al., Nonlinearity 34, No. 2, 669--704 (2021; Zbl 07312081) Full Text: DOI
Albuja, Guillermo; Ávila, Andrés I. A family of new globally convergent linearization schemes for solving Richards’ equation. (English) Zbl 07310757 Appl. Numer. Math. 159, 281-296 (2021). MSC: 65M06 65N30 65H10 35K65 76S05 35Q35 PDF BibTeX XML Cite \textit{G. Albuja} and \textit{A. I. Ávila}, Appl. Numer. Math. 159, 281--296 (2021; Zbl 07310757) Full Text: DOI
Yang, C.; Rodríguez, N. Existence and stability traveling wave solutions for a system of social outbursts. (English) Zbl 07309691 J. Math. Anal. Appl. 494, No. 1, Article ID 124583, 30 p. (2021). MSC: 35C07 35K45 35K57 35Q91 PDF BibTeX XML Cite \textit{C. Yang} and \textit{N. Rodríguez}, J. Math. Anal. Appl. 494, No. 1, Article ID 124583, 30 p. (2021; Zbl 07309691) Full Text: DOI
Phan, Chi; You, Yuncheng Random attractor for stochastic Hindmarsh-Rose equations with additive noise. (English) Zbl 07307370 J. Dyn. Differ. Equations 33, No. 1, 489-510 (2021). MSC: 35R60 35B41 35K55 37L30 37L55 37N25 60H15 92B20 PDF BibTeX XML Cite \textit{C. Phan} and \textit{Y. You}, J. Dyn. Differ. Equations 33, No. 1, 489--510 (2021; Zbl 07307370) Full Text: DOI
Pauly, Dirk; Picard, Rainer; Trostorff, Sascha; Waurick, Marcus On a class of degenerate abstract parabolic problems and applications to some eddy current models. (English) Zbl 07306991 J. Funct. Anal. 280, No. 7, Article ID 108847, 46 p. (2021). Reviewer: Eric Stachura (Marietta) MSC: 35Q61 35M12 35M32 35K65 35K90 35L90 78A25 PDF BibTeX XML Cite \textit{D. Pauly} et al., J. Funct. Anal. 280, No. 7, Article ID 108847, 46 p. (2021; Zbl 07306991) Full Text: DOI
Mansouri, D.; Bendoukha, S.; Abdelmalek, S.; Youkana, A. On the complete synchronization of a time-fractional reaction-diffusion system with the Newton-Leipnik nonlinearity. (English) Zbl 07305515 Appl. Anal. 100, No. 3, 675-694 (2021). MSC: 35R11 35K51 35K57 PDF BibTeX XML Cite \textit{D. Mansouri} et al., Appl. Anal. 100, No. 3, 675--694 (2021; Zbl 07305515) Full Text: DOI
Liu, Bingchen; Li, Fengjie; Zhao, Ziyan Non-simultaneous blow-up profile and boundary layer estimate in nonlinear parabolic problems. (English) Zbl 07305253 Appl. Anal. 100, No. 2, 417-427 (2021). MSC: 35B44 35K51 35K58 35B40 35B33 65N25 PDF BibTeX XML Cite \textit{B. Liu} et al., Appl. Anal. 100, No. 2, 417--427 (2021; Zbl 07305253) Full Text: DOI
Huang, Weizhang; Kamenski, Lennard; Lang, Jens Conditioning of implicit Runge-Kutta integration for finite element approximation of linear diffusion equations on anisotropic meshes. (English) Zbl 1456.65114 J. Comput. Appl. Math. 387, Article ID 112497, 18 p. (2021). MSC: 65M60 65M06 65L06 65N30 65M50 65F08 65F10 65F35 65F15 35K10 PDF BibTeX XML Cite \textit{W. Huang} et al., J. Comput. Appl. Math. 387, Article ID 112497, 18 p. (2021; Zbl 1456.65114) Full Text: DOI
Tuan, Nguyen Huy; Khoa, Vo Anh; Van, Phan Thi Khanh; Au, Vo Van An improved quasi-reversibility method for a terminal-boundary value multi-species model with white Gaussian noise. (English) Zbl 07305070 J. Comput. Appl. Math. 384, Article ID 113176, 14 p. (2021). MSC: 62L20 62F10 65J05 65J20 35K92 60H35 60H40 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., J. Comput. Appl. Math. 384, Article ID 113176, 14 p. (2021; Zbl 07305070) Full Text: DOI
Chen, Xiuqing; Jüngel, Ansgar When do cross-diffusion systems have an entropy structure? (English) Zbl 1456.35104 J. Differ. Equations 278, 60-72 (2021). MSC: 35K51 35K59 92C17 35Q79 15A23 15A24 PDF BibTeX XML Cite \textit{X. Chen} and \textit{A. Jüngel}, J. Differ. Equations 278, 60--72 (2021; Zbl 1456.35104) Full Text: DOI
Guan, Xinyu; Si, Jianguo; Si, Wen Parabolic invariant tori in quasi-periodically forced skew-product maps. (English) Zbl 07303699 J. Differ. Equations 277, 234-274 (2021). MSC: 37J40 37E40 70K43 70H08 47B80 81Q10 37A20 37D25 PDF BibTeX XML Cite \textit{X. Guan} et al., J. Differ. Equations 277, 234--274 (2021; Zbl 07303699) Full Text: DOI
Kydonakis, Georgios; Sun, Hao; Zhao, Lutian Topological invariants of parabolic \(G\)-Higgs bundles. (English) Zbl 07303587 Math. Z. 297, No. 1-2, 585-632 (2021). Reviewer: Ahmed Lesfari (El Jadida) MSC: 14D20 14H60 58E15 14D21 53C07 14H70 14P25 PDF BibTeX XML Cite \textit{G. Kydonakis} et al., Math. Z. 297, No. 1--2, 585--632 (2021; Zbl 07303587) Full Text: DOI
Wang, Zhi-An; Xu, Jiao On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion. (English) Zbl 1456.35107 J. Math. Biol. 82, No. 1-2, Paper No. 7, 37 p. (2021). MSC: 35K51 35B40 35B44 35K57 92D25 PDF BibTeX XML Cite \textit{Z.-A. Wang} and \textit{J. Xu}, J. Math. Biol. 82, No. 1--2, Paper No. 7, 37 p. (2021; Zbl 1456.35107) Full Text: DOI
Cupps, Brian P.; Morgan, Jeff; Tang, Bao Quoc Uniform boundedness for reaction-diffusion systems with mass dissipation. (English) Zbl 1456.35105 SIAM J. Math. Anal. 53, No. 1, 323-350 (2021). MSC: 35K51 35A01 35A09 35K57 35K58 35Q92 PDF BibTeX XML Cite \textit{B. P. Cupps} et al., SIAM J. Math. Anal. 53, No. 1, 323--350 (2021; Zbl 1456.35105) Full Text: DOI
de Rijk, Björn; Schneider, Guido Global existence and decay in multi-component reaction-diffusion-advection systems with different velocities: oscillations in time and frequency. (English) Zbl 1456.35109 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 2, 38 p. (2021). MSC: 35K57 35K15 35B40 35A01 PDF BibTeX XML Cite \textit{B. de Rijk} and \textit{G. Schneider}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 2, 38 p. (2021; Zbl 1456.35109) Full Text: DOI
Monmarché, Pierre A note on Fisher information hypocoercive decay for the linear Boltzmann equation. (English) Zbl 07299663 Anal. Math. Phys. 11, No. 1, Paper No. 1, 11 p. (2021). MSC: 35Q20 35K99 60J25 82C31 PDF BibTeX XML Cite \textit{P. Monmarché}, Anal. Math. Phys. 11, No. 1, Paper No. 1, 11 p. (2021; Zbl 07299663) Full Text: DOI
Ouzahra, Mohamed Finite-time control for the bilinear heat equation. (English) Zbl 1455.93178 Eur. J. Control 57, 284-293 (2021). MSC: 93D40 93B05 93C20 35K05 PDF BibTeX XML Cite \textit{M. Ouzahra}, Eur. J. Control 57, 284--293 (2021; Zbl 1455.93178) Full Text: DOI
Guzman, Patricio; Rosier, Lionel Null controllability of the structurally damped wave equation on the two-dimensional torus. (English) Zbl 07299441 SIAM J. Control Optim. 59, No. 1, 131-155 (2021). Reviewer: Kaïs Ammari (Monastir) MSC: 35Q74 74D05 93B05 93B07 93C20 PDF BibTeX XML Cite \textit{P. Guzman} and \textit{L. Rosier}, SIAM J. Control Optim. 59, No. 1, 131--155 (2021; Zbl 07299441) Full Text: DOI
Zarvalis, Konstantinos On the tangential speed of parabolic semigroups of holomorphic functions. (English) Zbl 07299113 Proc. Am. Math. Soc. 149, No. 2, 729-737 (2021). MSC: 37F44 37F15 30D05 PDF BibTeX XML Cite \textit{K. Zarvalis}, Proc. Am. Math. Soc. 149, No. 2, 729--737 (2021; Zbl 07299113) Full Text: DOI
Chen, Si-Jia; Lü, Xing; Tang, Xian-Feng Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients. (English) Zbl 1456.35072 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105628, 12 p. (2021). MSC: 35C08 35K58 35A25 37K10 PDF BibTeX XML Cite \textit{S.-J. Chen} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105628, 12 p. (2021; Zbl 1456.35072) Full Text: DOI
Negreanu, M.; Vargas, A. M. Continuous and discrete periodic asymptotic behavior of solutions to a competitive chemotaxis PDEs system. (English) Zbl 1456.35036 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105592, 21 p. (2021). MSC: 35B40 35K51 35K59 92C17 92D25 35B10 65M06 PDF BibTeX XML Cite \textit{M. Negreanu} and \textit{A. M. Vargas}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105592, 21 p. (2021; Zbl 1456.35036) Full Text: DOI
Bernardin, C.; Gonçalves, P.; Jiménez-Oviedo, B. A microscopic model for a one parameter class of fractional Laplacians with Dirichlet boundary conditions. (English) Zbl 1456.35210 Arch. Ration. Mech. Anal. 239, No. 1, 1-48 (2021); correction ibid. 239, No. 1, 49-50 (2021). MSC: 35R11 35K57 35K20 35B40 82C22 35Q79 35D30 60K35 PDF BibTeX XML Cite \textit{C. Bernardin} et al., Arch. Ration. Mech. Anal. 239, No. 1, 1--48 (2021; Zbl 1456.35210) Full Text: DOI
Shi, Dongyang; Li, Chaoqun Superconvergence analysis of two-grid methods for bacteria equations. (English) Zbl 1456.65122 Numer. Algorithms 86, No. 1, 123-152 (2021). MSC: 65M60 65M06 65M55 65Z05 65M12 35K40 92C50 PDF BibTeX XML Cite \textit{D. Shi} and \textit{C. Li}, Numer. Algorithms 86, No. 1, 123--152 (2021; Zbl 1456.65122) Full Text: DOI
Liu, Zhihua; Magal, Pierre Bogdanov-Takens bifurcation in a predator-prey model with age structure. (English) Zbl 07298441 Z. Angew. Math. Phys. 72, No. 1, Paper No. 4, 24 p. (2021). Reviewer: George Karakostas (Ioannina) MSC: 34K60 34K18 34K16 35K90 37G10 92D25 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{P. Magal}, Z. Angew. Math. Phys. 72, No. 1, Paper No. 4, 24 p. (2021; Zbl 07298441) Full Text: DOI
Dong, Hongjie; Phan, Tuoc Mixed-norm \(L_p\)-estimates for non-stationary Stokes systems with singular VMO coefficients and applications. (English) Zbl 07297753 J. Differ. Equations 276, 342-367 (2021). MSC: 76D03 76D05 76D07 35K67 35K40 PDF BibTeX XML Cite \textit{H. Dong} and \textit{T. Phan}, J. Differ. Equations 276, 342--367 (2021; Zbl 07297753) Full Text: DOI
Okada, Mari; Mori, Naofumi; Kawashima, Shuichi Decay property for symmetric hyperbolic system with memory-type diffusion. (English) Zbl 1456.35037 J. Differ. Equations 276, 287-317 (2021). MSC: 35B40 35L45 35K15 PDF BibTeX XML Cite \textit{M. Okada} et al., J. Differ. Equations 276, 287--317 (2021; Zbl 1456.35037) Full Text: DOI
Xu, Xiangsheng Nonlinear diffusion in the Keller-Segel model of parabolic-parabolic type. (English) Zbl 07297750 J. Differ. Equations 276, 264-286 (2021). MSC: 35B45 35B65 35Q92 35K51 PDF BibTeX XML Cite \textit{X. Xu}, J. Differ. Equations 276, 264--286 (2021; Zbl 07297750) Full Text: DOI
Wang, Renhai; Wang, Bixiang Random dynamics of non-autonomous fractional stochastic \(p\)-Laplacian equations on \(\mathbb{R}^N\). (English) Zbl 1456.35246 Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021). MSC: 35R60 35R11 35K93 35K15 35B40 35B41 37L30 PDF BibTeX XML Cite \textit{R. Wang} and \textit{B. Wang}, Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021; Zbl 1456.35246) Full Text: DOI
Liu, Xiaolin; Ouyang, Zigen; Huang, Zhe; Ou, Chunhua Spreading speed of the periodic Lotka-Volterra competition model. (English) Zbl 07291348 J. Differ. Equations 275, 533-553 (2021). Reviewer: Guobao Zhang (Lanzhou) MSC: 35K57 35K40 92D25 PDF BibTeX XML Cite \textit{X. Liu} et al., J. Differ. Equations 275, 533--553 (2021; Zbl 07291348) Full Text: DOI
Valero, José Characterization of the attractor for nonautonomous reaction-diffusion equations with discontinuous nonlinearity. (English) Zbl 07291339 J. Differ. Equations 275, 270-308 (2021). MSC: 35B40 35B41 35B51 35K55 35K57 PDF BibTeX XML Cite \textit{J. Valero}, J. Differ. Equations 275, 270--308 (2021; Zbl 07291339) Full Text: DOI
Chen, Wen-Jie; Han, Zhong-Jie Stability in locally degenerate dual-phase-lag heat conduction. (English) Zbl 1455.35016 Appl. Anal. 100, No. 1, 75-92 (2021). MSC: 35B40 35K51 93D20 35B35 PDF BibTeX XML Cite \textit{W.-J. Chen} and \textit{Z.-J. Han}, Appl. Anal. 100, No. 1, 75--92 (2021; Zbl 1455.35016) Full Text: DOI
Dimitrov, Ivan; Fioresi, Rita On Kostant root systems of Lie superalgebras. (English) Zbl 07290705 J. Algebra 570, 678-701 (2021). MSC: 17B22 17B20 17B25 PDF BibTeX XML Cite \textit{I. Dimitrov} and \textit{R. Fioresi}, J. Algebra 570, 678--701 (2021; Zbl 07290705) Full Text: DOI
Marveggio, Alice; Schimperna, Giulio On a non-isothermal Cahn-Hilliard model based on a microforce balance. (English) Zbl 07289120 J. Differ. Equations 274, 924-970 (2021). Reviewer: Joseph Shomberg (Providence) MSC: 35K41 35K55 80A22 74A15 PDF BibTeX XML Cite \textit{A. Marveggio} and \textit{G. Schimperna}, J. Differ. Equations 274, 924--970 (2021; Zbl 07289120) Full Text: DOI
Winkler, Michael Does spatial homogeneity ultimately prevail in nutrient taxis systems? A paradigm for structure support by rapid diffusion decay in an autonomous parabolic flow. (English) Zbl 1455.35026 Trans. Am. Math. Soc. 374, No. 1, 219-268 (2021). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B40 35B36 35B35 35K65 92C17 35K51 35K59 35Q92 PDF BibTeX XML Cite \textit{M. Winkler}, Trans. Am. Math. Soc. 374, No. 1, 219--268 (2021; Zbl 1455.35026) Full Text: DOI
Kojima, Takuya; Oshita, Yoshihito Linear stability of radially symmetric equilibrium solutions to the singular limit problem of three-component activator-inhibitor model. (English) Zbl 1454.35025 Math. J. Okayama Univ. 63, 201-217 (2021). MSC: 35B35 35B25 35K57 35K40 35K58 92B25 PDF BibTeX XML Cite \textit{T. Kojima} and \textit{Y. Oshita}, Math. J. Okayama Univ. 63, 201--217 (2021; Zbl 1454.35025) Full Text: Link
Abdellaoui, M. Asymptotic behavior result for obstacle parabolic problems with measure data. (English) Zbl 1454.35029 Adv. Oper. Theory 6, No. 1, Paper No. 20, 37 p. (2021). MSC: 35B40 35K86 28A12 35B65 35R45 PDF BibTeX XML Cite \textit{M. Abdellaoui}, Adv. Oper. Theory 6, No. 1, Paper No. 20, 37 p. (2021; Zbl 1454.35029) Full Text: DOI
Coclite, G. M.; Coclite, M. M. Long time behavior of a model for the evolution of morphogens in a growing tissue. II: \( \theta < \log 2\). (English) Zbl 1454.35031 J. Differ. Equations 272, 1015-1049 (2021). MSC: 35B40 35K51 35K55 35K65 35Q92 34B15 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{M. M. Coclite}, J. Differ. Equations 272, 1015--1049 (2021; Zbl 1454.35031) Full Text: DOI
Kim, Sunghoon; Lee, Ki-Ahm System of porous medium equations. (English) Zbl 1455.35020 J. Differ. Equations 272, 433-472 (2021). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B40 35K65 35K40 35C07 92D25 PDF BibTeX XML Cite \textit{S. Kim} and \textit{K.-A. Lee}, J. Differ. Equations 272, 433--472 (2021; Zbl 1455.35020) Full Text: DOI
Huang, Shanlin; Wang, Gengsheng; Wang, Ming Characterizations of stabilizable sets for some parabolic equations in \(\mathbb{R}^n\). (English) Zbl 1452.93033 J. Differ. Equations 272, 255-288 (2021). MSC: 93D20 93C20 93B05 PDF BibTeX XML Cite \textit{S. Huang} et al., J. Differ. Equations 272, 255--288 (2021; Zbl 1452.93033) Full Text: DOI
Li, Fuxiang; Zhao, Xiao-Qiang Global dynamics of a nonlocal periodic reaction-diffusion model of bluetongue disease. (English) Zbl 1454.35215 J. Differ. Equations 272, 127-163 (2021). MSC: 35K57 35K51 37N25 92D30 PDF BibTeX XML Cite \textit{F. Li} and \textit{X.-Q. Zhao}, J. Differ. Equations 272, 127--163 (2021; Zbl 1454.35215) Full Text: DOI
Zhang, Li; Bao, Xiongxiong Propagation dynamics of a three-species nonlocal competitive-cooperative system. (English) Zbl 1454.35046 Nonlinear Anal., Real World Appl. 58, Article ID 103230, 17 p. (2021). MSC: 35C07 35K45 35R09 35B40 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{X. Bao}, Nonlinear Anal., Real World Appl. 58, Article ID 103230, 17 p. (2021; Zbl 1454.35046) Full Text: DOI
Wang, Jinfeng Dynamics of a reaction-diffusion-ODE system with quiescence. (English) Zbl 1454.35219 Nonlinear Anal., Real World Appl. 58, Article ID 103229, 11 p. (2021). MSC: 35K57 35K51 92D25 35B40 PDF BibTeX XML Cite \textit{J. Wang}, Nonlinear Anal., Real World Appl. 58, Article ID 103229, 11 p. (2021; Zbl 1454.35219) Full Text: DOI
Garcke, Harald; Lam, Kei Fong; Signori, Andrea On a phase field model of Cahn-Hilliard type for tumour growth with mechanical effects. (English) Zbl 1456.35091 Nonlinear Anal., Real World Appl. 57, Article ID 103192, 28 p. (2021). Reviewer: Joseph Shomberg (Providence) MSC: 35G61 49J20 35Q92 PDF BibTeX XML Cite \textit{H. Garcke} et al., Nonlinear Anal., Real World Appl. 57, Article ID 103192, 28 p. (2021; Zbl 1456.35091) Full Text: DOI
Abbad, Abir; Abdelmalek, Salem; Bendoukha, Samir; Gambino, Gaetana A generalized Degn-Harrison reaction-diffusion system: asymptotic stability and non-existence results. (English) Zbl 1454.35213 Nonlinear Anal., Real World Appl. 57, Article ID 103191, 28 p. (2021). MSC: 35K57 35K51 35B40 92D25 PDF BibTeX XML Cite \textit{A. Abbad} et al., Nonlinear Anal., Real World Appl. 57, Article ID 103191, 28 p. (2021; Zbl 1454.35213) Full Text: DOI
Cao, Xinru; Tao, Youshan Boundedness and stabilization enforced by mild saturation of taxis in a producer-scrounger model. (English) Zbl 07284886 Nonlinear Anal., Real World Appl. 57, Article ID 103189, 24 p. (2021). Reviewer: Christian Stinner (Darmstadt) MSC: 92C17 35Q92 35B40 35K51 35K55 PDF BibTeX XML Cite \textit{X. Cao} and \textit{Y. Tao}, Nonlinear Anal., Real World Appl. 57, Article ID 103189, 24 p. (2021; Zbl 07284886) Full Text: DOI
Liu, Qian; Liu, Shuang; Lam, King-Yeung Stacked invasion waves in a competition-diffusion model with three species. (English) Zbl 1454.35216 J. Differ. Equations 271, 665-718 (2021). MSC: 35K57 35K58 35K45 35B40 35D40 35F21 PDF BibTeX XML Cite \textit{Q. Liu} et al., J. Differ. Equations 271, 665--718 (2021; Zbl 1454.35216) Full Text: DOI
Huang, Chuangxia; Tan, Yanxiang Global behavior of a reaction-diffusion model with time delay and Dirichlet condition. (English) Zbl 1454.35214 J. Differ. Equations 271, 186-215 (2021). MSC: 35K57 35K51 35B40 47D06 35Q92 PDF BibTeX XML Cite \textit{C. Huang} and \textit{Y. Tan}, J. Differ. Equations 271, 186--215 (2021; Zbl 1454.35214) Full Text: DOI
Palagachev, Dian K.; Softova, Lubomira G. Generalized Morrey regularity of \(2 b\)-parabolic systems. (English) Zbl 1453.35037 Appl. Math. Lett. 112, Article ID 106838, 6 p. (2021). MSC: 35B65 35K41 35R05 35B45 35D35 PDF BibTeX XML Cite \textit{D. K. Palagachev} and \textit{L. G. Softova}, Appl. Math. Lett. 112, Article ID 106838, 6 p. (2021; Zbl 1453.35037) Full Text: DOI
Kowall, Chris; Marciniak-Czochra, Anna; Mikelić, Andro Long-time shadow limit for a reaction-diffusion-ODE system. (English) Zbl 1453.35030 Appl. Math. Lett. 112, Article ID 106790, 8 p. (2021). MSC: 35B40 35K57 35K51 PDF BibTeX XML Cite \textit{C. Kowall} et al., Appl. Math. Lett. 112, Article ID 106790, 8 p. (2021; Zbl 1453.35030) Full Text: DOI