Deser, S.; Jackiw, R.; Polychronakos, A. P. Clebsch (string) decomposition in \(d=3\) field theory. (English) Zbl 0972.81198 Phys. Lett., A 279, No. 3-4, 151-153 (2001). Summary: We study the applicability of the intrinsically nonlinear Clebsch vector field decomposition into three scalars in the description of \(d=3\) field theories. In particular, we note and account for the incompleteness of this parameterization when attempting to use it in variational principles involving Maxwell and Chern-Simons actions. Similarities with string decomposition of metrics and their actions are also pointed out. Cited in 5 Documents MSC: 81T99 Quantum field theory; related classical field theories Keywords:nonlinear vector field decomposition; variational principles; parameterization incompleteness PDF BibTeX XML Cite \textit{S. Deser} et al., Phys. Lett., A 279, No. 3--4, 151--153 (2001; Zbl 0972.81198) Full Text: DOI arXiv References: [1] Woltier, L., Proc. natl. acad. sci., 44, 489, (1958) [2] Clebsch, A., J. reine angew. math., 56, 1, (1859) [3] Berger, M.; Field, G.; Moffatt, H.; Tsinober, A.; Arnold, V.; Khesin, B., J. fluid mech., Ann. rev. fluid mech., Topological methods in hydrodynamics, 24, 281, (1998), Springer Berlin, See, for example [4] Lamb, H., Hydrodynamics, (1932), Cambridge University Press Cambridge, p. 248 · JFM 26.0868.02 [5] Jackiw, R.; Pi, S.-Y., Phys. rev. D, 61, 105015, (2000) [6] Sternberg, S., Lectures on differential geometry, (1964), Prentice Hall Englewood Cliffs, NJ, See, for example · Zbl 0129.13102 [7] Deser, S.; Jackiw, R.; Templeton, S., Ann. phys., 140, 372, (1982) [8] Regge, T.; Teitelboim, C.; Deser, S.; Robinson, D.C.; Pirani, F.A.E., (), Phys. rev. D, 14, 3302, (1976) [9] Jackiw, R.; Nair, V.P.; Pi, S.-Y., Phys. rev. D, 62, 085018, (2000) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.