×

Domain-dependent stability analysis of a reaction-diffusion model on compact circular geometries. (English) Zbl 1395.35121

Summary: In this work an activator-depleted reaction-diffusion system is investigated on polar coordinates with the aim of exploring the relationship and the corresponding influence of domain size on the types of possible diffusion-driven instabilities. Quantitative relationships are found in the form of necessary conditions on the area of a disk-shape domain with respect to the diffusion and reaction rates for certain types of diffusion-driven instabilities to occur. Robust analytical methods are applied to find explicit expressions for the eigenvalues and eigenfunctions of the diffusion operator on a disk-shape domain with homogenous Neumann boundary conditions in polar coordinates. Spectral methods are applied using Chebyshev nonperiodic grid for the radial variable and Fourier periodic grid for the angular variable to verify the nodal lines and eigen-surfaces subject to the proposed analytical findings. The full classification of the parameter space in light of the bifurcation analysis is obtained and numerically verified by finding the solutions of the partitioning curves inducing such a classification. Spatiotemporal periodic behavior is demonstrated in the numerical solutions of the system for a proposed choice of parameters and a rigorous proof of the existence of infinitely many such points in the parameter plane is presented under a restriction on the area of the domain, with a lower bound in terms of reaction-diffusion rates.

MSC:

35K57 Reaction-diffusion equations
35B35 Stability in context of PDEs
35P15 Estimates of eigenvalues in context of PDEs

Software:

COMSOL; DistMesh; Matlab
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Baines, M. J., Moving Finite Elements, (1994), Clarendon Press, UK · Zbl 0817.65082
[2] Barreira, R.; Elliot, C. M.; Madzvamuse, A., The surface finite element method for pattern formation on evolving biological surfaces, Online J. Math. Biol., 29, (2011) · Zbl 1234.92007
[3] Barreira, R.; Elliot, C. M.; Madzvamuse, A., The surface finite element method for pattern formation on evolving biological surfaces, J. Math. Biol., 63, 1095-1119, (2011) · Zbl 1234.92007
[4] Bonito, A.; Kyza, I.; Nochetto, R., Time-discrete higher-order ALE formulations: stability, SIAM J. Numer. Anal., 51, 577-604, (2013) · Zbl 1267.65114
[5] Brown, A. G.; Weber, H. J., Mathematical Methods for Physicists, (2001), Harcourt Academic Press, USA · Zbl 0970.00005
[6] Campillo-Funollet, E., Venkataraman, C. & Madzvamuse, A. [2016] “A Bayesian approach to parameter identification with an application to Turing systems,” https://doi.org/arXiv:1605.04718 [q-bio.QM].
[7] Chaplain, M. A. J.; Ganish, M.; Graham, I. G., Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth, J. Math. Biol., 42, 387-423, (2001) · Zbl 0988.92003
[8] Dimitriu, G.; Stefanescu, R., Numerical experiments for reaction-diffusion equations using exponential integrators, Numerical Analysis and Its Applications, NAA 2008, 5434, 249-256, (2008), Springer, Berlin, Heidelberg · Zbl 1233.65042
[9] Erneux, T.; Nicolis, G., Propagating waves in discrete bistable reaction-diffusion systems, Physica D, 67, 237-244, (1993) · Zbl 0787.92010
[10] Estep, D. J.; Lasron, M. G.; Williams, R. D., Estimating the error of numerical solutions of systems of reaction-diffusion equations, Mem. Amer. Math. Soc., 146, (2000)
[11] Ghorai, S.; Poria, S., Turing pattern induced by cross-diffusion in a predator-prey system in presence of habitat complexity, Chaos Solit. Fract., 91, 421-429, (2016) · Zbl 1372.92078
[12] Gierer, A.; Meinhardt, H., A theory of biological pattern formation, Kybernetik, 12, 30-39, (1972)
[13] Henry, B. I.; Wearne, S. L., Existence of Turing instabilities in a two-species fractional reaction-diffusion system, J. Comput. Phys., 62, 870-887, (2007) · Zbl 1103.35047
[14] Huang, W.; Russell, R. D., Adaptive Moving Mesh Methods, (2011), Springer-Verlag, NY · Zbl 1227.65090
[15] Iron, D.; Wei, J.; Winter, M., Stability analysis of Turing patterns generated by the Schnakenberg model, J. Math. Biol., 49, 358-390, (2003) · Zbl 1057.92011
[16] Keshet, L. E., Classics in Applied Mathematics, Mathematical models in biology, (2005), SIAM, Philadelphia, PA, USA
[17] Kim, M.; Bertram, M.; Pollmann, M.; Oertzen, A. V.; Mikhialov, A. S.; Rotermund, H. H.; Ertl, G., Controlling chemical turbulance by global delayed feedback: pattern formation in catalytic CO oxidation on pt(110), Science, 5520, 891-921, (2001)
[18] Lakkis, O.; Madzvamuse, A.; Venkataraman, C., Implicit-explicit timestepping with finite element approximation of reaction-diffusion systems on evolving domains, SIAM J. Numer. Anal., 51, 2309-2330, (2014) · Zbl 1280.65111
[19] Larson, M. G.; Bengzon, F., The Finite Element Method: Theory, Implementation and Applications, 10, (2013), Springer-Verlag, Berlin, Heidelberg · Zbl 1263.65116
[20] Lebedev, N. N., Special functions and applications, SIAM Rev., 7, 577-580, (1965)
[21] Lee, K. J.; McCormick, W. D.; Pearson, J. E., Experimental observation of self-replicating spots in a reaction-diffusion system, Nature, 369, 215-218, (1994)
[22] Lengyel, I.; Epstein, I. R., A chemical approach to designing Turing pattern in reaction-diffusion systems, Proc. Natl. Acad. Sci. USA, 89, 3977-3979, (1992) · Zbl 0745.92002
[23] Liu, P.; Shi, J.; Wang, Y.; Feng, X., Bifurcation analysis of reaction-diffusion Schnakenberg model, J. Math. Chem., 51, 2001-2019, (2013) · Zbl 1320.92088
[24] Mackenzie, J. A.; Madzvamuse, A., Analysis of stability and convergence of finite difference methods for a reaction-diffusion problem on a one-dimensional growing domain, IMA J. Numer. Anal., 31, 212-232, (2011) · Zbl 1211.65118
[25] Madzvamuse, A. [2000] “A numerical approach to the study of spatial pattern formation,” PhD thesis, Math. Inst., University of Oxford, UK.
[26] Madzvamuse, A.; Maini, P. K.; Wathen, A. J., A moving grid finite element method applied to a model biological pattern generator, J. Comput. Phys., 190, 478-500, (2003) · Zbl 1029.65113
[27] Madzvamuse, A.; Maini, P. K.; Wathen, A. J., A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains, J. Sci. Comp., 24, (2005) · Zbl 1080.65091
[28] Madzvamuse, A., Time-stepping schemes for moving finite elements applied to reaction-diffusion systems on fixed and growing domains, J. Comput. Phys., 214, 239-263, (2006) · Zbl 1089.65098
[29] Madzvamuse, A.; Maini, P. K., Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains, J. Comput. Phys., 225, 100-119, (2007) · Zbl 1122.65076
[30] Madzvamuse, A., Stability analysis of reaction-diffusion systems with constant coefficients on growing domains, Int. J. Dyn. Syst. Diff. Eqs., 1, 250-262, (2008) · Zbl 1171.35413
[31] Madzvamuse, A.; Gaffney, E. A.; Maini, P. K., Stability analysis of non-autonomous reaction-diffusion systems: the effect of growing domains, J. Math. Biol., 61, 133-164, (2010) · Zbl 1202.92010
[32] Madzvamuse, A.; Chung, A. H. W., Fully implicit time-stepping schemes and non-linear solvers for systems of reaction-diffusion equations, J. Appl. Math. Comp., 244, 361-374, (2014) · Zbl 1336.65167
[33] Madzvamuse, A.; Chung, A. H. W., The bulk-surface finite element method for reaction-diffusion systems on stationary volumes, Finite Elements Anal. Des., 108, 1-21, (2015)
[34] Madzvamuse, A.; Chung, A. H. W.; Venkataraman, C., Stability analysis and simulations of bulk-surface reaction-diffusion systems, Proc. Roy. Soc. A, 472, 891-921, (2015)
[35] Madzvamuse, A.; Ndakwo, H. S.; Barreira, R., Stability analysis of reaction-diffusion models on evolving domains: the effect of cross-diffusion, Discr. Contin. Dyn. Syst., 36, 2133-2170, (2016) · Zbl 1332.35173
[36] Maini, P. K.; Myerscough, M. R., Boundary-driven instability, Appl. Math. Lett., 10, 1-4, (1997) · Zbl 0886.35075
[37] Murray, J. D., Spatial Models and Biomedical Applications, Mathematical biology, (2013), Springer, NY
[38] Perko, L., Differential Equations and Dynamical Systems, (1996), Springer, NY · Zbl 0854.34001
[39] Persson, P.-O. [2005] “Mesh generation for implicit geometries,” PhD thesis, M. I. T.
[40] Sarfaraz, W.; Madzvamuse, A., Classification of parameter spaces for a reaction-diffusion model on stationary domains, Chaos Solit. Fract., 103, 33-51, (2017) · Zbl 1375.35258
[41] Schnakenberg, J., Simple chemical reaction systems with limit cycle behavior, J. Theor. Biol., 81, 389-400, (1979)
[42] Schnepf, A.; Leitner, D., FEM simulation of below ground processes on a 3-dimensional root system geometry using distmesh and COMSOL multiphysics, Proc. ALGORITMY, 18, 321-330, (2009) · Zbl 1170.92020
[43] Smith, I. M.; Griffiths, D. V., Finite Element Method and Data Processing, Programming the finite element method, (1988), John Wiley & Sons, NY · Zbl 0925.73817
[44] Spanier, J.; Oldham, K. B., An Atlas of Functions, (1987), Springer-Verlag, Washington, USA · Zbl 0618.65007
[45] Strang, G.; Persson, P. O., A simple mesh generator in MATLAB, SIAM Rev., 46, 329-345, (2004) · Zbl 1061.65134
[46] Thomee, V.; Wahalbin, L., On Galerkin methods in semilinear parabolic problems, SIAM J. Numer. Anal., 12, 378-389, (1975) · Zbl 0307.35007
[47] Trefethen, L. N., Spectral Methods in MATLAB, (2000), SIAM, Philadelphia, PA, USA · Zbl 0953.68643
[48] Turing, A. M., The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. Lond. B, 237, 37-72, (1952) · Zbl 1403.92034
[49] Venkataraman, C. [2011] “Reaction-diffusion systems on evolving domains with applications to the theory of biological pattern formation,” PhD thesis, Dep. Math., University of Sussex, UK.
[50] Venkataraman, C.; Lakkis, O.; Madzvamuse, A., Global existence for semilinear reaction-diffusion systems on evolving domains, J. Math. Biol., 64, 41-67, (2012) · Zbl 1284.35232
[51] Wegert, E., Complex functions and images, Comput. Meth. Funct. Th., 13, 3-10, (2013) · Zbl 1268.41009
[52] William, H. E., The Theory of Spherical and Ellipsoidal Harmonics, Adaptive moving mesh methods, (1931), Cambridge University Press, Archive, UK
[53] Xu, C.; Wei, J., Hopf bifurcation analysis in a one dimension Schnakenberg reaction-diffusion model, Nonlin. Anal.: Real World Appl., 13, 1961-1977, (2012) · Zbl 1257.35035
[54] Yan, S.; Lian, X.; Wang, W.; Upadhyay, R. K., Spatiotemporal dynamics in a delayed diffusive predator model, J. Appl. Math. Comput., 224, 524-534, (2014) · Zbl 1334.92382
[55] Yi, F.; Wei, J.; Shi, J., Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Diff. Eqs., 246, 1944-1977, (2009) · Zbl 1203.35030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.