Dağli, Muhammet Cihat; Yaying, Taja Some new paranormed sequence spaces derived by regular Tribonacci matrix. (English) Zbl 07666999 J. Anal. 31, No. 1, 109-127 (2023). MSC: 46A45 40C05 46B45 47B37 47B07 PDF BibTeX XML Cite \textit{M. C. Dağli} and \textit{T. Yaying}, J. Anal. 31, No. 1, 109--127 (2023; Zbl 07666999) Full Text: DOI OpenURL
Kumar, Sudhanshu; Verma, Arvind Kumar Generalized Cesàro vector-valued sequence space using modulus function. (English) Zbl 1507.46003 Thai J. Math. 20, No. 2, 797-811 (2022). MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{A. K. Verma}, Thai J. Math. 20, No. 2, 797--811 (2022; Zbl 1507.46003) Full Text: Link OpenURL
Sharma, Sunil K. Some classes of sequence spaces defined by a Musielak-Orlicz function. (English) Zbl 1493.46008 Acta Univ. Sapientiae, Math. 13, No. 2, 494-505 (2021). MSC: 46A45 40A05 PDF BibTeX XML Cite \textit{S. K. Sharma}, Acta Univ. Sapientiae, Math. 13, No. 2, 494--505 (2021; Zbl 1493.46008) Full Text: DOI OpenURL
Paul, Avinoy On some new paranormed sequence spaces defined by the matrix \((\hat{D}) (\hat{r}, 0, 0, \hat{s})\). (English) Zbl 1492.46004 Proyecciones 40, No. 3, 779-796 (2021). MSC: 46A45 40A05 40A25 40C05 40H05 46A35 47A10 PDF BibTeX XML Cite \textit{A. Paul}, Proyecciones 40, No. 3, 779--796 (2021; Zbl 1492.46004) Full Text: DOI OpenURL
Kumar, Beri V. Senthil; Dutta, Hemen; Sabarinathan, Sriramulu Stabilities and instabilities of an advanced quartic functional equation in various normed spaces. (English) Zbl 1473.39048 Math. Methods Appl. Sci. 44, No. 14, 11469-11481 (2021). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{B. V. S. Kumar} et al., Math. Methods Appl. Sci. 44, No. 14, 11469--11481 (2021; Zbl 1473.39048) Full Text: DOI OpenURL
Mursaleen, M.; Sharma, Sunil K.; Qamaruddin, S. Some sequence spaces over \(n\)-normed spaces defined by fractional difference operator and Musielak-Orlicz function. (English) Zbl 1481.46004 Korean J. Math. 29, No. 2, 211-225 (2021). MSC: 46A45 40A05 40C05 PDF BibTeX XML Cite \textit{M. Mursaleen} et al., Korean J. Math. 29, No. 2, 211--225 (2021; Zbl 1481.46004) Full Text: DOI OpenURL
Ercan, Sinan On deferred Cesàro mean in paranormed spaces. (English) Zbl 1482.40003 Korean J. Math. 29, No. 1, 169-177 (2021). MSC: 40A35 40J05 PDF BibTeX XML Cite \textit{S. Ercan}, Korean J. Math. 29, No. 1, 169--177 (2021; Zbl 1482.40003) Full Text: DOI OpenURL
Alp, Pınar Zengin A new paranormed sequence space defined by Catalan conservative matrix. (English) Zbl 1481.46003 Math. Methods Appl. Sci. 44, No. 9, 7651-7658 (2021). MSC: 46A45 46B45 40C05 PDF BibTeX XML Cite \textit{P. Z. Alp}, Math. Methods Appl. Sci. 44, No. 9, 7651--7658 (2021; Zbl 1481.46003) Full Text: DOI OpenURL
Yeşılkayagıl, Medıne; Başar, Feyzi \(AK(\vartheta)\)-property of double series spaces. (English) Zbl 1475.46004 Bull. Malays. Math. Sci. Soc. (2) 44, No. 2, 881-889 (2021). MSC: 46A45 40C05 40B05 PDF BibTeX XML Cite \textit{M. Yeşılkayagıl} and \textit{F. Başar}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 2, 881--889 (2021; Zbl 1475.46004) Full Text: DOI OpenURL
Verma, A. K.; Kumar, Sudhanshu Lacunary statistical convergence of order \(\alpha, \beta\) for generalized vector-valued difference sequence spaces. (English) Zbl 1458.40009 J. Anal. 28, No. 3, 711-726 (2020). MSC: 40A35 40C05 46A45 PDF BibTeX XML Cite \textit{A. K. Verma} and \textit{S. Kumar}, J. Anal. 28, No. 3, 711--726 (2020; Zbl 1458.40009) Full Text: DOI OpenURL
Srivastava, P. D.; Kumar, Sudhanshu Generalized vector valued paranormed sequence space using Orlicz function. (English) Zbl 1450.46004 J. Anal. 28, No. 1, 71-87 (2020). MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{P. D. Srivastava} and \textit{S. Kumar}, J. Anal. 28, No. 1, 71--87 (2020; Zbl 1450.46004) Full Text: DOI OpenURL
Raj, Kuldip; Sharma, Charu A relation of Banach limit and difference matrix to generate some Orlicz sequence spaces. (English) Zbl 1468.46013 Proyecciones 38, No. 4, 637-652 (2019). MSC: 46A45 40C05 40J05 PDF BibTeX XML Cite \textit{K. Raj} and \textit{C. Sharma}, Proyecciones 38, No. 4, 637--652 (2019; Zbl 1468.46013) Full Text: DOI OpenURL
Raj, Kuldip; Pandoh, Suruchi; Choudhary, Anu Orlicz sequence spaces of four dimensional regular matrix and their closed ideal. (English) Zbl 1465.46007 Honam Math. J. 41, No. 4, 725-744 (2019). MSC: 46A45 40F05 40B05 PDF BibTeX XML Cite \textit{K. Raj} et al., Honam Math. J. 41, No. 4, 725--744 (2019; Zbl 1465.46007) Full Text: DOI OpenURL
Wang, Zhihua Stability of a quintic functional equation in matrix paranormed spaces. (English) Zbl 1449.39030 J. Shanghai Norm. Univ., Nat. Sci. 48, No. 3, 231-241 (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Z. Wang}, J. Shanghai Norm. Univ., Nat. Sci. 48, No. 3, 231--241 (2019; Zbl 1449.39030) OpenURL
Raj, Kuldip; Anand, Renu; Sharma, Charu Matrix transformations on lacunary Orlicz sequence spaces and their Toeplitz duals. (English) Zbl 1442.46003 Houston J. Math. 45, No. 3, 831-851 (2019). Reviewer: Toivo Leiger (Tartu) MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{K. Raj} et al., Houston J. Math. 45, No. 3, 831--851 (2019; Zbl 1442.46003) Full Text: Link OpenURL
Tripathy, Nilambar; Dutta, Salila Certain properties of the sequence space \(\tilde \ell \left ({M,p,q} \right)\) of non-absolute type using four tuple band matrix \(B\left ({\tilde r,\tilde s,\tilde t,\tilde u} \right)\). (Certain properties of the sequence space \(\tilde \ell \left ({M,p,q} \right)\) of non-absolute type using four tupple band matrix \(B\left ({\tilde r,\tilde s,\tilde t,\tilde u} \right)\).) (English) Zbl 1449.46010 Southeast Asian Bull. Math. 43, No. 1, 139-152 (2019). MSC: 46A45 40C05 46B45 PDF BibTeX XML Cite \textit{N. Tripathy} and \textit{S. Dutta}, Southeast Asian Bull. Math. 43, No. 1, 139--152 (2019; Zbl 1449.46010) OpenURL
Alotaibi, Abdullah; Aljahili, Alaa Mohammed; Mohiuddine, S. A. Generalized statistical convergence of double sequences in paranormed spaces. (English) Zbl 1438.40010 Int. J. Anal. Appl. 17, No. 5, 711-721 (2019). MSC: 40A35 40B05 40J05 PDF BibTeX XML Cite \textit{A. Alotaibi} et al., Int. J. Anal. Appl. 17, No. 5, 711--721 (2019; Zbl 1438.40010) Full Text: Link OpenURL
Kaskasem, Prondanai; Klin-Eam, Chakkrid On approximation solutions of the Cauchy-Jensen and the additive-quadratic functional equation in paranormed spaces. (English) Zbl 1438.39048 Int. J. Anal. Appl. 17, No. 3, 369-387 (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{P. Kaskasem} and \textit{C. Klin-Eam}, Int. J. Anal. Appl. 17, No. 3, 369--387 (2019; Zbl 1438.39048) Full Text: Link OpenURL
Basar, Feyzi; Yesilkayagil, Medine A survey for paranormed sequence spaces generated by infinite matrices. (English) Zbl 1436.46005 TWMS J. Pure Appl. Math. 10, No. 1, 3-38 (2019). MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{F. Basar} and \textit{M. Yesilkayagil}, TWMS J. Pure Appl. Math. 10, No. 1, 3--38 (2019; Zbl 1436.46005) Full Text: Link OpenURL
Başar, Feyzi; Çapan, Hüsamettin On the paranormed space \(\mathcal{M}_{u}(t)\) of double sequences. (English) Zbl 1424.46008 Bol. Soc. Parana. Mat. (3) 37, No. 3, 99-111 (2019). MSC: 46A45 40C05 40B05 PDF BibTeX XML Cite \textit{F. Başar} and \textit{H. Çapan}, Bol. Soc. Parana. Mat. (3) 37, No. 3, 99--111 (2019; Zbl 1424.46008) Full Text: Link OpenURL
Çapan, Hüsamettin; Başar, Feyzi On the paranormed space \(\mathcal{L}(t)\) of double sequences. (English) Zbl 1499.40055 Filomat 32, No. 3, 1043-1053 (2018). MSC: 40B05 40C05 46A45 PDF BibTeX XML Cite \textit{H. Çapan} and \textit{F. Başar}, Filomat 32, No. 3, 1043--1053 (2018; Zbl 1499.40055) Full Text: DOI OpenURL
Sharma, Sunil K.; Mohiuddine, S. A.; Sharma, Ajay K.; Sharma, T. K. Sequence spaces over \(n\)-normed spaces defined by a Musielak-Orlicz function of order \(( \alpha, \beta )\). (English) Zbl 1474.46018 Facta Univ., Ser. Math. Inf. 33, No. 5, 721-738 (2018). MSC: 46A45 40A05 40C05 PDF BibTeX XML Cite \textit{S. K. Sharma} et al., Facta Univ., Ser. Math. Inf. 33, No. 5, 721--738 (2018; Zbl 1474.46018) Full Text: Link OpenURL
Rassias, J. M.; Murali, R.; Rassias, M. J.; Vithya, V.; Raj, A. A. General solution and stability of Quattuorvigintic functional equation in matrix paranormed spaces. (English) Zbl 1434.39022 Tbil. Math. J. 11, No. 2, 97-109 (2018). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B52 39B82 47H10 PDF BibTeX XML Cite \textit{J. M. Rassias} et al., Tbil. Math. J. 11, No. 2, 97--109 (2018; Zbl 1434.39022) Full Text: DOI Euclid OpenURL
Khan, Vakeel A.; Alshlool, Kamal M. A. S.; Abdullah, Sameera A. A.; Rababah, Rami K. A.; Ahmad, Ayaz Some new classes of paranorm ideal convergent double sequences of sigma-bounded variation over \(n\)-normed spaces. (English) Zbl 1438.46004 Cogent Math. Stat. 5, Article ID 1460029, 13 p. (2018). MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{V. A. Khan} et al., Cogent Math. Stat. 5, Article ID 1460029, 13 p. (2018; Zbl 1438.46004) Full Text: DOI OpenURL
Sharma, Sunil K.; Raj, Kuldip; Sharma, Ajay K. Some sequence spaces of invariant means and lacunary defined by a Musielak-Orlicz function over \(n\)-normed spaces. (English) Zbl 1398.46007 Tbil. Math. J. 11, No. 1, 31-47 (2018). MSC: 46A45 40J05 PDF BibTeX XML Cite \textit{S. K. Sharma} et al., Tbil. Math. J. 11, No. 1, 31--47 (2018; Zbl 1398.46007) Full Text: DOI OpenURL
Raj, Kuldip; Sharma, Charu Applications of infinite matrices in non-Newtonian calculus for paranormed spaces and their Toeplitz duals. (English) Zbl 1488.46013 Facta Univ., Ser. Math. Inf. 32, No. 4, 527-549 (2017). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{K. Raj} and \textit{C. Sharma}, Facta Univ., Ser. Math. Inf. 32, No. 4, 527--549 (2017; Zbl 1488.46013) OpenURL
Karaisa, Ali; Karabıyık, Ümit On some properties paranormed sequence spaces generated by generalized sequence means and core theorems. (English) Zbl 1462.46006 Thai J. Math. 15, No. 3, 641-654 (2017). MSC: 46A45 40J05 40C05 PDF BibTeX XML Cite \textit{A. Karaisa} and \textit{Ü. Karabıyık}, Thai J. Math. 15, No. 3, 641--654 (2017; Zbl 1462.46006) Full Text: Link OpenURL
Wang, Zhihua; Sahoo, Prasanna K. Approximation of the mixed additive and cubic functional equation in paranormed spaces. (English) Zbl 1412.39037 J. Nonlinear Sci. Appl. 10, No. 5, 2633-2641 (2017). MSC: 39B82 39B72 35A17 47H10 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{P. K. Sahoo}, J. Nonlinear Sci. Appl. 10, No. 5, 2633--2641 (2017; Zbl 1412.39037) Full Text: DOI OpenURL
Yeşilkayagil, Medine; Başar, Feyzi Domain of the Nörlund matrix in some of Maddox’s spaces. (English) Zbl 1379.46010 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 87, No. 3, 363-371 (2017). MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{M. Yeşilkayagil} and \textit{F. Başar}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 87, No. 3, 363--371 (2017; Zbl 1379.46010) Full Text: DOI OpenURL
Başar, Feyzi; Çapan, Hüsamettin On the paranormed spaces of regularly convergent double sequences. (English) Zbl 1391.46007 Result. Math. 72, No. 1-2, 893-906 (2017). MSC: 46A45 40C05 40B05 PDF BibTeX XML Cite \textit{F. Başar} and \textit{H. Çapan}, Result. Math. 72, No. 1--2, 893--906 (2017; Zbl 1391.46007) Full Text: DOI OpenURL
Kim, Chang Il; Shin, Chang Hyeob The Hyers-Ulam stability of a quadratic functional equation with involution in paranormed spaces. (English) Zbl 1432.39022 Korean J. Math. 24, No. 1, 41-49 (2016). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{C. I. Kim} and \textit{C. H. Shin}, Korean J. Math. 24, No. 1, 41--49 (2016; Zbl 1432.39022) Full Text: DOI OpenURL
Raj, K.; Sharma, C. Applications of strongly convergent sequences to Fourier series by means of modulus functions. (English) Zbl 1399.40003 Acta Math. Hung. 150, No. 2, 396-411 (2016). MSC: 40A05 40C05 46A45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{C. Sharma}, Acta Math. Hung. 150, No. 2, 396--411 (2016; Zbl 1399.40003) Full Text: DOI OpenURL
Wang, Zhihua; Sahoo, Prasanna K. Stability of the pexiderized quadratic functional equation in paranormed spaces. (English) Zbl 1462.39028 Filomat 30, No. 14, 3829-3837 (2016). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{P. K. Sahoo}, Filomat 30, No. 14, 3829--3837 (2016; Zbl 1462.39028) Full Text: DOI OpenURL
Altundag, Selma; Abay, Merve Some spaces of \(A\)-ideal convergent sequences defined by Musielak-Orlicz function. (English) Zbl 1369.46003 Konuralp J. Math. 4, No. 2, 169-176 (2016). MSC: 46A45 PDF BibTeX XML Cite \textit{S. Altundag} and \textit{M. Abay}, Konuralp J. Math. 4, No. 2, 169--176 (2016; Zbl 1369.46003) Full Text: Link OpenURL
Raj, Kuldip; Anand, Renu On some new difference sequence spaces derived by using Riesz mean and a Musielak-Orlicz function. (English) Zbl 1370.46005 Konuralp J. Math. 4, No. 2, 56-69 (2016). MSC: 46A45 40C05 46J05 PDF BibTeX XML Cite \textit{K. Raj} and \textit{R. Anand}, Konuralp J. Math. 4, No. 2, 56--69 (2016; Zbl 1370.46005) OpenURL
Jamwal, Seema; Raj, Kuldip An Orlicz extension of difference modular sequence spaces. (English) Zbl 1412.40009 Bol. Soc. Parana. Mat. (3) 33, No. 2, 31-57 (2015). MSC: 40A05 46A45 PDF BibTeX XML Cite \textit{S. Jamwal} and \textit{K. Raj}, Bol. Soc. Parana. Mat. (3) 33, No. 2, 31--57 (2015; Zbl 1412.40009) Full Text: Link OpenURL
Pandoh, Suruchi; Raj, Kuldip Generalised Cesàro-Orlicz double sequence spaces over \(n\)-normed spaces. (English) Zbl 1412.46014 J. Nonlinear Anal. Optim. 6, No. 2, 53-65 (2015). MSC: 46A45 40J05 PDF BibTeX XML Cite \textit{S. Pandoh} and \textit{K. Raj}, J. Nonlinear Anal. Optim. 6, No. 2, 53--65 (2015; Zbl 1412.46014) Full Text: Link OpenURL
Jalal, Tanweer; Ahmad, Reyaz A new generalized vector-valued paranormed sequence space using modulus function. (English) Zbl 1371.40011 Malaya J. Mat. 3, No. 1, 110-118 (2015). MSC: 40H05 46A45 PDF BibTeX XML Cite \textit{T. Jalal} and \textit{R. Ahmad}, Malaya J. Mat. 3, No. 1, 110--118 (2015; Zbl 1371.40011) Full Text: Link OpenURL
Çapan, Hüsamettin; Başar, Feyzi Domain of the double band matrix defined by Fibonacci numbers in the Maddox’s space \(\ell(p)\). (English) Zbl 1463.46011 Electron. J. Math. Anal. Appl. 3, No. 2, 31-45 (2015). MSC: 46A45 46B45 46A35 PDF BibTeX XML Cite \textit{H. Çapan} and \textit{F. Başar}, Electron. J. Math. Anal. Appl. 3, No. 2, 31--45 (2015; Zbl 1463.46011) Full Text: Link OpenURL
Candan, Murat; Kilinç, Gülsen A different look for paranormed Riesz sequence space derived by Fibonacci matrix. (English) Zbl 1352.46006 Konuralp J. Math. 3, No. 2, 62-76 (2015). MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{M. Candan} and \textit{G. Kilinç}, Konuralp J. Math. 3, No. 2, 62--76 (2015; Zbl 1352.46006) Full Text: Link OpenURL
Esi, Ayhan; Sharma, S. K. Some paranormed sequence spaces defined by a Musielak-Orlicz function over \(n\)-normed spaces. (English) Zbl 1352.46007 Konuralp J. Math. 3, No. 1, 16-28 (2015). MSC: 46A45 40C05 40J05 PDF BibTeX XML Cite \textit{A. Esi} and \textit{S. K. Sharma}, Konuralp J. Math. 3, No. 1, 16--28 (2015; Zbl 1352.46007) Full Text: Link OpenURL
Abyar, Elahe; Ghaemi, Mohammad Bagher Hausdorff measure of noncompactness of matrix operators on some sequence spaces of a double sequential band matrix. (English) Zbl 1330.47065 J. Inequal. Appl. 2015, Paper No. 406, 19 p. (2015). MSC: 47H08 46A45 PDF BibTeX XML Cite \textit{E. Abyar} and \textit{M. B. Ghaemi}, J. Inequal. Appl. 2015, Paper No. 406, 19 p. (2015; Zbl 1330.47065) Full Text: DOI OpenURL
Sharma, S. K.; Esi, Ayhan \(\mu\)-statistical convergent double lacunary sequence spaces. (English) Zbl 1348.46007 Afr. Mat. 26, No. 7-8, 1467-1481 (2015). MSC: 46A45 40A35 40B05 PDF BibTeX XML Cite \textit{S. K. Sharma} and \textit{A. Esi}, Afr. Mat. 26, No. 7--8, 1467--1481 (2015; Zbl 1348.46007) Full Text: DOI OpenURL
Bae, Jae-Hyeong; Park, Won-Gil On the Ulam stability of the Cauchy-Jensen equation and the additive-quadratic equation. (English) Zbl 1328.39037 J. Nonlinear Sci. Appl. 8, No. 5, 710-718 (2015). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{J.-H. Bae} and \textit{W.-G. Park}, J. Nonlinear Sci. Appl. 8, No. 5, 710--718 (2015; Zbl 1328.39037) Full Text: DOI Link OpenURL
Candan, Murat; Güneş, Asuman Paranormed sequence space of non-absolute type founded using generalized difference matrix. (English) Zbl 1325.46006 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 85, No. 2, 269-276 (2015). MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{M. Candan} and \textit{A. Güneş}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 85, No. 2, 269--276 (2015; Zbl 1325.46006) Full Text: DOI OpenURL
Raj, Kuldip; Sharma, Sunil Kumar Applications of double lacunary sequences to \(n\)-norm. (English) Zbl 1351.46008 Acta Univ. Sapientiae, Math. 7, No. 1, 67-88 (2015). MSC: 46A45 40B05 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Acta Univ. Sapientiae, Math. 7, No. 1, 67--88 (2015; Zbl 1351.46008) Full Text: DOI OpenURL
Bae, Jae-Hyeong; Park, Won-Gil Approximate quadratic forms in paranormed spaces. (English) Zbl 1325.39019 J. Comput. Anal. Appl. 19, No. 4, 740-750 (2015). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{J.-H. Bae} and \textit{W.-G. Park}, J. Comput. Anal. Appl. 19, No. 4, 740--750 (2015; Zbl 1325.39019) OpenURL
Jarczyk, Justyna; Matkowski, Janusz Uniform convexity of paranormed generalizations of \(L^{p}\) spaces. (English) Zbl 1332.46020 J. Convex Anal. 22, No. 1, 117-144 (2015). MSC: 46B20 46A16 46E30 PDF BibTeX XML Cite \textit{J. Jarczyk} and \textit{J. Matkowski}, J. Convex Anal. 22, No. 1, 117--144 (2015; Zbl 1332.46020) Full Text: arXiv Link OpenURL
Sharma, Sunil K. Generalized sequence spaces defined by a sequence of moduli. (English) Zbl 1336.46008 J. Egypt. Math. Soc. 23, No. 1, 73-77 (2015). MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{S. K. Sharma}, J. Egypt. Math. Soc. 23, No. 1, 73--77 (2015; Zbl 1336.46008) Full Text: DOI OpenURL
Raj, Kuldip; Anand, Renu; Jamwal, Seema Some double \(\lambda\)-convergent sequence spaces over \(n\)-normed spaces. (English) Zbl 1339.46006 Aust. J. Math. Anal. Appl. 12, No. 1, Article No. 6, 16 p. (2015). MSC: 46A45 40A05 PDF BibTeX XML Cite \textit{K. Raj} et al., Aust. J. Math. Anal. Appl. 12, No. 1, Article No. 6, 16 p. (2015; Zbl 1339.46006) Full Text: Link OpenURL
Raj, Kuldip On certain classes of generalized sequences. (English) Zbl 1357.46008 Aligarh Bull. Math. 33, No. 1-2, 77-85 (2014). MSC: 46A45 40A05 40C05 PDF BibTeX XML Cite \textit{K. Raj}, Aligarh Bull. Math. 33, No. 1--2, 77--85 (2014; Zbl 1357.46008) OpenURL
Mohiuddine, Syed Abdul; Raj, Kuldip; Alotaibi, Abdullah Generalized spaces of double sequences for Orlicz functions and bounded-regular matrices over \(n\)-normed spaces. (English) Zbl 1338.46007 J. Inequal. Appl. 2014, Paper No. 332, 16 p. (2014). MSC: 46A45 40B05 40J05 PDF BibTeX XML Cite \textit{S. A. Mohiuddine} et al., J. Inequal. Appl. 2014, Paper No. 332, 16 p. (2014; Zbl 1338.46007) Full Text: DOI OpenURL
Raj, Kuldip; Sharma, Sunil K.; Sharma, Ajay K. Some double sequence spaces defined by a sequence of Orlicz functions over \(n\)-normed spaces. (English) Zbl 1338.46009 Sci. Math. Jpn. 77, No. 1, 69-81 (2014). MSC: 46A45 40J05 40B05 PDF BibTeX XML Cite \textit{K. Raj} et al., Sci. Math. Jpn. 77, No. 1, 69--81 (2014; Zbl 1338.46009) Full Text: Link OpenURL
Yilmaz, Esra Sümeyra; Başar, Feyzi Some geometric properties of the domain of the triangle \(\tilde A\) in the sequence space \(\ell(p)\). (English) Zbl 1345.46010 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 63, No. 2, 163-176 (2014). MSC: 46B20 46B45 46A45 PDF BibTeX XML Cite \textit{E. S. Yilmaz} and \textit{F. Başar}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 63, No. 2, 163--176 (2014; Zbl 1345.46010) Full Text: DOI OpenURL
Raj, Kuldip; Sharma, Sunil K.; Jamwal, Seema Some double lacunary sequence spaces. (English) Zbl 1335.46003 Ital. J. Pure Appl. Math. 32, 347-358 (2014). MSC: 46A45 40A05 40C05 40B05 PDF BibTeX XML Cite \textit{K. Raj} et al., Ital. J. Pure Appl. Math. 32, 347--358 (2014; Zbl 1335.46003) Full Text: Link OpenURL
Raj, Kuldip; Sharma, Sunil K. Ideal convergent sequence spaces defined by Musielak-Orlicz function over \(n\)-normed spaces. (English) Zbl 1340.46013 Acta Univ. Apulensis, Math. Inform. 37, 233-244 (2014). MSC: 46A45 40A05 40A35 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Acta Univ. Apulensis, Math. Inform. 37, 233--244 (2014; Zbl 1340.46013) OpenURL
Mursaleen, Mohammad; Başar, Feyzi Domain of Cesâro mean of order one in some spaces of double sequences. (English) Zbl 1340.46011 Stud. Sci. Math. Hung. 51, No. 3, 335-356 (2014). Reviewer: Toivo Leiger (Tartu) MSC: 46A45 40C05 40B05 40G05 PDF BibTeX XML Cite \textit{M. Mursaleen} and \textit{F. Başar}, Stud. Sci. Math. Hung. 51, No. 3, 335--356 (2014; Zbl 1340.46011) Full Text: DOI OpenURL
Raj, Kuldip; Sharma, Sunil K. Some multiplier sequence spaces over \(n\)-normed spaces defined by a Musielak-Orlicz function. (English) Zbl 1324.46022 Serdica Math. J. 40, No. 1, 19-40 (2014). MSC: 46A45 40A05 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Serdica Math. J. 40, No. 1, 19--40 (2014; Zbl 1324.46022) OpenURL
Raj, Kuldip; Pandoh, Suruchi Some difference sequence spaces defined by a modulus function and an infinite matrix. (English) Zbl 1327.46011 J. Inequal. Spec. Funct. 5, No. 1, 21-32 (2014). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. Pandoh}, J. Inequal. Spec. Funct. 5, No. 1, 21--32 (2014; Zbl 1327.46011) OpenURL
Sharma, Sunil K.; Esi, Ayhan Double sequence spaces definedby a sequence of modulus functions over \(n\)-normed spaces. (English) Zbl 1320.46007 Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 53, No. 1, 117-134 (2014). MSC: 46A45 PDF BibTeX XML Cite \textit{S. K. Sharma} and \textit{A. Esi}, Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 53, No. 1, 117--134 (2014; Zbl 1320.46007) Full Text: Link OpenURL
Ravi, K.; Rassias, J. M.; Pinelas, Sandra; Jamuna, R. A fixed point approach to the stability of a quadratic quartic functional equation in paranormed spaces. (English) Zbl 1317.39039 Panam. Math. J. 24, No. 2, 61-84 (2014). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B82 39B52 46A61 PDF BibTeX XML Cite \textit{K. Ravi} et al., Panam. Math. J. 24, No. 2, 61--84 (2014; Zbl 1317.39039) OpenURL
Pahari, Narayan Prasad On certain topological structure of normed space valued total paranormed double sequence space \((\ell^2((X_{mn}, \| . \|_{mn}),\overline\gamma,\overline u),T_{\gamma,u})\). (English) Zbl 1325.46009 Investig. Math. Sci. 4, No. 1, 1-10 (2014). MSC: 46A45 PDF BibTeX XML Cite \textit{N. P. Pahari}, Investig. Math. Sci. 4, No. 1, 1--10 (2014; Zbl 1325.46009) OpenURL
Alotaibi, Abdullah; Mursaleen, Mohammad; Sharma, Sunil K. Double sequence spaces over \(n\)-normed spaces defined by a sequence of Orlicz functions. (English) Zbl 1321.46005 J. Inequal. Appl. 2014, Paper No. 216, 12 p. (2014). MSC: 46A45 40A05 PDF BibTeX XML Cite \textit{A. Alotaibi} et al., J. Inequal. Appl. 2014, Paper No. 216, 12 p. (2014; Zbl 1321.46005) Full Text: DOI OpenURL
Pahari, Narayan Prasad On certain topological structures of Banach space valued paranormed sequence \(\ell_\infty((S,\|\cdot\|),\Phi,\overline u)\) defined by Orlicz function. (English) Zbl 1325.46008 J. Rajasthan Acad. Phys. Sci. 13, No. 1, 51-66 (2014). MSC: 46A45 PDF BibTeX XML Cite \textit{N. P. Pahari}, J. Rajasthan Acad. Phys. Sci. 13, No. 1, 51--66 (2014; Zbl 1325.46008) OpenURL
Raj, K.; Sharma, S. K. Some multiplier generalized difference sequence spaces over \(n\)-normed spaces defined by a Musielak-Orlicz function. (English) Zbl 1320.46005 Sib. Adv. Math. 24, No. 3, 193-203 (2014). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Sib. Adv. Math. 24, No. 3, 193--203 (2014; Zbl 1320.46005) Full Text: DOI OpenURL
Raj, Kuldip; Sharma, Sunil K. Double sequence spaces over \(n\)-normed spaces. (English) Zbl 1340.46012 Arch. Math., Brno 50, No. 2, 65-76 (2014). Reviewer: Ondřej Došlý (Brno) MSC: 46A45 40A05 40C05 40D05 40B05 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Arch. Math., Brno 50, No. 2, 65--76 (2014; Zbl 1340.46012) Full Text: DOI OpenURL
Aydın, Cafer; Başar, Feyzi Some topological and geometric properties of the domain of the generalized difference matrix \(B(r, s)\) in the sequence space \(\ell(p)^\ast\). (English) Zbl 1310.46008 Thai J. Math. 12, No. 1, 113-132 (2014). MSC: 46A45 46A35 PDF BibTeX XML Cite \textit{C. Aydın} and \textit{F. Başar}, Thai J. Math. 12, No. 1, 113--132 (2014; Zbl 1310.46008) Full Text: Link OpenURL
Ganie, A. Hamid; Sheikh, Neyaz Ahmad Infinite matrices and almost bounded sequences. (English) Zbl 1309.46001 Vietnam J. Math. 42, No. 2, 153-157 (2014). MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{A. H. Ganie} and \textit{N. A. Sheikh}, Vietnam J. Math. 42, No. 2, 153--157 (2014; Zbl 1309.46001) Full Text: DOI OpenURL
Alotaibi, Abdullah; Mursaleen, M. Statistical convergence in random paranormed space. (English) Zbl 1314.40005 J. Comput. Anal. Appl. 17, No. 2, 297-304 (2014). MSC: 40A35 40J05 PDF BibTeX XML Cite \textit{A. Alotaibi} and \textit{M. Mursaleen}, J. Comput. Anal. Appl. 17, No. 2, 297--304 (2014; Zbl 1314.40005) OpenURL
Sharma, Sunil K.; Raj, Kuldip; Sharma, Ajay K. Some double sequence spaces in \(n\)-normed spaces using ideal convergence and a sequence of Orlicz functions. (English) Zbl 1412.46015 J. Nonlinear Anal. Optim. 4, No. 1, 1-11 (2013). MSC: 46A45 40A35 40J05 PDF BibTeX XML Cite \textit{S. K. Sharma} et al., J. Nonlinear Anal. Optim. 4, No. 1, 1--11 (2013; Zbl 1412.46015) Full Text: Link OpenURL
Raj, Kuldip; Sharma, Ajay K. Sequence spaces defined by a sequence of modulus functions. (English) Zbl 1313.46014 Sci. Stud. Res., Ser. Math. Inform. 23, No. 2, 115-126 (2013). MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{K. Raj} and \textit{A. K. Sharma}, Sci. Stud. Res., Ser. Math. Inform. 23, No. 2, 115--126 (2013; Zbl 1313.46014) OpenURL
Park, Choonkil; Lee, Jung Rye; Shin, Dong Yun Functional equations and inequalities in matrix paranormed spaces. (English) Zbl 1491.39019 J. Inequal. Appl. 2013, Paper No. 547, 13 p. (2013). MSC: 39B82 39B72 46L07 39B52 39B62 PDF BibTeX XML Cite \textit{C. Park} et al., J. Inequal. Appl. 2013, Paper No. 547, 13 p. (2013; Zbl 1491.39019) Full Text: DOI OpenURL
Raj, Kuldip; Sharma, Sunil K. Ideal convergence sequence spaces defined by a Musielak-Orlicz function. (English) Zbl 1297.46009 Thai J. Math. 11, No. 3, 577-587 (2013). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Thai J. Math. 11, No. 3, 577--587 (2013; Zbl 1297.46009) Full Text: Link OpenURL
Srivastava, J. K.; Pahari, Narayan Prasad On 2-Banach space valued paranormed sequence space \(C_\theta (X,M,\|.,. \|,\overline\lambda,\overline p\) defined by Orlicz function. (English) Zbl 1284.46007 J. Rajasthan Acad. Phys. Sci. 12, No. 3, 317-336 (2013). MSC: 46A45 46B15 PDF BibTeX XML Cite \textit{J. K. Srivastava} and \textit{N. P. Pahari}, J. Rajasthan Acad. Phys. Sci. 12, No. 3, 317--336 (2013; Zbl 1284.46007) OpenURL
Savaş, Ekrem On two-valued measure and double statistical convergence in 2-normed spaces. (English) Zbl 1298.46007 J. Inequal. Appl. 2013, Paper No. 347, 11 p. (2013). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{E. Savaş}, J. Inequal. Appl. 2013, Paper No. 347, 11 p. (2013; Zbl 1298.46007) Full Text: DOI OpenURL
Karakaya, Vatan; Savaş, Ekrem; Polat, Harun Some paranormed Euler sequence spaces of difference sequences of order \(m\). (English) Zbl 1340.46007 Math. Slovaca 63, No. 4, 849-862 (2013). Reviewer: Feyzi Başar (Istanbul) MSC: 46A45 40C05 40H05 PDF BibTeX XML Cite \textit{V. Karakaya} et al., Math. Slovaca 63, No. 4, 849--862 (2013; Zbl 1340.46007) Full Text: DOI OpenURL
Altundağ, Selma On generalized difference lacunary statistical convergence in a paranormed space. (English) Zbl 1291.40005 J. Inequal. Appl. 2013, Paper No. 256, 7 p. (2013). MSC: 40A35 40J05 PDF BibTeX XML Cite \textit{S. Altundağ}, J. Inequal. Appl. 2013, Paper No. 256, 7 p. (2013; Zbl 1291.40005) Full Text: DOI OpenURL
Park, Choonkil; Lee, Jung Rye Functional equations and inequalities in paranormed spaces. (English) Zbl 1292.39018 J. Inequal. Appl. 2013, Paper No. 198, 23 p. (2013). MSC: 39B72 47H10 39B52 39B82 PDF BibTeX XML Cite \textit{C. Park} and \textit{J. R. Lee}, J. Inequal. Appl. 2013, Paper No. 198, 23 p. (2013; Zbl 1292.39018) Full Text: DOI OpenURL
Raj, Kuldip; Sharma, Sunil K. Some new sequence spaces. (English) Zbl 1290.46005 Appl. Appl. Math. 8, No. 2, 596-613 (2013). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Appl. Appl. Math. 8, No. 2, 596--613 (2013; Zbl 1290.46005) Full Text: Link OpenURL
Aydın, Cafer; Altay, Bilal Domain of generalized difference matrix \(B(r,s)\) on some Maddox’s spaces. (English) Zbl 1286.46006 Thai J. Math. 11, No. 1, 87-102 (2013). Reviewer: Charles Swartz (Las Cruces) MSC: 46A45 PDF BibTeX XML Cite \textit{C. Aydın} and \textit{B. Altay}, Thai J. Math. 11, No. 1, 87--102 (2013; Zbl 1286.46006) Full Text: Link OpenURL
Raj, Kuldip On some generalized convergenc lacunary sequence spaces defined by a Musielak-Orlicz function. (English) Zbl 1308.46007 Kumamoto J. Math. 26, 9-22 (2013). MSC: 46A45 40A05 40C05 PDF BibTeX XML Cite \textit{K. Raj}, Kumamoto J. Math. 26, 9--22 (2013; Zbl 1308.46007) Full Text: Link OpenURL
Kim, Taek Min; Park, Choonkil; Park, Seo Hong An AQ-functional equation in paranormed spaces. (English) Zbl 1277.39041 J. Comput. Anal. Appl. 15, No. 8, 1467-1475 (2013). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{T. M. Kim} et al., J. Comput. Anal. Appl. 15, No. 8, 1467--1475 (2013; Zbl 1277.39041) OpenURL
Matkowski, Ianusz Fixed point theorem in a uniformly convex paranormed space and its application. (English) Zbl 1263.47067 Topology Appl. 160, No. 3, 524-531 (2013). Reviewer: Mihai Turinici (Iaşi) MSC: 47H09 39B22 46A16 54H25 PDF BibTeX XML Cite \textit{I. Matkowski}, Topology Appl. 160, No. 3, 524--531 (2013; Zbl 1263.47067) Full Text: DOI OpenURL
Park, Choonkil Stability of an AQCQ-functional equation in paranormed spaces. (English) Zbl 1346.39035 Adv. Difference Equ. 2012, Paper No. 148, 20 p. (2012). MSC: 39B52 35A17 47H10 39B72 PDF BibTeX XML Cite \textit{C. Park}, Adv. Difference Equ. 2012, Paper No. 148, 20 p. (2012; Zbl 1346.39035) Full Text: DOI OpenURL
Park, Choonkil; Shin, Dong Yun Functional equations in paranormed spaces. (English) Zbl 1346.39037 Adv. Difference Equ. 2012, Paper No. 123, 14 p. (2012). MSC: 39B52 39B72 35A17 PDF BibTeX XML Cite \textit{C. Park} and \textit{D. Y. Shin}, Adv. Difference Equ. 2012, Paper No. 123, 14 p. (2012; Zbl 1346.39037) Full Text: DOI OpenURL
Raj, Kuldip; Sharma, Sunil K. Some multiplier double sequence spaces. (English) Zbl 1296.46004 Acta Math. Vietnam. 37, No. 3, 391-405 (2012). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Acta Math. Vietnam. 37, No. 3, 391--405 (2012; Zbl 1296.46004) Full Text: Link OpenURL
Raj, Kuldip; Sharma, Sunil K. Some generalized difference double-sequence spaces defined by a sequence of Orlicz-functions. (English) Zbl 1295.46003 Cubo 14, No. 3, 167-189 (2012). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Cubo 14, No. 3, 167--189 (2012; Zbl 1295.46003) Full Text: DOI OpenURL
Park, Choonkil; Lee, Jung Rye An AQCQ-functional equation in paranormed spaces. (English) Zbl 1302.39040 Adv. Difference Equ. 2012, Paper No. 63, 9 p. (2012). MSC: 39B82 39B52 39B72 46A99 PDF BibTeX XML Cite \textit{C. Park} and \textit{J. R. Lee}, Adv. Difference Equ. 2012, Paper No. 63, 9 p. (2012; Zbl 1302.39040) Full Text: DOI OpenURL
Raj, Kuldip; Sharma, Sunil K.; Gupta, Amit Some multiplier lacunary sequence spaces defined by a sequence of modulus functions. (English) Zbl 1296.46005 Acta Univ. Sapientiae, Math. 4, No. 2, 117-131 (2012). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} et al., Acta Univ. Sapientiae, Math. 4, No. 2, 117--131 (2012; Zbl 1296.46005) OpenURL
Raj, Kuldip; Sharma, Sunil K. Some vector-valued sequence spaces defined by a Musielak-Orlicz function. (English) Zbl 1289.46010 Rev. Roum. Math. Pures Appl. 57, No. 4, 383-399 (2012). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Rev. Roum. Math. Pures Appl. 57, No. 4, 383--399 (2012; Zbl 1289.46010) OpenURL
Raj, Kuldip; Sharma, Sunil K. Some strongly convergent difference sequence spaces defined by a sequence of modulus functions. (English) Zbl 1289.46009 Novi Sad J. Math. 42, No. 2, 61-73 (2012). MSC: 46A45 40A05 40C05 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Novi Sad J. Math. 42, No. 2, 61--73 (2012; Zbl 1289.46009) OpenURL
Alotaibi, Abdullah; Alroqi, Abdullah M. Statistical convergence in a paranormed space. (English) Zbl 1279.41008 J. Inequal. Appl. 2012, Paper No. 39, 6 p. (2012). MSC: 41A10 41A25 41A36 40A05 40A30 PDF BibTeX XML Cite \textit{A. Alotaibi} and \textit{A. M. Alroqi}, J. Inequal. Appl. 2012, Paper No. 39, 6 p. (2012; Zbl 1279.41008) Full Text: DOI OpenURL
Raj, Kuldip; Sharma, Sunil K. A new sequence space defined by a sequence of Orlicz functions over \(n\)-normed spaces. (English) Zbl 1280.46003 Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 51, No. 1, 89-100 (2012). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 51, No. 1, 89--100 (2012; Zbl 1280.46003) Full Text: Link OpenURL
Savas, Ekrem Some new double sequence spaces in 2-normed spaces defined by two valued measure. (English) Zbl 1267.46016 Iran. J. Sci. Technol., Trans. A, Sci. 36, No. 3, Spec. Iss. Math., 341-349 (2012). MSC: 46A45 46A70 PDF BibTeX XML Cite \textit{E. Savas}, Iran. J. Sci. Technol., Trans. A, Sci. 36, No. 3, 341--349 (2012; Zbl 1267.46016) OpenURL
Raj, Kuldip; Sharma, Sunil K. Sequence spaces defined by a sequence of modulus function in \(n\)-normed spaces. (English) Zbl 1278.46005 Fasc. Math. 49, 113-126 (2012). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Fasc. Math. 49, 113--126 (2012; Zbl 1278.46005) OpenURL
Raj, Kuldip; Sharma, Ajay K.; Sharma, Sunil K.; Singh, Sulinder Some double sequence spaces defined by a sequence of Orlicz functions over \(n\)-normed spaces. (English) Zbl 1268.46006 Lobachevskii J. Math. 33, No. 2, 183-190 (2012). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} et al., Lobachevskii J. Math. 33, No. 2, 183--190 (2012; Zbl 1268.46006) Full Text: DOI OpenURL
Raj, Kuldip; Sharma, Sunil K.; Kumar, Anil Generalized sequence spaces over \(n\)-normed spaces. (English) Zbl 1269.46007 Acta Univ. M. Belii, Ser. Math. 20, 32-45 (2012). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} et al., Acta Univ. M. Belii, Ser. Math. 20, 32--45 (2012; Zbl 1269.46007) Full Text: Link OpenURL
Raj, Kuldip; Sharma, Sunil K. Some generalized sequence spaces defined by a Musielak-Orlicz function over \(n\)-normed spaces. (English) Zbl 1267.46015 TWMS J. Pure Appl. Math. 3, No. 2, 190-201 (2012). MSC: 46A45 40A05 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, TWMS J. Pure Appl. Math. 3, No. 2, 190--201 (2012; Zbl 1267.46015) OpenURL
Dutta, Hemen; Reddy, B. Surender On some difference paranormed statistically convergent sequence spaces defined over real \(2\)-normed linear spaces. (English) Zbl 1265.40017 Southeast Asian Bull. Math. 36, No. 2, 197-208 (2012). MSC: 40A35 40A05 46A45 PDF BibTeX XML Cite \textit{H. Dutta} and \textit{B. S. Reddy}, Southeast Asian Bull. Math. 36, No. 2, 197--208 (2012; Zbl 1265.40017) OpenURL
Raj, Kuldip; Sharma, Sunil K. Some multiplier sequence spaces defined by a Musielak-Orlicz function in \(n\)-normed spaces. (English) Zbl 1257.46005 N. Z. J. Math. 42, 45-56 (2012). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, N. Z. J. Math. 42, 45--56 (2012; Zbl 1257.46005) OpenURL