Upadhyay, S. K.; Sartaj, Mohd An integral representation of pseudo-differential operators involving Weinstein transform. (English) Zbl 07558431 J. Pseudo-Differ. Oper. Appl. 13, No. 1, Paper No. 11, 33 p. (2022). MSC: 46F12 35S05 47A30 47G30 46E35 PDF BibTeX XML Cite \textit{S. K. Upadhyay} and \textit{M. Sartaj}, J. Pseudo-Differ. Oper. Appl. 13, No. 1, Paper No. 11, 33 p. (2022; Zbl 07558431) Full Text: DOI OpenURL
Khieu, Tran Thi; Vo, Hoang-Hung Stability results for backward nonlinear diffusion equations with temporal coupling operator of local and nonlocal type. (English) Zbl 07556066 SIAM J. Numer. Anal. 60, No. 4, 1665-1700 (2022). MSC: 65M30 65M32 65T50 65M06 65N06 60J65 47J06 35R25 35R30 26A33 35R11 92D25 PDF BibTeX XML Cite \textit{T. T. Khieu} and \textit{H.-H. Vo}, SIAM J. Numer. Anal. 60, No. 4, 1665--1700 (2022; Zbl 07556066) Full Text: DOI OpenURL
Nouira, I.; Khenissi, M. Smoothing effect and exponential stability of discrete-time Schrödinger equation with fractional regularization term. (English) Zbl 07532845 Int. J. Comput. Math. 99, No. 6, 1201-1223 (2022). MSC: 65M99 35A35 35B65 47A10 65M22 65T50 PDF BibTeX XML Cite \textit{I. Nouira} and \textit{M. Khenissi}, Int. J. Comput. Math. 99, No. 6, 1201--1223 (2022; Zbl 07532845) Full Text: DOI OpenURL
Prasad, Akhilesh; Sharma, P. B. Pseudo-differential operator associated with quadratic-phase Fourier transform. (English) Zbl 07531927 Bol. Soc. Mat. Mex., III. Ser. 28, No. 2, Paper No. 37, 14 p. (2022). MSC: 43A32 46F12 35S05 46E35 44A35 47F05 PDF BibTeX XML Cite \textit{A. Prasad} and \textit{P. B. Sharma}, Bol. Soc. Mat. Mex., III. Ser. 28, No. 2, Paper No. 37, 14 p. (2022; Zbl 07531927) Full Text: DOI OpenURL
Kumar, Manish; Pradhan, Tusharakanta Quadratic-phase Fourier transform of tempered distributions and pseudo-differential operators. (English) Zbl 07530655 Integral Transforms Spec. Funct. 33, No. 6, 449-465 (2022). MSC: 46F12 43A32 47G30 35Qxx 35L05 35K05 PDF BibTeX XML Cite \textit{M. Kumar} and \textit{T. Pradhan}, Integral Transforms Spec. Funct. 33, No. 6, 449--465 (2022; Zbl 07530655) Full Text: DOI OpenURL
Tiwari, Awanish Kumar; Pandey, Ambuj; Paul, Jagabandhu; Anand, Akash A fast rapidly convergent method for approximation of convolutions with applications to wave scattering and some other problems. (English) Zbl 07525119 J. Comput. Phys. 459, Article ID 111119, 21 p. (2022). MSC: 65Nxx 35Jxx 65Rxx PDF BibTeX XML Cite \textit{A. K. Tiwari} et al., J. Comput. Phys. 459, Article ID 111119, 21 p. (2022; Zbl 07525119) Full Text: DOI OpenURL
Khieu, Tran Thi; Khanh, Tra Quoc Fractional filter method for recovering the historical distribution for diffusion equations with coupling operator of local and nonlocal type. (English) Zbl 1486.65153 Numer. Algorithms 89, No. 4, 1743-1767 (2022). MSC: 65M32 65M30 65M06 65N21 65N20 65T50 60J70 35R30 35R25 47J06 26A33 35R11 PDF BibTeX XML Cite \textit{T. T. Khieu} and \textit{T. Q. Khanh}, Numer. Algorithms 89, No. 4, 1743--1767 (2022; Zbl 1486.65153) Full Text: DOI OpenURL
Li, Xuejun; Mou, Jun; Cao, Yinghong; Banerjee, Santo An optical image encryption algorithm based on a fractional-order laser hyperchaotic system. (English) Zbl 1487.78025 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 3, Article ID 2250035, 25 p. (2022). MSC: 78A60 94A05 42A38 26A33 35R11 35Q60 PDF BibTeX XML Cite \textit{X. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 3, Article ID 2250035, 25 p. (2022; Zbl 1487.78025) Full Text: DOI OpenURL
Razdan, Atul Kumar; Ravichandran, V. Fundamentals of partial differential equations. (English) Zbl 07486995 Singapore: Springer (ISBN 978-981-16-9864-4/hbk; 978-981-16-9865-1/ebook). xv, 551 p. (2022). MSC: 35-01 35Axx 35Cxx PDF BibTeX XML Cite \textit{A. K. Razdan} and \textit{V. Ravichandran}, Fundamentals of partial differential equations. Singapore: Springer (2022; Zbl 07486995) Full Text: DOI OpenURL
Green, Walton; Jaye, Benjamin; Mitkovski, Mishko Uncertainty principles associated to sets satisfying the geometric control condition. (English) Zbl 1485.93121 J. Geom. Anal. 32, No. 3, Paper No. 80, 16 p. (2022). MSC: 93B27 93C20 42A38 42B10 PDF BibTeX XML Cite \textit{W. Green} et al., J. Geom. Anal. 32, No. 3, Paper No. 80, 16 p. (2022; Zbl 1485.93121) Full Text: DOI arXiv OpenURL
Xiao, Jie \(L^p\)-uncertainty principle via fractional Schrödinger equation. (English) Zbl 1483.35227 J. Differ. Equations 313, 269-284 (2022). MSC: 35Q55 42B10 26D15 26A33 35R11 PDF BibTeX XML Cite \textit{J. Xiao}, J. Differ. Equations 313, 269--284 (2022; Zbl 1483.35227) Full Text: DOI OpenURL
Shen, Jinye; Gu, Xian-Ming Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. (English) Zbl 1481.65153 Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 1179-1207 (2022). MSC: 65M06 65N06 65T50 65M12 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{J. Shen} and \textit{X.-M. Gu}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 1179--1207 (2022; Zbl 1481.65153) Full Text: DOI OpenURL
Wang, Peixin; Wu, Jiahong; Xu, Xiaojing; Zhong, Yueyuan Sharp decay estimates for Oldroyd-B model with only fractional stress tensor diffusion. (English) Zbl 1481.35345 J. Funct. Anal. 282, No. 4, Article ID 109332, 55 p. (2022). MSC: 35Q35 35Q86 42A38 76D03 76A05 76D50 PDF BibTeX XML Cite \textit{P. Wang} et al., J. Funct. Anal. 282, No. 4, Article ID 109332, 55 p. (2022; Zbl 1481.35345) Full Text: DOI OpenURL
Bravo, Jennifer; Lizama, Carlos Normal periodic solutions for the fractional abstract Cauchy problem. (English) Zbl 1487.35397 Bound. Value Probl. 2021, Paper No. 53, 10 p. (2021). MSC: 35R11 26A33 35B10 43A50 47D06 PDF BibTeX XML Cite \textit{J. Bravo} and \textit{C. Lizama}, Bound. Value Probl. 2021, Paper No. 53, 10 p. (2021; Zbl 1487.35397) Full Text: DOI OpenURL
Srivastava, H. M.; Chauhan, Manmohan Singh; Upadhyay, S. K. Asymptotic series of a general symbol and pseudo-differential operators involving the Kontorovich-Lebedev transform. (English) Zbl 07483230 J. Nonlinear Convex Anal. 22, No. 11, 2461-2478 (2021). MSC: 44A15 35S05 46F12 46E35 33C10 44A35 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., J. Nonlinear Convex Anal. 22, No. 11, 2461--2478 (2021; Zbl 07483230) Full Text: Link OpenURL
Li, Xueyang; Xiao, Aiguo Fourier spectral method on sparse grids for computing ground state of many-particle fractional Schrödinger equations. (English) Zbl 07476649 Int. J. Comput. Math. 98, No. 6, 1218-1232 (2021). MSC: 65-XX 35R11 65F15 65M70 65T50 PDF BibTeX XML Cite \textit{X. Li} and \textit{A. Xiao}, Int. J. Comput. Math. 98, No. 6, 1218--1232 (2021; Zbl 07476649) Full Text: DOI OpenURL
El-Khatib, Mohammed S.; Salim, Tariq O.; Abu Hany, Atta A. K. Analytical solution of Rayleigh-Stokes problem with Katugampola fractional derivative. (English) Zbl 07459002 J. Fract. Calc. Appl. 12, No. 3, Article 14, 11 p. (2021). MSC: 26A33 35M99 PDF BibTeX XML Cite \textit{M. S. El-Khatib} et al., J. Fract. Calc. Appl. 12, No. 3, Article 14, 11 p. (2021; Zbl 07459002) Full Text: Link OpenURL
Williams, Hollis New exact solutions for microscale gas flows. (English) Zbl 07443396 J. Eng. Math. 128, Paper No. 10, 21 p. (2021). MSC: 35Qxx 76-XX 80-XX PDF BibTeX XML Cite \textit{H. Williams}, J. Eng. Math. 128, Paper No. 10, 21 p. (2021; Zbl 07443396) Full Text: DOI OpenURL
Ali, Hazrat; Kamrujjaman, Md.; Shirin, Afroza Numerical solution of a fractional-order bagley-torvik equation by quadratic finite element method. (English) Zbl 07435218 J. Appl. Math. Comput. 66, No. 1-2, 351-367 (2021). MSC: 65Mxx 26A33 65M06 65M12 65M55 65T50 PDF BibTeX XML Cite \textit{H. Ali} et al., J. Appl. Math. Comput. 66, No. 1--2, 351--367 (2021; Zbl 07435218) Full Text: DOI OpenURL
Prasad, Akhilesh; Ansari, Z. A.; Jain, Pankaj Pseudo-differential operator in the framework of linear canonical transform domain. (English) Zbl 1487.46040 Asian-Eur. J. Math. 14, No. 7, Article ID 2150117, 18 p. (2021). MSC: 46F12 43A32 46F05 47G30 35S05 53D22 46E35 PDF BibTeX XML Cite \textit{A. Prasad} et al., Asian-Eur. J. Math. 14, No. 7, Article ID 2150117, 18 p. (2021; Zbl 1487.46040) Full Text: DOI OpenURL
Arafa, Anas A. M.; Hagag, Ahmed M. Sh. A different approach for study some fractional evolution equations. (English) Zbl 1476.35293 Anal. Math. Phys. 11, No. 4, Paper No. 162, 21 p. (2021). MSC: 35R11 35A22 41A58 PDF BibTeX XML Cite \textit{A. A. M. Arafa} and \textit{A. M. Sh. Hagag}, Anal. Math. Phys. 11, No. 4, Paper No. 162, 21 p. (2021; Zbl 1476.35293) Full Text: DOI OpenURL
Zhao, Xiaofei Numerical integrators for continuous disordered nonlinear Schrödinger equation. (English) Zbl 1482.35222 J. Sci. Comput. 89, No. 2, Paper No. 40, 27 p. (2021). MSC: 35Q55 35Q41 35B65 65L20 65L70 65M06 65M12 65M15 65T50 65P10 60H40 82C44 35R60 PDF BibTeX XML Cite \textit{X. Zhao}, J. Sci. Comput. 89, No. 2, Paper No. 40, 27 p. (2021; Zbl 1482.35222) Full Text: DOI arXiv OpenURL
Xu, Da Observability inequalities for Hermite bi-cubic orthogonal spline collocation methods of 2-D integro-differential equations in the square domains. (English) Zbl 1481.65240 Appl. Math. Optim. 84, No. 2, 1341-1372 (2021). MSC: 65N35 65D05 42A38 45K05 93C20 PDF BibTeX XML Cite \textit{D. Xu}, Appl. Math. Optim. 84, No. 2, 1341--1372 (2021; Zbl 1481.65240) Full Text: DOI OpenURL
Cellarosi, Francesco; Murty, M. Ram Smooth arithmetical sums over \(k\)-free integers. (English) Zbl 1482.11128 J. Ramanujan Math. Soc. 36, No. 2, 147-156 (2021). Reviewer: József Sándor (Cluj-Napoca) MSC: 11N37 11K65 11M06 PDF BibTeX XML Cite \textit{F. Cellarosi} and \textit{M. R. Murty}, J. Ramanujan Math. Soc. 36, No. 2, 147--156 (2021; Zbl 1482.11128) Full Text: arXiv Link OpenURL
Wu, Yifei; Li, Xintong A low-regularized Fourier integrator for the high dimensions nonlinear Schrödinger equation with almost mass conservation. (Chinese. English summary) Zbl 07403955 J. Henan Norm. Univ., Nat. Sci. 49, No. 3, 1-8 (2021). MSC: 65M99 65T50 65M12 65M15 35Q55 PDF BibTeX XML Cite \textit{Y. Wu} and \textit{X. Li}, J. Henan Norm. Univ., Nat. Sci. 49, No. 3, 1--8 (2021; Zbl 07403955) Full Text: DOI OpenURL
Sy, Mouhamadou Almost sure global well-posedness for the energy supercritical Schrödinger equations. (English. French summary) Zbl 1479.35826 J. Math. Pures Appl. (9) 154, 108-145 (2021). MSC: 35Q55 35Q41 28D05 60H30 35R60 60H15 60B15 35A01 35A02 37L50 PDF BibTeX XML Cite \textit{M. Sy}, J. Math. Pures Appl. (9) 154, 108--145 (2021; Zbl 1479.35826) Full Text: DOI arXiv OpenURL
Rachdi, Lakhdar T.; Amri, Besma Gabor multipliers associated with the Bessel-Kingman hypergroup. (English) Zbl 1471.42013 J. Pseudo-Differ. Oper. Appl. 12, No. 3, Paper No. 45, 26 p. (2021). MSC: 42A38 44A35 35S05 PDF BibTeX XML Cite \textit{L. T. Rachdi} and \textit{B. Amri}, J. Pseudo-Differ. Oper. Appl. 12, No. 3, Paper No. 45, 26 p. (2021; Zbl 1471.42013) Full Text: DOI OpenURL
Luan, Tran Nhat; Khanh, Tra Quoc Determination of initial distribution for a space-fractional diffusion equation with time-dependent diffusivity. (English) Zbl 1481.65175 Bull. Malays. Math. Sci. Soc. (2) 44, No. 5, 3461-3487 (2021). MSC: 65M30 65M06 65N06 65T50 35R25 47J06 26A33 35R11 PDF BibTeX XML Cite \textit{T. N. Luan} and \textit{T. Q. Khanh}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 5, 3461--3487 (2021; Zbl 1481.65175) Full Text: DOI OpenURL
Garnier, Josselin Wave propagation in periodic and random time-dependent media. (English) Zbl 1476.78006 Multiscale Model. Simul. 19, No. 3, 1190-1211 (2021). Reviewer: Vladimir Mityushev (Kraków) MSC: 78A48 78A40 35R60 35Q61 60F05 42A38 PDF BibTeX XML Cite \textit{J. Garnier}, Multiscale Model. Simul. 19, No. 3, 1190--1211 (2021; Zbl 1476.78006) Full Text: DOI OpenURL
Vieira, N.; Rodrigues, M. M.; Ferreira, M. Time-fractional telegraph equation of distributed order in higher dimensions. (English) Zbl 1471.35313 Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105925, 32 p. (2021). MSC: 35R11 35L20 26A33 33C60 35C15 35A22 35S10 PDF BibTeX XML Cite \textit{N. Vieira} et al., Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105925, 32 p. (2021; Zbl 1471.35313) Full Text: DOI OpenURL
Du, Rui; Wang, Yanyan; Hao, Zhaopeng High-dimensional nonlinear Ginzburg-Landau equation with fractional Laplacian: discretization and simulations. (English) Zbl 07382118 Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105920, 20 p. (2021). MSC: 65M06 65N06 65M12 65N12 65M15 65T50 35Q56 26A33 35R11 PDF BibTeX XML Cite \textit{R. Du} et al., Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105920, 20 p. (2021; Zbl 07382118) Full Text: DOI OpenURL
Vasilyev, V. B. Operators and equations: discrete and continuous. (English. Russian original) Zbl 07380558 J. Math. Sci., New York 257, No. 1, 17-26 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 160, 18-27 (2019). MSC: 47G30 42B10 45G05 65R20 35S05 PDF BibTeX XML Cite \textit{V. B. Vasilyev}, J. Math. Sci., New York 257, No. 1, 17--26 (2021; Zbl 07380558); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 160, 18--27 (2019) Full Text: DOI OpenURL
Owolabi, Kolade M.; Karaagac, Berat; Baleanu, Dumitru Pattern formation in superdiffusion predator-prey-like problems with integer- and noninteger-order derivatives. (English) Zbl 1475.35360 Math. Methods Appl. Sci. 44, No. 5, 4018-4036 (2021). MSC: 35Q92 35R11 26A33 35K57 42A38 92D25 92C15 92D40 92-08 PDF BibTeX XML Cite \textit{K. M. Owolabi} et al., Math. Methods Appl. Sci. 44, No. 5, 4018--4036 (2021; Zbl 1475.35360) Full Text: DOI OpenURL
Ahmadian, Davood; Ballestra, Luca Vincenzo; Karimi, Nader An extremely efficient numerical method for pricing options in the Black-Scholes model with jumps. (English) Zbl 1473.91029 Math. Methods Appl. Sci. 44, No. 2, 1843-1862 (2021). MSC: 91G60 65M06 65T50 91G20 PDF BibTeX XML Cite \textit{D. Ahmadian} et al., Math. Methods Appl. Sci. 44, No. 2, 1843--1862 (2021; Zbl 1473.91029) Full Text: DOI OpenURL
Ashurov, R. R. Almost everywhere convergence of multiple trigonometric Fourier series of functions from Sobolev classes. (English. Russian original) Zbl 1467.42013 Math. Notes 109, No. 2, 157-162 (2021); translation from Mat. Zametki 109, No. 2, 163-169 (2021). MSC: 42B08 42B35 46E35 42B10 42A20 PDF BibTeX XML Cite \textit{R. R. Ashurov}, Math. Notes 109, No. 2, 157--162 (2021; Zbl 1467.42013); translation from Mat. Zametki 109, No. 2, 163--169 (2021) Full Text: DOI OpenURL
Ali, Muhammad; Aziz, Sara; Malik, Salman A. On the recovery of a time dependent diffusion coefficient for a space fractional diffusion equation. (English) Zbl 1467.82078 Anal. Math. Phys. 11, No. 3, Paper No. 103, 20 p. (2021). MSC: 82C41 35R30 35R11 35A01 42A38 47H10 PDF BibTeX XML Cite \textit{M. Ali} et al., Anal. Math. Phys. 11, No. 3, Paper No. 103, 20 p. (2021; Zbl 1467.82078) Full Text: DOI OpenURL
Jesus, Carla; Sousa, Ercília Numerical solutions for asymmetric Lévy flights. (English) Zbl 1476.65173 Numer. Algorithms 87, No. 3, 967-999 (2021). MSC: 65M06 65M12 65M80 60G51 60G50 42A38 26A33 35R11 PDF BibTeX XML Cite \textit{C. Jesus} and \textit{E. Sousa}, Numer. Algorithms 87, No. 3, 967--999 (2021; Zbl 1476.65173) Full Text: DOI OpenURL
Van Thang, Nguyen; Van Duc, Nguyen; Minh, Luong Duy Nhat; Thành, Nguyen Trung Identifying an unknown source term in a time-space fractional parabolic equation. (English) Zbl 1475.65112 Appl. Numer. Math. 166, 313-332 (2021). MSC: 65M32 65M15 65M12 65T50 35B45 26A33 35R11 35R30 PDF BibTeX XML Cite \textit{N. Van Thang} et al., Appl. Numer. Math. 166, 313--332 (2021; Zbl 1475.65112) Full Text: DOI OpenURL
Yang, Yin; Li, Xueyang; Xiao, Aiguo Fourier pseudospectral method for fractional stationary Schrödinger equation. (English) Zbl 1468.35189 Appl. Numer. Math. 165, 137-151 (2021). MSC: 35Q55 35Q40 65M06 65T50 35R11 PDF BibTeX XML Cite \textit{Y. Yang} et al., Appl. Numer. Math. 165, 137--151 (2021; Zbl 1468.35189) Full Text: DOI OpenURL
Adhikari, Saswata; Anoop, V. P.; Parui, Sanjay Existence of extremals of Dunkl-type Sobolev inequality and of Stein-Weiss inequality for Dunkl Riesz potential. (English) Zbl 1465.42012 Complex Anal. Oper. Theory 15, No. 2, Paper No. 28, 35 p. (2021). MSC: 42B10 33C52 35R11 35A23 PDF BibTeX XML Cite \textit{S. Adhikari} et al., Complex Anal. Oper. Theory 15, No. 2, Paper No. 28, 35 p. (2021; Zbl 1465.42012) Full Text: DOI arXiv OpenURL
Neretin, Yurii A. Polyhomomorphisms of locally compact groups. (English. Russian original) Zbl 07349625 Sb. Math. 212, No. 2, 185-210 (2021); translation from Mat. Sb. 212, No. 2, 53-80 (2021). MSC: 43A22 22D05 43A65 60B15 PDF BibTeX XML Cite \textit{Y. A. Neretin}, Sb. Math. 212, No. 2, 185--210 (2021; Zbl 07349625); translation from Mat. Sb. 212, No. 2, 53--80 (2021) Full Text: DOI arXiv OpenURL
Hu, Dongdong; Cai, Wenjun; Fu, Yayun; Wang, Yushun Fast dissipation-preserving difference scheme for nonlinear generalized wave equations with the integral fractional Laplacian. (English) Zbl 1471.65102 Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105786, 24 p. (2021). MSC: 65M06 65M12 65T50 65F08 65F10 35L05 35R11 PDF BibTeX XML Cite \textit{D. Hu} et al., Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105786, 24 p. (2021; Zbl 1471.65102) Full Text: DOI OpenURL
Lai, Suhua; Wu, Jiahong; Xu, Xiaojing; Zhang, Jianwen; Zhong, Yueyuan Optimal decay estimates for 2D Boussinesq equations with partial dissipation. (English) Zbl 1462.35407 J. Nonlinear Sci. 31, No. 1, Paper No. 16, 33 p. (2021). MSC: 35Q86 35Q35 35B40 42A38 76D50 86A05 86A10 PDF BibTeX XML Cite \textit{S. Lai} et al., J. Nonlinear Sci. 31, No. 1, Paper No. 16, 33 p. (2021; Zbl 1462.35407) Full Text: DOI OpenURL
Cui, Tengteng; Chen, Sheng; Jiao, Yujian Efficient Hermite spectral methods for space tempered fractional diffusion equations. (English) Zbl 1468.65162 East Asian J. Appl. Math. 11, No. 1, 43-62 (2021). MSC: 65M70 65M22 65N35 65M12 65L12 65D30 41A05 41A10 41A25 42A38 33C45 35R11 PDF BibTeX XML Cite \textit{T. Cui} et al., East Asian J. Appl. Math. 11, No. 1, 43--62 (2021; Zbl 1468.65162) Full Text: DOI OpenURL
Choi, Bosu; Christlieb, Andrew; Wang, Yang High-dimensional sparse Fourier algorithms. (English) Zbl 1470.65226 Numer. Algorithms 87, No. 1, 161-186 (2021). MSC: 65T50 PDF BibTeX XML Cite \textit{B. Choi} et al., Numer. Algorithms 87, No. 1, 161--186 (2021; Zbl 1470.65226) Full Text: DOI arXiv OpenURL
Laffi, Raoudha; Negzaoui, Selma Uncertainty principle related to Flensted-Jensen partial differential operators. (English) Zbl 1471.43004 Asian-Eur. J. Math. 14, No. 1, Article ID 2150004, 15 p. (2021). MSC: 43A32 42B10 PDF BibTeX XML Cite \textit{R. Laffi} and \textit{S. Negzaoui}, Asian-Eur. J. Math. 14, No. 1, Article ID 2150004, 15 p. (2021; Zbl 1471.43004) Full Text: DOI OpenURL
Korikov, Dmitrii; Sarafanov, Oleg; Sarafanov, Oleg Asymptotic theory of dynamic boundary value problems in irregular domains. (English) Zbl 1472.35004 Operator Theory: Advances and Applications 284. Cham: Birkhäuser (ISBN 978-3-030-65371-2/hbk; 978-3-030-65374-3/pbk; 978-3-030-65372-9/ebook). xi, 399 p. (2021). Reviewer: Lutz Recke (Berlin) MSC: 35-02 35A22 35C20 35L51 35Q40 35Q61 35Q74 41A60 PDF BibTeX XML Cite \textit{D. Korikov} et al., Asymptotic theory of dynamic boundary value problems in irregular domains. Cham: Birkhäuser (2021; Zbl 1472.35004) Full Text: DOI OpenURL
Gong, Yuxuan; Li, Peijun; Wang, Xu; Xu, Xiang Numerical solution of an inverse random source problem for the time fractional diffusion equation via PhaseLift. (English) Zbl 1475.35432 Inverse Probl. 37, No. 4, Article ID 045001, 23 p. (2021). Reviewer: Robert Plato (Siegen) MSC: 35R60 26A33 35A01 35A02 35R11 35R30 35R25 49M37 60G60 60H40 60J65 65M30 65M32 65T50 90C25 35K20 PDF BibTeX XML Cite \textit{Y. Gong} et al., Inverse Probl. 37, No. 4, Article ID 045001, 23 p. (2021; Zbl 1475.35432) Full Text: DOI arXiv OpenURL
Palmieri, Alessandro On the blow-up of solutions to semilinear damped wave equations with power nonlinearity in compact Lie groups. (English) Zbl 1459.35050 J. Differ. Equations 281, 85-104 (2021). MSC: 35B44 35L71 43A30 43A77 58J45 35L52 35R09 35B33 PDF BibTeX XML Cite \textit{A. Palmieri}, J. Differ. Equations 281, 85--104 (2021; Zbl 1459.35050) Full Text: DOI arXiv OpenURL
Zhao, Jihong Global existence of large solutions for the generalized Poisson-Nernst-Planck equations. (English) Zbl 1462.35394 J. Math. Anal. Appl. 498, No. 1, Article ID 124943, 16 p. (2021). MSC: 35Q82 82D37 78A57 35Q92 92C17 42A38 35A01 35A02 35R11 PDF BibTeX XML Cite \textit{J. Zhao}, J. Math. Anal. Appl. 498, No. 1, Article ID 124943, 16 p. (2021; Zbl 1462.35394) Full Text: DOI OpenURL
Condon, Marissa; Kropielnicka, Karolina; Lademann, Karolina; Perczyński, Rafał Asymptotic numerical solver for the linear Klein-Gordon equation with space- and time-dependent mass. (English) Zbl 1466.65163 Appl. Math. Lett. 115, Article ID 106935, 8 p. (2021). MSC: 65M99 42A38 35Q53 PDF BibTeX XML Cite \textit{M. Condon} et al., Appl. Math. Lett. 115, Article ID 106935, 8 p. (2021; Zbl 1466.65163) Full Text: DOI OpenURL
Liu, Zhengguang; Chen, Shuangshuang Novel linear decoupled and unconditionally energy stable numerical methods for the modified phase field crystal model. (English) Zbl 1458.65111 Appl. Numer. Math. 163, 1-14 (2021). MSC: 65M06 65T50 65M12 35R09 74N05 82D25 35Q74 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{S. Chen}, Appl. Numer. Math. 163, 1--14 (2021; Zbl 1458.65111) Full Text: DOI OpenURL
Xing, Zhiyong; Wen, Liping; Xiao, Hanyu A fourth-order conservative difference scheme for the Riesz space-fractional sine-Gordon equations and its fast implementation. (English) Zbl 1459.65161 Appl. Numer. Math. 159, 221-238 (2021). MSC: 65M06 65M12 65H10 65T50 15B05 35R11 35Q53 PDF BibTeX XML Cite \textit{Z. Xing} et al., Appl. Numer. Math. 159, 221--238 (2021; Zbl 1459.65161) Full Text: DOI OpenURL
Zhang, Qifeng; Zhang, Lu; Sun, Hai-wei A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations. (English) Zbl 1462.65119 J. Comput. Appl. Math. 389, Article ID 113355, 20 p. (2021). Reviewer: Temur A. Jangveladze (Tbilisi) MSC: 65M06 65N06 65M12 65T50 65F08 65F10 15B05 35R11 35Q56 PDF BibTeX XML Cite \textit{Q. Zhang} et al., J. Comput. Appl. Math. 389, Article ID 113355, 20 p. (2021; Zbl 1462.65119) Full Text: DOI OpenURL
Li, Xin; Liao, Hong-lin; Zhang, Luming A second-order fast compact scheme with unequal time-steps for subdiffusion problems. (English) Zbl 1466.65072 Numer. Algorithms 86, No. 3, 1011-1039 (2021). MSC: 65M06 65M15 65M12 65T50 35K57 35R11 PDF BibTeX XML Cite \textit{X. Li} et al., Numer. Algorithms 86, No. 3, 1011--1039 (2021; Zbl 1466.65072) Full Text: DOI OpenURL
Boen, Lynn; in ’t Hout, Karel J. Operator splitting schemes for the two-asset Merton jump-diffusion model. (English) Zbl 1459.65138 J. Comput. Appl. Math. 387, Article ID 112309, 16 p. (2021). MSC: 65M06 65N40 65T50 60J74 35R09 45K05 91G20 91G60 35Q91 PDF BibTeX XML Cite \textit{L. Boen} and \textit{K. J. in 't Hout}, J. Comput. Appl. Math. 387, Article ID 112309, 16 p. (2021; Zbl 1459.65138) Full Text: DOI arXiv OpenURL
Mahor, Teekam Chand; Mishra, Rajshree; Jain, Renu Analytical solutions of linear fractional partial differential equations using fractional Fourier transform. (English) Zbl 1457.42011 J. Comput. Appl. Math. 385, Article ID 113202, 9 p. (2021). MSC: 42A38 35R11 33E12 26A33 PDF BibTeX XML Cite \textit{T. C. Mahor} et al., J. Comput. Appl. Math. 385, Article ID 113202, 9 p. (2021; Zbl 1457.42011) Full Text: DOI OpenURL
Shang, Haifeng; Wu, Jiahong Global regularity for 2D fractional magneto-micropolar equations. (English) Zbl 1456.35167 Math. Z. 297, No. 1-2, 775-802 (2021). MSC: 35Q35 35B65 76A10 42B25 42A38 35B45 35R11 PDF BibTeX XML Cite \textit{H. Shang} and \textit{J. Wu}, Math. Z. 297, No. 1--2, 775--802 (2021; Zbl 1456.35167) Full Text: DOI OpenURL
Zhai, Shuying; Weng, Zhifeng; Feng, Xinlong; He, Yinnian Stability and error estimate of the operator splitting method for the phase field crystal equation. (English) Zbl 1456.65136 J. Sci. Comput. 86, No. 1, Paper No. 8, 23 p. (2021). MSC: 65M70 65T50 65M12 35K57 35R11 74N05 35Q74 82D80 PDF BibTeX XML Cite \textit{S. Zhai} et al., J. Sci. Comput. 86, No. 1, Paper No. 8, 23 p. (2021; Zbl 1456.65136) Full Text: DOI OpenURL
Gulgowski, Jacek; Stefański, Tomasz P. Generalization of Kramers-Krönig relations for evaluation of causality in power-law media. (English) Zbl 1457.78007 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105664, 20 p. (2021). MSC: 78A40 44A15 42A38 26A33 35R11 PDF BibTeX XML Cite \textit{J. Gulgowski} and \textit{T. P. Stefański}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105664, 20 p. (2021; Zbl 1457.78007) Full Text: DOI OpenURL
Hammachukiattikul, Porpattama; Mohanapriya, Arusamy; Ganesh, Anumanthappa; Rajchakit, Grienggrai; Govindan, Vediyappan; Gunasekaran, Nallappan; Lim, Chee Peng A study on fractional differential equations using the fractional Fourier transform. (English) Zbl 1485.35387 Adv. Difference Equ. 2020, Paper No. 691, 22 p. (2020). MSC: 35R11 33E12 44A15 PDF BibTeX XML Cite \textit{P. Hammachukiattikul} et al., Adv. Difference Equ. 2020, Paper No. 691, 22 p. (2020; Zbl 1485.35387) Full Text: DOI OpenURL
Boyarchenko, Svetlana; Levendorskiĭ, Sergei Conformal accelerations method and efficient evaluation of stable distributions. (English) Zbl 1459.35374 Acta Appl. Math. 169, 711-765 (2020). MSC: 35R11 33F05 42A38 60G52 65D30 65M70 PDF BibTeX XML Cite \textit{S. Boyarchenko} and \textit{S. Levendorskiĭ}, Acta Appl. Math. 169, 711--765 (2020; Zbl 1459.35374) Full Text: DOI arXiv OpenURL
Lopushans’ka, H. P.; Lopushans’kyĭ, A. O. Regular solution of the inverse problem with integral condition for a time-fractional equation. (Ukrainian. English summary) Zbl 1474.80010 Bukovyn. Mat. Zh. 8, No. 2, 103-113 (2020). MSC: 80A23 35S10 26A33 35R11 35A02 35R09 45K05 65M80 65T50 65M32 PDF BibTeX XML Cite \textit{H. P. Lopushans'ka} and \textit{A. O. Lopushans'kyĭ}, Bukovyn. Mat. Zh. 8, No. 2, 103--113 (2020; Zbl 1474.80010) Full Text: DOI OpenURL
Almushaira, Mustafa; Liu, Fei Fourth-order time-stepping compact finite difference method for multi-dimensional space-fractional coupled nonlinear Schrödinger equations. (English) Zbl 1460.35306 SN Partial Differ. Equ. Appl. 1, No. 6, Paper No. 45, 28 p. (2020). MSC: 35Q41 35R11 65M06 65M12 65N06 65T50 PDF BibTeX XML Cite \textit{M. Almushaira} and \textit{F. Liu}, SN Partial Differ. Equ. Appl. 1, No. 6, Paper No. 45, 28 p. (2020; Zbl 1460.35306) Full Text: DOI OpenURL
Chen, Minghua; Ekström, Sven-Erik; Serra-Capizzano, Stefano A multigrid method for nonlocal problems: non-diagonally dominant or Toeplitz-plus-tridiagonal systems. (English) Zbl 1461.65236 SIAM J. Matrix Anal. Appl. 41, No. 4, 1546-1570 (2020). MSC: 65M55 26A33 65T50 65F05 15B05 35R11 PDF BibTeX XML Cite \textit{M. Chen} et al., SIAM J. Matrix Anal. Appl. 41, No. 4, 1546--1570 (2020; Zbl 1461.65236) Full Text: DOI arXiv OpenURL
Jain, Pankaj; Kumar, Rajender; Prasad, Akhilesh Generalized Schwartz type spaces and LCT based pseudodifferential operator. (English) Zbl 1456.35249 Trans. A. Razmadze Math. Inst. 174, No. 1, 93-106 (2020). MSC: 35S05 44A35 46F12 46A11 PDF BibTeX XML Cite \textit{P. Jain} et al., Trans. A. Razmadze Math. Inst. 174, No. 1, 93--106 (2020; Zbl 1456.35249) Full Text: Link OpenURL
Huang, Jianguo; Wu, Bo A new fast compact time integrator method for solving Klein-Gordon equations. (Chinese. English summary) Zbl 1463.65224 J. Nanjing Norm. Univ., Nat. Sci. Ed. 43, No. 2, 1-5 (2020). MSC: 65M06 65M99 65D05 65T50 65N06 PDF BibTeX XML Cite \textit{J. Huang} and \textit{B. Wu}, J. Nanjing Norm. Univ., Nat. Sci. Ed. 43, No. 2, 1--5 (2020; Zbl 1463.65224) Full Text: DOI OpenURL
Patra, Asim Similarity analytical solutions for the Schrödinger equation with the Riesz fractional derivative in quantum mechanics. (English) Zbl 1455.35292 Math. Methods Appl. Sci. 43, No. 17, 10287-10295 (2020). MSC: 35R11 35Q41 35A22 PDF BibTeX XML Cite \textit{A. Patra}, Math. Methods Appl. Sci. 43, No. 17, 10287--10295 (2020; Zbl 1455.35292) Full Text: DOI arXiv OpenURL
Isaev, Mikhail; Novikov, Roman G. Hölder-logarithmic stability in Fourier synthesis. (English) Zbl 1453.42008 Inverse Probl. 36, No. 12, Article ID 125003, 17 p. (2020). MSC: 42B10 42B37 35P25 35R10 PDF BibTeX XML Cite \textit{M. Isaev} and \textit{R. G. Novikov}, Inverse Probl. 36, No. 12, Article ID 125003, 17 p. (2020; Zbl 1453.42008) Full Text: DOI arXiv OpenURL
Casabán, María Consuelo; Company, Rafael; Egorova, Vera N.; Jódar, Lucas Integral transform solution of random coupled parabolic partial differential models. (English) Zbl 1452.35266 Math. Methods Appl. Sci. 43, No. 14, 8223-8236 (2020). MSC: 35R60 60H15 60H35 62M15 65D30 65R10 PDF BibTeX XML Cite \textit{M. C. Casabán} et al., Math. Methods Appl. Sci. 43, No. 14, 8223--8236 (2020; Zbl 1452.35266) Full Text: DOI OpenURL
Cai, Wei; Li, Xiaoguang; Liu, Lizuo A phase shift deep neural network for high frequency approximation and wave problems. (English) Zbl 1455.35246 SIAM J. Sci. Comput. 42, No. 5, A3285-A3312 (2020). Reviewer: Carlos A. De Moura (Rio de Janeiro) MSC: 35Q60 65N99 68T07 35J05 42A38 78A40 PDF BibTeX XML Cite \textit{W. Cai} et al., SIAM J. Sci. Comput. 42, No. 5, A3285--A3312 (2020; Zbl 1455.35246) Full Text: DOI arXiv OpenURL
Lastra, A.; Malek, S. On parametric Gevrey asymptotics for some nonlinear initial value problems in symmetric complex time variables. (English) Zbl 1454.35404 Asymptotic Anal. 118, No. 1-2, 49-79 (2020). Reviewer: Rodica Luca (Iaşi) MSC: 35Q99 35R09 35B40 35C20 35B25 44A10 42A38 PDF BibTeX XML Cite \textit{A. Lastra} and \textit{S. Malek}, Asymptotic Anal. 118, No. 1--2, 49--79 (2020; Zbl 1454.35404) Full Text: DOI arXiv OpenURL
Nigmatullin, Raoul R.; Lino, Paolo; Maione, Guido “Fuzzy” calculus: the link between quantum mechanics and discrete fractional operators. (English) Zbl 1474.26025 Fract. Calc. Appl. Anal. 23, No. 3, 764-786 (2020). MSC: 26A33 26E50 34A07 35R13 42A38 PDF BibTeX XML Cite \textit{R. R. Nigmatullin} et al., Fract. Calc. Appl. Anal. 23, No. 3, 764--786 (2020; Zbl 1474.26025) Full Text: DOI OpenURL
Xiong, Xiangtuan; Bai, Enpeng An optimal filtering method for the sideways fractional heat equation. (Chinese. English summary) Zbl 1463.65351 J. Northwest Norm. Univ., Nat. Sci. 56, No. 3, 14-16, 47 (2020). MSC: 65N20 65N15 65T50 35R11 35K05 35B65 PDF BibTeX XML Cite \textit{X. Xiong} and \textit{E. Bai}, J. Northwest Norm. Univ., Nat. Sci. 56, No. 3, 14--16, 47 (2020; Zbl 1463.65351) Full Text: DOI OpenURL
Stefański, Tomasz P.; Gulgowski, Jacek Signal propagation in electromagnetic media described by fractional-order models. (English) Zbl 1451.78013 Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105029, 16 p. (2020). MSC: 78A25 78A40 35R11 26A33 78M99 65T50 PDF BibTeX XML Cite \textit{T. P. Stefański} and \textit{J. Gulgowski}, Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105029, 16 p. (2020; Zbl 1451.78013) Full Text: DOI OpenURL
Marin, D.; Guilherme, L. M. S.; Lenzi, M. K.; da Silva, L. R.; Lenzi, E. K.; Sandev, T. Diffusion-reaction processes on a backbone structure. (English) Zbl 1454.35405 Commun. Nonlinear Sci. Numer. Simul. 85, Article ID 105218, 8 p. (2020). MSC: 35Q99 35K57 44A10 42A10 42A38 33E12 65R10 65M80 35R11 PDF BibTeX XML Cite \textit{D. Marin} et al., Commun. Nonlinear Sci. Numer. Simul. 85, Article ID 105218, 8 p. (2020; Zbl 1454.35405) Full Text: DOI OpenURL
Mueller, J. L.; Siltanen, Samuli The D-bar method for electrical impedance tomography – demystified. (English) Zbl 1453.78007 Inverse Probl. 36, No. 9, Article ID 093001, 28 p. (2020). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 78A46 78A45 78A05 78M20 65N21 65N20 65N06 65N80 65J20 65T50 92C55 35R09 35R30 35Q60 PDF BibTeX XML Cite \textit{J. L. Mueller} and \textit{S. Siltanen}, Inverse Probl. 36, No. 9, Article ID 093001, 28 p. (2020; Zbl 1453.78007) Full Text: DOI Link OpenURL
Bu, Linlin; Mei, Liquan; Wang, Ying; Hou, Yan Energy stable numerical schemes for the fractional-in-space Cahn-Hilliard equation. (English) Zbl 1452.65151 Appl. Numer. Math. 158, 392-414 (2020). MSC: 65M06 65M22 65L06 65M12 65M15 42A38 35R11 26A33 PDF BibTeX XML Cite \textit{L. Bu} et al., Appl. Numer. Math. 158, 392--414 (2020; Zbl 1452.65151) Full Text: DOI OpenURL
Aparicio, Rafael; Keyantuo, Valentin Besov maximal regularity for a class of degenerate integro-differential equations with infinite delay in Banach spaces. (English) Zbl 1463.45048 Math. Methods Appl. Sci. 43, No. 12, 7239-7268 (2020). Reviewer: Gustaf Gripenberg (Aalto) MSC: 45N05 35R09 35B65 42A45 42A38 PDF BibTeX XML Cite \textit{R. Aparicio} and \textit{V. Keyantuo}, Math. Methods Appl. Sci. 43, No. 12, 7239--7268 (2020; Zbl 1463.45048) Full Text: DOI OpenURL
Betancor, Jorge J.; Castro, Alejandro J.; Fariña, Juan C.; Rodríguez-Mesa, L. Discrete harmonic analysis associated with ultraspherical expansions. (English) Zbl 1472.39008 Potential Anal. 53, No. 2, 523-563 (2020). Reviewer: Raghib Abu-Saris (Edmonton) MSC: 39A12 39A70 39A14 42A38 42B25 42C10 PDF BibTeX XML Cite \textit{J. J. Betancor} et al., Potential Anal. 53, No. 2, 523--563 (2020; Zbl 1472.39008) Full Text: DOI arXiv OpenURL
Bayer, Dominik; Cordero, Elena; Gröchenig, Karlheinz; Trapasso, S. Ivan Linear perturbations of the Wigner transform and the Weyl quantization. (English) Zbl 1443.42004 Boggiatto, Paolo (ed.) et al., Advances in microlocal and time-frequency analysis. Contributions of the conference on microlocal and time-frequency analysis 2018, MLTFA18, in honor of Prof. Luigi Rodino on the occasion of his 70th birthday, Torino, Italy, July 2–6, 2018. Cham: Birkhäuser. Appl. Numer. Harmon. Anal., 79-120 (2020). MSC: 42A38 42B35 46F10 46F12 35S05 PDF BibTeX XML Cite \textit{D. Bayer} et al., in: Advances in microlocal and time-frequency analysis. Contributions of the conference on microlocal and time-frequency analysis 2018, MLTFA18, in honor of Prof. Luigi Rodino on the occasion of his 70th birthday, Torino, Italy, July 2--6, 2018. Cham: Birkhäuser. 79--120 (2020; Zbl 1443.42004) Full Text: DOI arXiv OpenURL
Li, Meng; Huang, Chengming; Zhao, Yongliang Fast conservative numerical algorithm for the coupled fractional Klein-Gordon-Schrödinger equation. (English) Zbl 1442.65168 Numer. Algorithms 84, No. 3, 1081-1119 (2020). MSC: 65M06 65N30 65M12 65F10 65F08 65T50 15B05 26A33 35R11 35Q55 PDF BibTeX XML Cite \textit{M. Li} et al., Numer. Algorithms 84, No. 3, 1081--1119 (2020; Zbl 1442.65168) Full Text: DOI OpenURL
Vellasco-Gomes, Arianne; de Figueiredo Camargo, Rubens; Bruno-Alfonso, Alexys Energy bands and Wannier functions of the fractional Kronig-Penney model. (English) Zbl 1460.81021 Appl. Math. Comput. 380, Article ID 125266, 16 p. (2020). MSC: 81Q05 35R11 81Q80 26A33 42A38 35B40 81R05 82D20 PDF BibTeX XML Cite \textit{A. Vellasco-Gomes} et al., Appl. Math. Comput. 380, Article ID 125266, 16 p. (2020; Zbl 1460.81021) Full Text: DOI OpenURL
Colbrook, Matthew J. Extending the unified transform: curvilinear polygons and variable coefficient PDEs. (English) Zbl 1466.65223 IMA J. Numer. Anal. 40, No. 2, 976-1004 (2020). MSC: 65N99 65R10 41A50 42A38 PDF BibTeX XML Cite \textit{M. J. Colbrook}, IMA J. Numer. Anal. 40, No. 2, 976--1004 (2020; Zbl 1466.65223) Full Text: DOI OpenURL
Yao, Wenjuan; Shen, Jie; Guo, Zhichang; Sun, Jiebao; Wu, Boying A total fractional-order variation model for image super-resolution and its SAV algorithm. (English) Zbl 1439.65100 J. Sci. Comput. 82, No. 3, Paper No. 81, 18 p. (2020). MSC: 65M06 65T50 65D18 65K10 65J20 26A33 35R11 35R09 PDF BibTeX XML Cite \textit{W. Yao} et al., J. Sci. Comput. 82, No. 3, Paper No. 81, 18 p. (2020; Zbl 1439.65100) Full Text: DOI OpenURL
Tang, Tao; Wang, Li-Lian; Yuan, Huifang; Zhou, Tao Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains. (English) Zbl 1447.65161 SIAM J. Sci. Comput. 42, No. 2, A585-A611 (2020). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N30 65N35 65M70 41A05 41A25 35R11 26A33 65T50 PDF BibTeX XML Cite \textit{T. Tang} et al., SIAM J. Sci. Comput. 42, No. 2, A585--A611 (2020; Zbl 1447.65161) Full Text: DOI arXiv OpenURL
Hsu, Tim Fourier series, Fourier transforms, and function spaces. A second course in analysis. (English) Zbl 1447.42005 AMS/MAA Textbooks 59. Providence, RI: MAA Press/American Mathematical Society (AMS) (ISBN 978-1-4704-5145-5/hbk; 978-1-4704-5519-4/ebook). xiv, 354 p. (2020). Reviewer: Alex Amenta (Bonn) MSC: 42A38 42A16 42A20 42A24 42B37 42B35 42-01 42A10 26-01 26A42 46-01 47-01 35-01 35L05 35K05 34-01 PDF BibTeX XML Cite \textit{T. Hsu}, Fourier series, Fourier transforms, and function spaces. A second course in analysis. Providence, RI: MAA Press/American Mathematical Society (AMS) (2020; Zbl 1447.42005) OpenURL
Osting, Braxton; Wang, Dong A diffusion generated method for orthogonal matrix-valued fields. (English) Zbl 1435.65144 Math. Comput. 89, No. 322, 515-550 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65M12 35K93 35K05 35Q56 35R09 35C20 65D18 65T50 65K10 15A18 PDF BibTeX XML Cite \textit{B. Osting} and \textit{D. Wang}, Math. Comput. 89, No. 322, 515--550 (2020; Zbl 1435.65144) Full Text: DOI arXiv OpenURL
Povstenko, Yuriy; Kyrylych, Tamara Time-fractional heat conduction with heat absorption in a half-line domain due to boundary value of the heat flux varying harmonically in time. (English) Zbl 1427.80007 Malinowska, Agnieszka B. (ed.) et al., Advances in non-integer order calculus and its applications. Proceedings of the 10th international conference on non-integer order calculus and its applications, Bialystok University of Technology, Białystok, Poland, September 20–21, 2018. Cham: Springer. Lect. Notes Electr. Eng. 559, 268-281 (2020). MSC: 80A20 35R11 26A33 44A10 42A38 33E12 PDF BibTeX XML Cite \textit{Y. Povstenko} and \textit{T. Kyrylych}, Lect. Notes Electr. Eng. 559, 268--281 (2020; Zbl 1427.80007) Full Text: DOI OpenURL
Shen, Wen An introduction to numerical computation. 2nd edition. (English) Zbl 1483.65005 Hackensack, NJ: World Scientific (ISBN 978-981-12-0441-8/hbk; 978-981-120-518-7/pbk; 978-981-12-0443-2/ebook). xv, 322 p. (2020). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65-01 65Dxx 65Lxx 65Mxx 65Nxx 65Rxx 65T40 65T50 65F15 PDF BibTeX XML Cite \textit{W. Shen}, An introduction to numerical computation. 2nd edition. Hackensack, NJ: World Scientific (2020; Zbl 1483.65005) Full Text: DOI OpenURL
Fu, Hongfei; Liu, Huan; Zheng, Xiangcheng A preconditioned fast finite volume method for distributed-order diffusion equation and applications. (English) Zbl 1469.65140 East Asian J. Appl. Math. 9, No. 1, 28-44 (2019). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M06 65F08 65F10 15B05 65K10 65T50 35R11 PDF BibTeX XML Cite \textit{H. Fu} et al., East Asian J. Appl. Math. 9, No. 1, 28--44 (2019; Zbl 1469.65140) Full Text: DOI OpenURL
Hu, Jingwei; Ma, Zheng A fast spectral method for the inelastic Boltzmann collision operator and application to heated granular gases. (English) Zbl 1451.76140 J. Comput. Phys. 385, 119-134 (2019). MSC: 76T25 65M70 65T50 76P05 35Q20 35R09 PDF BibTeX XML Cite \textit{J. Hu} and \textit{Z. Ma}, J. Comput. Phys. 385, 119--134 (2019; Zbl 1451.76140) Full Text: DOI OpenURL
Fan, Yuwei; An, Jing; Ying, Lexing Fast algorithms for integral formulations of steady-state radiative transfer equation. (English) Zbl 1451.65234 J. Comput. Phys. 380, 191-211 (2019). MSC: 65R20 45B05 35R09 65T50 78A45 78A48 PDF BibTeX XML Cite \textit{Y. Fan} et al., J. Comput. Phys. 380, 191--211 (2019; Zbl 1451.65234) Full Text: DOI arXiv OpenURL
Xu, Bangteng Plateaued functions, partial geometric difference sets, and partial geometric designs. (English) Zbl 1451.05023 J. Comb. Des. 27, No. 12, 756-783 (2019). MSC: 05B05 05B10 94A60 PDF BibTeX XML Cite \textit{B. Xu}, J. Comb. Des. 27, No. 12, 756--783 (2019; Zbl 1451.05023) Full Text: DOI OpenURL
Xu, Xiaoyong; Zhou, Fengying; Xie, Yu Numerical treatment for a class of partial integro-differential equations with a weakly singular kernel using Chebyshev wavelets. (English) Zbl 1449.65338 Math. Appl. 32, No. 4, 747-766 (2019). MSC: 65N35 65R20 35R09 45K05 65T50 26A33 PDF BibTeX XML Cite \textit{X. Xu} et al., Math. Appl. 32, No. 4, 747--766 (2019; Zbl 1449.65338) OpenURL
Kumar, Vishvesh; Kumar, N. Shiravan; Sarma, Ritumoni Unbounded translation invariant operators on commutative hypergroups. (English) Zbl 1449.43006 Methods Funct. Anal. Topol. 25, No. 3, 235-246 (2019). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 43A62 43A22 43A30 47L60 PDF BibTeX XML Cite \textit{V. Kumar} et al., Methods Funct. Anal. Topol. 25, No. 3, 235--246 (2019; Zbl 1449.43006) Full Text: Link OpenURL
Wang, Hong; Zheng, Xiangcheng A modified time-fractional diffusion equation and its finite difference method: regularity and error analysis. (English) Zbl 1443.35177 Fract. Calc. Appl. Anal. 22, No. 4, 1014-1038 (2019). MSC: 35R11 65F10 65M06 65M22 65T50 35K57 PDF BibTeX XML Cite \textit{H. Wang} and \textit{X. Zheng}, Fract. Calc. Appl. Anal. 22, No. 4, 1014--1038 (2019; Zbl 1443.35177) Full Text: DOI OpenURL
Yakhno, V. Derivation of a solution of dynamic equations of motion for quasicrystals. (English) Zbl 1437.35658 J. Eng. Math. 118, 63-72 (2019). MSC: 35Q74 35E15 35C15 74E15 65T50 PDF BibTeX XML Cite \textit{V. Yakhno}, J. Eng. Math. 118, 63--72 (2019; Zbl 1437.35658) Full Text: DOI OpenURL
Aghili, Arman Solution to time fractional non homogeneous first order PDE with non constant coefficients. (English) Zbl 1436.35309 Tbil. Math. J. 12, No. 4, 205-211 (2019). MSC: 35R11 44A10 44A15 44A35 PDF BibTeX XML Cite \textit{A. Aghili}, Tbil. Math. J. 12, No. 4, 205--211 (2019; Zbl 1436.35309) Full Text: DOI Euclid OpenURL
Bianca, Carlo; Menale, Marco On the convergence toward nonequilibrium stationary states in thermostatted kinetic models. (English) Zbl 1434.35225 Math. Methods Appl. Sci. 42, No. 18, 6624-6634 (2019). MSC: 35Q82 45G05 35R09 45K05 35A01 35A02 42A38 82C05 PDF BibTeX XML Cite \textit{C. Bianca} and \textit{M. Menale}, Math. Methods Appl. Sci. 42, No. 18, 6624--6634 (2019; Zbl 1434.35225) Full Text: DOI OpenURL