Sun, Wenxiang; Ma, Haodong; Qu, Wenzhen A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity. (English) Zbl 07766564 Appl. Math. Lett. 148, Article ID 108868, 8 p. (2024). MSC: 65Lxx 34Axx 65Mxx PDF BibTeX XML Cite \textit{W. Sun} et al., Appl. Math. Lett. 148, Article ID 108868, 8 p. (2024; Zbl 07766564) Full Text: DOI
Zhang, Xue; Gu, Xian-Ming; Zhao, Yong-Liang; Li, Hu; Gu, Chuan-Yun Two fast and unconditionally stable finite difference methods for Riesz fractional diffusion equations with variable coefficients. (English) Zbl 07764042 Appl. Math. Comput. 462, Article ID 128335, 19 p. (2024). MSC: 65Mxx 35Rxx 65Fxx PDF BibTeX XML Cite \textit{X. Zhang} et al., Appl. Math. Comput. 462, Article ID 128335, 19 p. (2024; Zbl 07764042) Full Text: DOI
Temimi, H.; Ben-Romdhane, M.; Baccouch, M. An efficient accurate scheme for solving the three-dimensional Bratu-type problem. (English) Zbl 07764031 Appl. Math. Comput. 461, Article ID 128316, 15 p. (2024). MSC: 65Nxx 65Lxx 34Bxx PDF BibTeX XML Cite \textit{H. Temimi} et al., Appl. Math. Comput. 461, Article ID 128316, 15 p. (2024; Zbl 07764031) Full Text: DOI
Boujlida, Hanen; Ismail, Kaouther; Omrani, Khaled A three level linearized compact difference scheme for a fourth-order reaction-diffusion equation. (English) Zbl 07763852 Appl. Numer. Math. 195, 126-141 (2024). MSC: 65Mxx 65Nxx 35Qxx PDF BibTeX XML Cite \textit{H. Boujlida} et al., Appl. Numer. Math. 195, 126--141 (2024; Zbl 07763852) Full Text: DOI
Tang, Shi-Ping; Huang, Yu-Mei A fast preconditioning iterative method for solving the discretized second-order space-fractional advection-diffusion equations. (English) Zbl 07756734 J. Comput. Appl. Math. 438, Article ID 115513, 26 p. (2024). MSC: 65Mxx 35Rxx 65Fxx PDF BibTeX XML Cite \textit{S.-P. Tang} and \textit{Y.-M. Huang}, J. Comput. Appl. Math. 438, Article ID 115513, 26 p. (2024; Zbl 07756734) Full Text: DOI
Macías-Díaz, J. E.; Serna-Reyes, Adán J.; Flores-Oropeza, Luis A. A stable and convergent finite-difference model which conserves the positivity and the dissipativity of Gibbs’ free energy for a nonlinear combustion equation. (English) Zbl 07750661 J. Comput. Appl. Math. 437, Article ID 115492, 13 p. (2024). MSC: 65-XX 35R11 26A33 65M06 65M12 34A08 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz} et al., J. Comput. Appl. Math. 437, Article ID 115492, 13 p. (2024; Zbl 07750661) Full Text: DOI
Wang, Yibo; Cao, Wanrong Exponential integrator for stochastic strongly damped wave equation based on the Wong-Zakai approximation. (English) Zbl 07750630 J. Comput. Appl. Math. 437, Article ID 115459, 26 p. (2024). MSC: 65M60 65M06 65N30 65M70 65N35 65M12 65M15 65C30 60H35 60H15 60H40 35R60 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{W. Cao}, J. Comput. Appl. Math. 437, Article ID 115459, 26 p. (2024; Zbl 07750630) Full Text: DOI
Nasiri, T.; Zakeri, A.; Aminataei, A. A numerical solution for a quasi solution of the time-fractional stochastic backward parabolic equation. (English) Zbl 07750618 J. Comput. Appl. Math. 437, Article ID 115441, 20 p. (2024). Reviewer: Abdallah Bradji (Annaba) MSC: 65M32 65M30 65M06 65T60 65K10 65J20 65F22 65M12 65M15 60G22 35A15 41A50 35A01 35A02 35R30 26A33 35R11 35R60 PDF BibTeX XML Cite \textit{T. Nasiri} et al., J. Comput. Appl. Math. 437, Article ID 115441, 20 p. (2024; Zbl 07750618) Full Text: DOI
Li, Jiyong; Zhao, Lu Analysis of two conservative fourth-order compact finite difference schemes for the Klein-Gordon-Zakharov system in the subsonic limit regime. (English) Zbl 07748300 Appl. Math. Comput. 460, Article ID 128288, 24 p. (2024). MSC: 65Mxx 35Qxx 35Lxx PDF BibTeX XML Cite \textit{J. Li} and \textit{L. Zhao}, Appl. Math. Comput. 460, Article ID 128288, 24 p. (2024; Zbl 07748300) Full Text: DOI
He, Mingyu; Liao, Wenyuan A compact ADI finite difference method for 2D reaction-diffusion equations with variable diffusion coefficients. (English) Zbl 07738650 J. Comput. Appl. Math. 436, Article ID 115400, 19 p. (2024). MSC: 65Mxx 35Kxx 65Nxx PDF BibTeX XML Cite \textit{M. He} and \textit{W. Liao}, J. Comput. Appl. Math. 436, Article ID 115400, 19 p. (2024; Zbl 07738650) Full Text: DOI
Abbas, Saïd; Ahmad, Bashir; Benchohra, Mouffak; Salim, Abdelkrim Fractional difference, differential equations, and inclusions. Analysis and stability (to appear). (English) Zbl 07707421 Amsterdam: Elsevier/Morgan Kaufmann (ISBN 978-0-443-23601-3/pbk). 300 p. (2024). MSC: 26-01 39-01 34-01 35-01 26A33 34A08 35R11 PDF BibTeX XML Cite \textit{S. Abbas} et al., Fractional difference, differential equations, and inclusions. Analysis and stability (to appear). Amsterdam: Elsevier/Morgan Kaufmann (2024; Zbl 07707421)
Ramaswamy, Rajagopalan; Latif, Mohamed S. Abdel; Elsonbaty, Amr; Kader, Abas H. Abdel On exact solutions of fractional differential-difference equations with \(\Psi\)-Riemann-Liouville derivative. (English) Zbl 07773928 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 7, 2749-2761 (2023). MSC: 34-XX 35-XX PDF BibTeX XML Cite \textit{R. Ramaswamy} et al., Int. J. Nonlinear Sci. Numer. Simul. 24, No. 7, 2749--2761 (2023; Zbl 07773928) Full Text: DOI
Ji, Bingquan; Zhu, Xiaohan; Liao, Hong-Lin Energy stability of variable-step L1-type schemes for time-fractional Cahn-Hilliard model. (English) Zbl 07772400 Commun. Math. Sci. 21, No. 7, 1767-1789 (2023). MSC: 35Q99 65M06 65M12 74A50 PDF BibTeX XML Cite \textit{B. Ji} et al., Commun. Math. Sci. 21, No. 7, 1767--1789 (2023; Zbl 07772400) Full Text: DOI arXiv
Phillips, Toby R. F.; Heaney, Claire E.; Chen, Boyang; Buchan, Andrew G.; Pain, Christopher C. Solving the discretised neutron diffusion equations using neural networks. (English) Zbl 07772328 Int. J. Numer. Methods Eng. 124, No. 21, 4659-4686 (2023). MSC: 68Txx 65Nxx 65Dxx PDF BibTeX XML Cite \textit{T. R. F. Phillips} et al., Int. J. Numer. Methods Eng. 124, No. 21, 4659--4686 (2023; Zbl 07772328) Full Text: DOI arXiv OA License
Xia, Ming; Xu, Xin; Gong, Fengqiang; Wang, Min; Feng, Y. T. A Minkowski difference-based advancing front packing technique for generating convex noncircular particles in complex domains. (English) Zbl 07772322 Int. J. Numer. Methods Eng. 124, No. 20, 4520-4546 (2023). MSC: 74Sxx 65Mxx 65Nxx PDF BibTeX XML Cite \textit{M. Xia} et al., Int. J. Numer. Methods Eng. 124, No. 20, 4520--4546 (2023; Zbl 07772322) Full Text: DOI OA License
Mantravadi, Bhargav; Jagad, Pankaj; Samtaney, Ravi A hybrid discrete exterior calculus and finite difference method for Boussinesq convection in spherical shells. (English) Zbl 07771304 J. Comput. Phys. 491, Article ID 112397, 22 p. (2023). MSC: 65Mxx 76Mxx 58Axx PDF BibTeX XML Cite \textit{B. Mantravadi} et al., J. Comput. Phys. 491, Article ID 112397, 22 p. (2023; Zbl 07771304) Full Text: DOI arXiv
Nishikawa, Hiroaki On pitfalls in accuracy verification using time-dependent problems. (English) Zbl 07771303 J. Comput. Phys. 491, Article ID 112389, 6 p. (2023). MSC: 65Nxx 65Mxx 76Mxx PDF BibTeX XML Cite \textit{H. Nishikawa}, J. Comput. Phys. 491, Article ID 112389, 6 p. (2023; Zbl 07771303) Full Text: DOI arXiv
Stiernström, Vidar; Almquist, Martin; Mattsson, Ken Boundary-optimized summation-by-parts operators for finite difference approximations of second derivatives with variable coefficients. (English) Zbl 07771292 J. Comput. Phys. 491, Article ID 112376, 24 p. (2023). MSC: 65Mxx 35Lxx 65Dxx PDF BibTeX XML Cite \textit{V. Stiernström} et al., J. Comput. Phys. 491, Article ID 112376, 24 p. (2023; Zbl 07771292) Full Text: DOI
Yanaoka, Hideki Influences of conservative and non-conservative Lorentz forces on energy conservation properties for incompressible magnetohydrodynamic flows. (English) Zbl 07771288 J. Comput. Phys. 491, Article ID 112372, 36 p. (2023). MSC: 76Mxx 76Wxx 65Mxx PDF BibTeX XML Cite \textit{H. Yanaoka}, J. Comput. Phys. 491, Article ID 112372, 36 p. (2023; Zbl 07771288) Full Text: DOI
Ablowitz, Mark J.; Cole, Justin T.; El, Gennady A.; Hoefer, Mark A.; Luo, Xu-Dan Soliton-mean field interaction in Korteweg-de Vries dispersive hydrodynamics. (English) Zbl 07771122 Stud. Appl. Math. 151, No. 3, 795-856 (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q53 35Q35 76L05 76P05 37K15 35C08 35B20 35B40 35R09 65M70 65M06 65N35 PDF BibTeX XML Cite \textit{M. J. Ablowitz} et al., Stud. Appl. Math. 151, No. 3, 795--856 (2023; Zbl 07771122) Full Text: DOI arXiv
Li, Liang; Wang, Zhenming; Zhao, Zhong; Zhu, Jun A new high order hybrid WENO scheme for hyperbolic conservation laws. (English) Zbl 07769120 Numer. Methods Partial Differ. Equations 39, No. 6, 4347-4376 (2023). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{L. Li} et al., Numer. Methods Partial Differ. Equations 39, No. 6, 4347--4376 (2023; Zbl 07769120) Full Text: DOI
Chu, Shaoshuai; Kovyrkina, Olyana A.; Kurganov, Alexander; Ostapenko, Vladimir V. Experimental convergence rate study for three shock-capturing schemes and development of highly accurate combined schemes. (English) Zbl 07769119 Numer. Methods Partial Differ. Equations 39, No. 6, 4317-4346 (2023). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{S. Chu} et al., Numer. Methods Partial Differ. Equations 39, No. 6, 4317--4346 (2023; Zbl 07769119) Full Text: DOI arXiv
Liu, Jianfeng; Tang, Qinglin; Wang, Tingchun A mass- and energy-preserving numerical scheme for solving coupled Gross-Pitaevskii equations in high dimensions. (English) Zbl 07769116 Numer. Methods Partial Differ. Equations 39, No. 6, 4248-4269 (2023). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{J. Liu} et al., Numer. Methods Partial Differ. Equations 39, No. 6, 4248--4269 (2023; Zbl 07769116) Full Text: DOI
Sahoo, Sanjay Ku; Gupta, Vikas Parameter robust higher-order finite difference method for convection-diffusion problem with time delay. (English) Zbl 07769112 Numer. Methods Partial Differ. Equations 39, No. 6, 4145-4173 (2023). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{S. K. Sahoo} and \textit{V. Gupta}, Numer. Methods Partial Differ. Equations 39, No. 6, 4145--4173 (2023; Zbl 07769112) Full Text: DOI
Boe, Daniel; Shahbazi, Khosro A positivity preserving high-order finite difference method for compressible two-fluid flows. (English) Zbl 07769110 Numer. Methods Partial Differ. Equations 39, No. 6, 4087-4125 (2023). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{D. Boe} and \textit{K. Shahbazi}, Numer. Methods Partial Differ. Equations 39, No. 6, 4087--4125 (2023; Zbl 07769110) Full Text: DOI
Li, Da; Li, Keran; Liao, Wenyuan A combined compact finite difference scheme for solving the acoustic wave equation in heterogeneous media. (English) Zbl 07769109 Numer. Methods Partial Differ. Equations 39, No. 6, 4062-4086 (2023). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{D. Li} et al., Numer. Methods Partial Differ. Equations 39, No. 6, 4062--4086 (2023; Zbl 07769109) Full Text: DOI OA License
Cheng, Yu; Wang, Yuhui; Liu, Hanhong; Li, Lilin; Wang, Xiang-Hua; Zhang, Xingqi; Chen, Zhizhang; Yang, Shunchuan A stable FDTD subgridding scheme with SBP-SAT for transient TM analysis. (English) Zbl 07766224 J. Comput. Phys. 494, Article ID 112510, 19 p. (2023). MSC: 65Mxx 76Mxx 35Lxx PDF BibTeX XML Cite \textit{Y. Cheng} et al., J. Comput. Phys. 494, Article ID 112510, 19 p. (2023; Zbl 07766224) Full Text: DOI arXiv
Zaitseva, N. V.; Muravnik, A. B. A classical solution to a hyperbolic differential-difference equation with a translation by an arbitrary vector. (English. Russian original) Zbl 07763820 Russ. Math. 67, No. 5, 29-34 (2023); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 5, 34-40 (2023). MSC: 35R10 35L10 PDF BibTeX XML Cite \textit{N. V. Zaitseva} and \textit{A. B. Muravnik}, Russ. Math. 67, No. 5, 29--34 (2023; Zbl 07763820); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 5, 34--40 (2023) Full Text: DOI
Abadias, Luciano; González-Camus, Jorge; Rueda, Silvia Time-step heat problem on the mesh: asymptotic behavior and decay rates. (English) Zbl 07762869 Forum Math. 35, No. 6, 1563-1582 (2023). MSC: 39A12 39A14 39A22 35K05 35K08 PDF BibTeX XML Cite \textit{L. Abadias} et al., Forum Math. 35, No. 6, 1563--1582 (2023; Zbl 07762869) Full Text: DOI
Levi, Decio; Rodríguez, Miguel A. Non-existence of S-integrable three-point partial difference equations in the lattice plane. (English) Zbl 07762643 SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 084, 7 p. (2023). Reviewer: Giorgio Gubbiotti (Milano) MSC: 39A36 39A14 37J70 37K60 PDF BibTeX XML Cite \textit{D. Levi} and \textit{M. A. Rodríguez}, SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 084, 7 p. (2023; Zbl 07762643) Full Text: DOI arXiv
Blümlein, J.; Saragnese, M.; Schneider, C. Hypergeometric structures in Feynman integrals. (English) Zbl 07759320 Ann. Math. Artif. Intell. 91, No. 5, 591-649 (2023). MSC: 33F10 33C20 33C65 33E30 81Q30 PDF BibTeX XML Cite \textit{J. Blümlein} et al., Ann. Math. Artif. Intell. 91, No. 5, 591--649 (2023; Zbl 07759320) Full Text: DOI arXiv OA License
Mohebalizadeh, Hamed; Adibi, Hojatollah; Dehghan, Mehdi Well-posedness of space fractional Ginzburg-Landau equations involving the fractional Laplacian arising in a Bose-Einstein condensation and its kernel based approximation. (English) Zbl 07758921 Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107469, 23 p. (2023). MSC: 35R11 35Q56 PDF BibTeX XML Cite \textit{H. Mohebalizadeh} et al., Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107469, 23 p. (2023; Zbl 07758921) Full Text: DOI
Kawala, A. M.; Abdelaziz, H. K. A hybrid technique based on Lucas polynomials for solving fractional diffusion partial differential equation. (English) Zbl 07758554 J. Elliptic Parabol. Equ. 9, No. 2, 1271-1289 (2023). MSC: 65M70 65N06 34A08 26A33 35R11 11B39 PDF BibTeX XML Cite \textit{A. M. Kawala} and \textit{H. K. Abdelaziz}, J. Elliptic Parabol. Equ. 9, No. 2, 1271--1289 (2023; Zbl 07758554) Full Text: DOI OA License
Hosseinkhan, Alireza; Showalter, Ralph E. Semilinear degenerate Biot-Signorini system. (English) Zbl 07757953 SIAM J. Math. Anal. 55, No. 5, 5643-5665 (2023). MSC: 35Qxx 35M87 74F10 76M30 76S05 35A01 35B65 35Q86 35Q92 PDF BibTeX XML Cite \textit{A. Hosseinkhan} and \textit{R. E. Showalter}, SIAM J. Math. Anal. 55, No. 5, 5643--5665 (2023; Zbl 07757953) Full Text: DOI
Landoulsi, Oussama; Roudenko, Svetlana; Yang, Kai Interaction with an obstacle in the 2D focusing nonlinear Schrödinger equation. (English) Zbl 07757634 Adv. Comput. Math. 49, No. 5, Paper No. 71, 44 p. (2023). MSC: 35Q55 35Q41 58J32 58J37 65N06 65M06 35B40 35C08 35C07 35B44 35A01 35A23 35R09 PDF BibTeX XML Cite \textit{O. Landoulsi} et al., Adv. Comput. Math. 49, No. 5, Paper No. 71, 44 p. (2023; Zbl 07757634) Full Text: DOI arXiv
Lyu, Pin; Vong, Seakweng A weighted ADI scheme with variable time steps for diffusion-wave equations. (English) Zbl 07757601 Calcolo 60, No. 4, Paper No. 49, 20 p. (2023). MSC: 65M06 65N06 65M12 35B65 26A33 35R11 PDF BibTeX XML Cite \textit{P. Lyu} and \textit{S. Vong}, Calcolo 60, No. 4, Paper No. 49, 20 p. (2023; Zbl 07757601) Full Text: DOI
Huang, Chaobao; An, Na; Chen, Hu; Yu, Xijun \(\alpha\)-robust error analysis of two nonuniform schemes for subdiffusion equations with variable-order derivatives. (English) Zbl 07754879 J. Sci. Comput. 97, No. 2, Paper No. 43, 21 p. (2023). MSC: 65M60 65M06 65N30 65M12 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{C. Huang} et al., J. Sci. Comput. 97, No. 2, Paper No. 43, 21 p. (2023; Zbl 07754879) Full Text: DOI
Liao, Hong-lin; Liu, Nan; Lyu, Pin Discrete gradient structure of a second-order variable-step method for nonlinear integro-differential models. (English) Zbl 07754847 SIAM J. Numer. Anal. 61, No. 5, 2157-2181 (2023). MSC: 35Q99 65M06 65M50 65M12 74A50 35R09 26A33 35R11 PDF BibTeX XML Cite \textit{H.-l. Liao} et al., SIAM J. Numer. Anal. 61, No. 5, 2157--2181 (2023; Zbl 07754847) Full Text: DOI arXiv
Li, Qing; Chen, Huanzhen; Wang, Hong A proper orthogonal decomposition-compact difference algorithm for plate vibration models. (English) Zbl 07751259 Numer. Algorithms 94, No. 3, 1489-1518 (2023). MSC: 65Mxx PDF BibTeX XML Cite \textit{Q. Li} et al., Numer. Algorithms 94, No. 3, 1489--1518 (2023; Zbl 07751259) Full Text: DOI
Van den Broeck, Jul; Vanderstraeten, Emile; Decleer, Pieter; Vande Ginste, Dries Conservative second-order accurate finite-difference scheme for the coupled Maxwell-Dirac equations. (English) Zbl 07750156 Appl. Math. Modelling 120, 25-39 (2023). MSC: 65Mxx 81Qxx 35Qxx PDF BibTeX XML Cite \textit{J. Van den Broeck} et al., Appl. Math. Modelling 120, 25--39 (2023; Zbl 07750156) Full Text: DOI
Nie, Daxin; Sun, Jing; Deng, Weihua Sharp error estimates for spatial-temporal finite difference approximations to fractional sub-diffusion equation without regularity assumption on the exact solution. (English) Zbl 1522.65148 Fract. Calc. Appl. Anal. 26, No. 3, 1421-1464 (2023). MSC: 65M06 65M12 65M15 65M60 35R11 26A33 PDF BibTeX XML Cite \textit{D. Nie} et al., Fract. Calc. Appl. Anal. 26, No. 3, 1421--1464 (2023; Zbl 1522.65148) Full Text: DOI arXiv
Hu, Weiwei; Rautenberg, Carlos N.; Zheng, Xiaoming Feedback control for fluid mixing via advection. (English) Zbl 07748171 J. Differ. Equations 374, 126-153 (2023). MSC: 35Q35 35Q93 35Q49 76D07 76F25 93B52 35B40 49J20 49K20 35A01 35A02 65M60 65M06 65N30 76M10 76M20 PDF BibTeX XML Cite \textit{W. Hu} et al., J. Differ. Equations 374, 126--153 (2023; Zbl 07748171) Full Text: DOI
Hu, Lijun; Tan, Shide; Li, Long; Yuan, Haizhuan An accurate, robust and efficient convection-pressure flux splitting scheme for compressible Euler flows. (English) Zbl 07748077 J. Comput. Phys. 493, Article ID 112505, 28 p. (2023). MSC: 76Mxx 65Mxx 76Lxx PDF BibTeX XML Cite \textit{L. Hu} et al., J. Comput. Phys. 493, Article ID 112505, 28 p. (2023; Zbl 07748077) Full Text: DOI
Lin, Yicheng; Wang, Zhenming; Zhu, Jun A new type of increasingly higher order finite difference and finite volume MR-WENO schemes with adaptive linear weights for hyperbolic conservation laws. (English) Zbl 07748057 J. Comput. Phys. 493, Article ID 112471, 33 p. (2023). MSC: 65Mxx 35Lxx 76Mxx PDF BibTeX XML Cite \textit{Y. Lin} et al., J. Comput. Phys. 493, Article ID 112471, 33 p. (2023; Zbl 07748057) Full Text: DOI
Tazhimbetov, Nurbek; Almquist, Martin; Werpers, Jonatan; Dunham, Eric M. Simulation of flexural-gravity wave propagation for elastic plates in shallow water using an energy-stable finite difference method with weakly enforced boundary and interface conditions. (English) Zbl 07748056 J. Comput. Phys. 493, Article ID 112470, 27 p. (2023). MSC: 65Mxx 35Lxx 65Nxx PDF BibTeX XML Cite \textit{N. Tazhimbetov} et al., J. Comput. Phys. 493, Article ID 112470, 27 p. (2023; Zbl 07748056) Full Text: DOI
Long, Yuhua; Li, Dan Multiple periodic solutions of a second-order partial difference equation involving \(p\)-Laplacian. (English) Zbl 07746762 J. Appl. Math. Comput. 69, No. 4, 3489-3508 (2023). MSC: 39A14 39A23 PDF BibTeX XML Cite \textit{Y. Long} and \textit{D. Li}, J. Appl. Math. Comput. 69, No. 4, 3489--3508 (2023; Zbl 07746762) Full Text: DOI
Xiao, Mingcong; Wang, Zhibo; Mo, Yan An implicit nonlinear difference scheme for two-dimensional time-fractional Burgers’ equation with time delay. (English) Zbl 1522.65158 J. Appl. Math. Comput. 69, No. 4, 2919-2934 (2023). MSC: 65M06 35Q53 35R11 65M12 PDF BibTeX XML Cite \textit{M. Xiao} et al., J. Appl. Math. Comput. 69, No. 4, 2919--2934 (2023; Zbl 1522.65158) Full Text: DOI
Roul, Pradip; Prasad Goura, V. M. K.; Agarwal, Ravi A high-order compact finite difference scheme and its analysis for the time-fractional diffusion equation. (English) Zbl 07745943 J. Math. Chem. 61, No. 10, 2146-2175 (2023). MSC: 65Mxx 35Rxx 34Axx PDF BibTeX XML Cite \textit{P. Roul} et al., J. Math. Chem. 61, No. 10, 2146--2175 (2023; Zbl 07745943) Full Text: DOI
Mukherjee, Mousumi; Pal, Debasattam On arbitrary assignability of initial conditions for a discrete autonomous \(n\)-D system. (English) Zbl 07744938 IEEE Trans. Autom. Control 68, No. 7, 4467-4473 (2023). MSC: 93-XX PDF BibTeX XML Cite \textit{M. Mukherjee} and \textit{D. Pal}, IEEE Trans. Autom. Control 68, No. 7, 4467--4473 (2023; Zbl 07744938) Full Text: DOI
Duan, Beiping; Yang, Zongze A quadrature scheme for steady-state diffusion equations involving fractional power of regularly accretive operator. (English) Zbl 1522.65171 SIAM J. Sci. Comput. 45, No. 5, A2226-A2249 (2023). MSC: 65M60 65M06 65N30 65N50 65R20 65N12 65N15 35S15 35R09 35B65 26A33 35R11 PDF BibTeX XML Cite \textit{B. Duan} and \textit{Z. Yang}, SIAM J. Sci. Comput. 45, No. 5, A2226--A2249 (2023; Zbl 1522.65171) Full Text: DOI arXiv
Acosta-Soba, Daniel; Guillén-González, Francisco; Rodríguez-Galván, J. Rafael An unconditionally energy stable and positive upwind DG scheme for the Keller-Segel model. (English) Zbl 1522.65165 J. Sci. Comput. 97, No. 1, Paper No. 18, 27 p. (2023). MSC: 65M60 65M06 65N30 35B09 35B44 35R09 92C17 92C15 35Q92 92-08 PDF BibTeX XML Cite \textit{D. Acosta-Soba} et al., J. Sci. Comput. 97, No. 1, Paper No. 18, 27 p. (2023; Zbl 1522.65165) Full Text: DOI arXiv OA License
Cen, Dakang; Ou, Caixia; Vong, Seakweng Corrected \(L\)-type method for multi-singularity problems arising from delay fractional equations. (English) Zbl 07742014 J. Sci. Comput. 97, No. 1, Paper No. 15, 28 p. (2023). MSC: 65M06 65M12 26A33 35R11 35R07 PDF BibTeX XML Cite \textit{D. Cen} et al., J. Sci. Comput. 97, No. 1, Paper No. 15, 28 p. (2023; Zbl 07742014) Full Text: DOI
Lei, Wenyu; Turkiyyah, George; Knio, Omar Finite element discretizations for variable-order fractional diffusion problems. (English) Zbl 1522.65216 J. Sci. Comput. 97, No. 1, Paper No. 5, 36 p. (2023). MSC: 65N30 65N35 65N38 65N06 65N22 65D32 65F55 35A01 35A02 35R11 PDF BibTeX XML Cite \textit{W. Lei} et al., J. Sci. Comput. 97, No. 1, Paper No. 5, 36 p. (2023; Zbl 1522.65216) Full Text: DOI arXiv
Wei, Yiheng; Zhao, Xuan; Wei, Yingdong; Chen, Yangquan Lyapunov stability analysis for incommensurate nabla fractional order systems. (English) Zbl 1521.93149 J. Syst. Sci. Complex. 36, No. 2, 555-576 (2023). MSC: 93D20 93D30 93C20 35R11 PDF BibTeX XML Cite \textit{Y. Wei} et al., J. Syst. Sci. Complex. 36, No. 2, 555--576 (2023; Zbl 1521.93149) Full Text: DOI
Yoshioka, Hidekazu; Tanaka, Tomomi; Aranishi, Futoshi Limit equations of adaptive Erlangization and their application to environmental management. (English) Zbl 07741338 Comput. Math. Appl. 146, 271-293 (2023). MSC: 93-XX 35-XX PDF BibTeX XML Cite \textit{H. Yoshioka} et al., Comput. Math. Appl. 146, 271--293 (2023; Zbl 07741338) Full Text: DOI
Mir, Shabir Ahmad; Nisar, K. S.; Akhter, Tawheeda; Araci, Serkan Differential and integrodifferential equations for Gould-Hopper-Frobenius-Euler polynomials. (English) Zbl 07739758 Math. Sci., Springer 17, No. 3, 247-251 (2023). MSC: 33E30 PDF BibTeX XML Cite \textit{S. A. Mir} et al., Math. Sci., Springer 17, No. 3, 247--251 (2023; Zbl 07739758) Full Text: DOI
Rosales-Alcantar, Cesar Alberto; Hernández-Dueñas, Gerardo A new two-dimensional blood flow model with arbitrary cross sections. (English) Zbl 07737669 ESAIM, Math. Model. Numer. Anal. 57, No. 3, 1657-1690 (2023). MSC: 35Qxx 35L65 65M06 92Cxx PDF BibTeX XML Cite \textit{C. A. Rosales-Alcantar} and \textit{G. Hernández-Dueñas}, ESAIM, Math. Model. Numer. Anal. 57, No. 3, 1657--1690 (2023; Zbl 07737669) Full Text: DOI arXiv
Svinina, S. V. On the stability of a locally one-dimensional difference scheme for a first-order linear differential-algebraic system of index \((1, 0)\). (English. Russian original) Zbl 07736672 Russ. Math. 67, No. 4, 31-43 (2023); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 3, 37-50 (2023). MSC: 65Mxx 65Nxx 65Dxx PDF BibTeX XML Cite \textit{S. V. Svinina}, Russ. Math. 67, No. 4, 31--43 (2023; Zbl 07736672); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 3, 37--50 (2023) Full Text: DOI
Clain, Stéphane; Pereira, Rui M. S.; Pereira, Paulo A.; Lopes, Diogo Structural schemes for one dimension stationary equations. (English) Zbl 07736227 Appl. Math. Comput. 457, Article ID 128207, 23 p. (2023). MSC: 65Mxx 65Nxx 65Lxx PDF BibTeX XML Cite \textit{S. Clain} et al., Appl. Math. Comput. 457, Article ID 128207, 23 p. (2023; Zbl 07736227) Full Text: DOI
Yang, Xuehua; Wu, Lijiao; Zhang, Haixiang A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity. (English) Zbl 07736216 Appl. Math. Comput. 457, Article ID 128192, 23 p. (2023). MSC: 45K05 65M06 65M22 65M70 PDF BibTeX XML Cite \textit{X. Yang} et al., Appl. Math. Comput. 457, Article ID 128192, 23 p. (2023; Zbl 07736216) Full Text: DOI
Zhang, Lixiang; Li, Chuanzhong Extensions and generalizations of lattice Gelfand-Dickey hierarchy. (English) Zbl 07736007 Math. Phys. Anal. Geom. 26, No. 3, Paper No. 18, 47 p. (2023). MSC: 37K10 37K60 37K40 39A36 39A14 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{C. Li}, Math. Phys. Anal. Geom. 26, No. 3, Paper No. 18, 47 p. (2023; Zbl 07736007) Full Text: DOI
Al Haj, M.; Monneau, R. Velocity diagram of traveling waves for discrete reaction-diffusion equations. (English) Zbl 07735331 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 6, Paper No. 73, 27 p. (2023). MSC: 39A12 39A14 35K57 PDF BibTeX XML Cite \textit{M. Al Haj} and \textit{R. Monneau}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 6, Paper No. 73, 27 p. (2023; Zbl 07735331) Full Text: DOI arXiv
Xu, Yi Hui; Liu, Xiao Lan; Xu, Hong Yan The study of solutions for several systems of PDDEs with two complex variables. (English) Zbl 07734702 Demonstr. Math. 56, Article ID 20220241, 21 p. (2023). MSC: 32A22 32A15 PDF BibTeX XML Cite \textit{Y. H. Xu} et al., Demonstr. Math. 56, Article ID 20220241, 21 p. (2023; Zbl 07734702) Full Text: DOI
Flores, J.; García, A.; Negreanu, M.; Salete, E.; Ureña, F.; Vargas, A. M. A spatio-temporal fully meshless method for hyperbolic PDEs. (English) Zbl 07733926 J. Comput. Appl. Math. 430, Article ID 115194, 13 p. (2023). MSC: 65Mxx 35Lxx 65Nxx PDF BibTeX XML Cite \textit{J. Flores} et al., J. Comput. Appl. Math. 430, Article ID 115194, 13 p. (2023; Zbl 07733926) Full Text: DOI
Singh, Abhinav; Foggia, Alejandra; Incardona, Pietro; Sbalzarini, Ivo F. A meshfree collocation scheme for surface differential operators on point clouds. (English) Zbl 1522.65154 J. Sci. Comput. 96, No. 3, Paper No. 89, 19 p. (2023). MSC: 65M06 65M70 65N06 65N35 65N30 65D25 35R01 PDF BibTeX XML Cite \textit{A. Singh} et al., J. Sci. Comput. 96, No. 3, Paper No. 89, 19 p. (2023; Zbl 1522.65154) Full Text: DOI
Maji, Sandip; Natesan, Srinivasan Analytical and numerical solution techniques for a class of time-fractional integro-partial differential equations. (English) Zbl 07730427 Numer. Algorithms 94, No. 1, 229-256 (2023). MSC: 65-XX 35R09 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{S. Maji} and \textit{S. Natesan}, Numer. Algorithms 94, No. 1, 229--256 (2023; Zbl 07730427) Full Text: DOI
Qin, Hai-Hua; Pang, Hong-Kui; Sun, Hai-Wei Sine transform based preconditioning techniques for space fractional diffusion equations. (English) Zbl 07729591 Numer. Linear Algebra Appl. 30, No. 4, e2474, 24 p. (2023). MSC: 65F08 65F10 35R11 PDF BibTeX XML Cite \textit{H.-H. Qin} et al., Numer. Linear Algebra Appl. 30, No. 4, e2474, 24 p. (2023; Zbl 07729591) Full Text: DOI
Baharlouei, Sh.; Mokhtari, R. A stable and convergent hybridized discontinuous Galerkin method for time-fractional telegraph equations. (English) Zbl 1522.65167 Numer. Funct. Anal. Optim. 44, No. 11, 1175-1193 (2023). MSC: 65M60 65M06 65N30 65M12 26A33 35R11 PDF BibTeX XML Cite \textit{Sh. Baharlouei} and \textit{R. Mokhtari}, Numer. Funct. Anal. Optim. 44, No. 11, 1175--1193 (2023; Zbl 1522.65167) Full Text: DOI
Zhou, Ziyi; Zhang, Haixiang; Yang, Xuehua; Tang, Jie An efficient ADI difference scheme for the nonlocal evolution equation with multi-term weakly singular kernels in three dimensions. (English) Zbl 07727803 Int. J. Comput. Math. 100, No. 8, 1719-1736 (2023). MSC: 45K05 65M06 PDF BibTeX XML Cite \textit{Z. Zhou} et al., Int. J. Comput. Math. 100, No. 8, 1719--1736 (2023; Zbl 07727803) Full Text: DOI
Vabishchevich, Petr N. Operator-difference schemes on non-uniform grids for second-order evolutionary equations. (English) Zbl 1522.65157 Russ. J. Numer. Anal. Math. Model. 38, No. 4, 267-277 (2023). MSC: 65M06 65L06 65M12 35R20 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Russ. J. Numer. Anal. Math. Model. 38, No. 4, 267--277 (2023; Zbl 1522.65157) Full Text: DOI arXiv
Shananin, Alexander; Trusov, Nikolai The group behaviour modelling of workers in the labor market. (English) Zbl 1522.65151 Russ. J. Numer. Anal. Math. Model. 38, No. 4, 219-229 (2023). MSC: 65M06 60G51 91B39 93C20 37A50 35Q84 35Q91 PDF BibTeX XML Cite \textit{A. Shananin} and \textit{N. Trusov}, Russ. J. Numer. Anal. Math. Model. 38, No. 4, 219--229 (2023; Zbl 1522.65151) Full Text: DOI
Challamel, Noël; Zhang, Y. P.; Wang, C. M.; Ruta, Giuseppe; dell’Isola, Francesco Discrete and continuous models of linear elasticity: history and connections. (English) Zbl 1517.74001 Contin. Mech. Thermodyn. 35, No. 2, 347-391 (2023). MSC: 74-02 74-03 74B05 PDF BibTeX XML Cite \textit{N. Challamel} et al., Contin. Mech. Thermodyn. 35, No. 2, 347--391 (2023; Zbl 1517.74001) Full Text: DOI
Yao, Shao-Wen; Arqub, Omar Abu; Tayebi, Soumia; Osman, M. S.; Mahmoud, W.; Inc, Mustafa; Alsulami, Hamed A novel collective algorithm using cubic uniform spline and finite difference approaches to solving fractional diffusion singular wave model through damping-reaction forces. (English) Zbl 07726771 Fractals 31, No. 4, Article ID 2340069, 13 p. (2023). MSC: 65Lxx 65Mxx 35Rxx PDF BibTeX XML Cite \textit{S.-W. Yao} et al., Fractals 31, No. 4, Article ID 2340069, 13 p. (2023; Zbl 07726771) Full Text: DOI
Acevedo, Ramiro; Gómez, Christian; Navia, Paulo Numerical analysis of nonlinear degenerate parabolic problems with application to eddy current models. (English) Zbl 1520.65067 Adv. Comput. Math. 49, No. 4, Paper No. 64, 22 p. (2023). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M06 65N30 65M12 65M15 35K55 35K65 78A25 78M10 35Q60 PDF BibTeX XML Cite \textit{R. Acevedo} et al., Adv. Comput. Math. 49, No. 4, Paper No. 64, 22 p. (2023; Zbl 1520.65067) Full Text: DOI
Ge, Meibao; Xu, Dinghua Biparametric identification for a free boundary of ductal carcinoma in situ. (English) Zbl 1522.35516 Appl. Anal. 102, No. 10, 2774-2794 (2023). MSC: 35Q92 92C37 92C32 92C50 35R30 35R35 35R60 35A01 35A02 35K05 65K10 90C56 65M32 65M30 65F22 65J20 65M06 PDF BibTeX XML Cite \textit{M. Ge} and \textit{D. Xu}, Appl. Anal. 102, No. 10, 2774--2794 (2023; Zbl 1522.35516) Full Text: DOI
Yang, Biao; Zhang, Haixiang; Jiang, Xiaoxuan; Yang, Xuehua An implicit difference scheme for the fourth-order nonlinear partial integro-differential equations. (English) Zbl 1522.65266 Appl. Anal. 102, No. 8, 2314-2337 (2023). MSC: 65R20 45K05 PDF BibTeX XML Cite \textit{B. Yang} et al., Appl. Anal. 102, No. 8, 2314--2337 (2023; Zbl 1522.65266) Full Text: DOI
Cen, Dakang; Vong, Seakweng The tracking of derivative discontinuities for delay fractional equations based on fitted \(L1\) method. (English) Zbl 1517.65068 Comput. Methods Appl. Math. 23, No. 3, 591-601 (2023). MSC: 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{D. Cen} and \textit{S. Vong}, Comput. Methods Appl. Math. 23, No. 3, 591--601 (2023; Zbl 1517.65068) Full Text: DOI
Jangveladze, Temur; Kiguradze, Zurab; Kratsashvili, Maia; Neta, Beny Numerical solution for a nonlinear diffusion model with source terms. (English) Zbl 07722461 Georgian Math. J. 30, No. 4, 539-554 (2023). Reviewer: Nicolae Cîndea (Aubière) MSC: 65M06 65N06 35K55 35R09 45K05 78A25 78M20 35Q60 PDF BibTeX XML Cite \textit{T. Jangveladze} et al., Georgian Math. J. 30, No. 4, 539--554 (2023; Zbl 07722461) Full Text: DOI
Ma, Hongyan; Gao, Hongjun Unstable manifolds for rough evolution equations. (English) Zbl 07721832 Bull. Malays. Math. Sci. Soc. (2) 46, No. 5, Paper No. 159, 36 p. (2023). MSC: 37L55 37L25 37L15 37H10 37D10 60H15 60H05 PDF BibTeX XML Cite \textit{H. Ma} and \textit{H. Gao}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 5, Paper No. 159, 36 p. (2023; Zbl 07721832) Full Text: DOI
Gordin, V. A. When an implicit scheme is monotonic. (Russian. English summary) Zbl 07720889 Mat. Model. 35, No. 6, 96-108 (2023). MSC: 65Mxx 76-XX PDF BibTeX XML Cite \textit{V. A. Gordin}, Mat. Model. 35, No. 6, 96--108 (2023; Zbl 07720889) Full Text: DOI MNR
Durdiev, Durdimurod; Durdiev, Dilshod An inverse problem of finding a time-dependent coefficient in a fractional diffusion equation. (English) Zbl 07717030 Turk. J. Math. 47, No. 5, 1437-1452 (2023). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{D. Durdiev} and \textit{D. Durdiev}, Turk. J. Math. 47, No. 5, 1437--1452 (2023; Zbl 07717030) Full Text: DOI
Kumar, Sudhir; Mittal, R. C.; Jiwari, Ram Retracted article: A cubic B-spline quasi-interpolation method for solving hyperbolic partial differential equations. (English) Zbl 07716409 Int. J. Comput. Math. 100, No. 7, 1580-1600 (2023); retraction note ibid. 100, No. 9, 1955 (2023). MSC: 65M70 65D07 65M12 35Q53 35L70 65L12 65F15 65M06 65N35 PDF BibTeX XML Cite \textit{S. Kumar} et al., Int. J. Comput. Math. 100, No. 7, 1580--1600 (2023; Zbl 07716409) Full Text: DOI
Sitenko, Dmitrij; Boll, Bastian; Schnörr, Christoph A nonlocal graph-PDE and higher-order geometric integration for image labeling. (English) Zbl 1521.39019 SIAM J. Imaging Sci. 16, No. 1, 501-567 (2023). MSC: 39A60 39A14 68U10 94A08 62H35 53B12 PDF BibTeX XML Cite \textit{D. Sitenko} et al., SIAM J. Imaging Sci. 16, No. 1, 501--567 (2023; Zbl 1521.39019) Full Text: DOI arXiv
Pitassi, Silvano; Ghiloni, Riccardo; Petretti, Igor; Trevisan, Francesco; Specogna, Ruben The curved mimetic finite difference method: allowing grids with curved faces. (English) Zbl 07715227 J. Comput. Phys. 490, Article ID 112294, 18 p. (2023). MSC: 65Nxx 35Jxx 76Mxx PDF BibTeX XML Cite \textit{S. Pitassi} et al., J. Comput. Phys. 490, Article ID 112294, 18 p. (2023; Zbl 07715227) Full Text: DOI arXiv
Bailo, Rafael; Carrillo, José A.; Hu, Jingwei Bound-preserving finite-volume schemes for systems of continuity equations with saturation. (English) Zbl 1519.65026 SIAM J. Appl. Math. 83, No. 3, 1315-1339 (2023). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M06 65N08 92D25 35Q92 45K05 35R09 35B09 PDF BibTeX XML Cite \textit{R. Bailo} et al., SIAM J. Appl. Math. 83, No. 3, 1315--1339 (2023; Zbl 1519.65026) Full Text: DOI arXiv
Chawla, Reetika; Deswal, Komal; Kumar, Devendra A new numerical formulation for the generalized time-fractional Benjamin Bona Mohany Burgers’ equation. (English) Zbl 07715006 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 883-898 (2023). MSC: 26A33 35R11 65M06 65M12 65M15 65N06 65N15 PDF BibTeX XML Cite \textit{R. Chawla} et al., Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 883--898 (2023; Zbl 07715006) Full Text: DOI
Tian, Qingqing; Yang, Xuehua; Zhang, Haixiang; Xu, Da An implicit robust numerical scheme with graded meshes for the modified Burgers model with nonlocal dynamic properties. (English) Zbl 07714804 Comput. Appl. Math. 42, No. 6, Paper No. 246, 26 p. (2023). MSC: 65-XX 26A33 45K05 65M12 65M22 65M60 PDF BibTeX XML Cite \textit{Q. Tian} et al., Comput. Appl. Math. 42, No. 6, Paper No. 246, 26 p. (2023; Zbl 07714804) Full Text: DOI
Tagiyev, Rafiq K.; Maharramli, Shahla I. Difference approximation of the inverse problem of determining the highest coefficient in a parabolic equation with integral conditions. (English) Zbl 1518.35689 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 49, No. 1, 38-49 (2023). MSC: 35R30 35A35 35K20 49J20 65M06 PDF BibTeX XML Cite \textit{R. K. Tagiyev} and \textit{S. I. Maharramli}, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 49, No. 1, 38--49 (2023; Zbl 1518.35689) Full Text: DOI
Muravnik, A. B.; Zaitseva, N. V. Classical solutions of hyperbolic differential-difference equations with differently directed translations. (English) Zbl 1518.35611 Lobachevskii J. Math. 44, No. 3, 920-925 (2023). MSC: 35R10 35L10 35A22 PDF BibTeX XML Cite \textit{A. B. Muravnik} and \textit{N. V. Zaitseva}, Lobachevskii J. Math. 44, No. 3, 920--925 (2023; Zbl 1518.35611) Full Text: DOI
Durmaz, Muhammet Enes; Amirali, Ilhame; Mohapatra, Jugal; Amiraliyev, Gabil M. A second-order numerical approximation of a singularly perturbed nonlinear Fredholm integro-differential equation. (English) Zbl 07710423 Appl. Numer. Math. 191, 17-28 (2023). MSC: 65Lxx 65Mxx 65Rxx PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., Appl. Numer. Math. 191, 17--28 (2023; Zbl 07710423) Full Text: DOI
Gelu, Fasika Wondimu; Duressa, Gemechis File A parameter-uniform numerical method for singularly perturbed Robin type parabolic convection-diffusion turning point problems. (English) Zbl 07710406 Appl. Numer. Math. 190, 50-64 (2023). MSC: 65Mxx 65Lxx 35Bxx PDF BibTeX XML Cite \textit{F. W. Gelu} and \textit{G. F. Duressa}, Appl. Numer. Math. 190, 50--64 (2023; Zbl 07710406) Full Text: DOI
Vabishchevich, Petr N. Exponent splitting schemes for evolution equations with fractional powers of operators. (English) Zbl 07709145 Int. J. Numer. Anal. Model. 20, No. 3, 371-390 (2023). MSC: 35R11 26A33 65F60 65M06 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Int. J. Numer. Anal. Model. 20, No. 3, 371--390 (2023; Zbl 07709145) Full Text: DOI
Haine, Ghislain; Matignon, Denis; Serhani, Anass Numerical analysis of a structure-preserving space-discretization for an anisotropic and heterogeneous boundary controlled \(N\)-dimensional wave equation as a port-Hamiltonian system. (English) Zbl 07709135 Int. J. Numer. Anal. Model. 20, No. 1, 92-133 (2023). MSC: 65M60 93C20 65M12 65M15 65M06 65N30 PDF BibTeX XML Cite \textit{G. Haine} et al., Int. J. Numer. Anal. Model. 20, No. 1, 92--133 (2023; Zbl 07709135) Full Text: DOI arXiv
Sheng, Qin; Torres, Eduardo Servin A nonconventional stability approach for a nonlinear Crank-Nicolson method solving degenerate Kawarada problems. (English) Zbl 07708938 Appl. Math. Lett. 144, Article ID 108730, 7 p. (2023). MSC: 65Mxx 35Kxx 35Bxx PDF BibTeX XML Cite \textit{Q. Sheng} and \textit{E. S. Torres}, Appl. Math. Lett. 144, Article ID 108730, 7 p. (2023; Zbl 07708938) Full Text: DOI
Miao, Zhi-Qiang; Zheng, Guang-Hui On uniqueness and nonuniqueness for internal potential reconstruction in quantum fields from one measurement. II: The non-radial case. (English) Zbl 07708886 J. Inverse Ill-Posed Probl. 31, No. 3, 337-350 (2023). MSC: 65M32 65N06 65K10 81U40 35Q55 33C10 35A02 35J05 35J15 35R30 35R60 PDF BibTeX XML Cite \textit{Z.-Q. Miao} and \textit{G.-H. Zheng}, J. Inverse Ill-Posed Probl. 31, No. 3, 337--350 (2023; Zbl 07708886) Full Text: DOI arXiv
Gan, Xiaoting; Yin, Junfeng; Li, Rui On the convergence of a Crank-Nicolson fitted finite volume method for pricing european options under regime-switching Kou’s jump-diffusion models. (English) Zbl 07708725 Adv. Appl. Math. Mech. 15, No. 5, 1290-1314 (2023). MSC: 65M08 65M12 91G60 35R09 91G20 35Q91 65N06 65N08 65M06 PDF BibTeX XML Cite \textit{X. Gan} et al., Adv. Appl. Math. Mech. 15, No. 5, 1290--1314 (2023; Zbl 07708725) Full Text: DOI
Huang, Yun-Chi; Chou, Lot-Kei; Lei, Siu-Long Divide-and-conquer solver in tensor-train format for \(d\)-dimensional time-space fractional diffusion equations. (English) Zbl 1518.65088 J. Sci. Comput. 96, No. 1, Paper No. 29, 35 p. (2023). MSC: 65M06 65M12 65M15 65G50 41A63 26A33 35R11 PDF BibTeX XML Cite \textit{Y.-C. Huang} et al., J. Sci. Comput. 96, No. 1, Paper No. 29, 35 p. (2023; Zbl 1518.65088) Full Text: DOI
Dong, Haixia; Zhao, Zhongshu; Li, Shuwang; Ying, Wenjun; Zhang, Jiwei Second order convergence of a modified MAC scheme for Stokes interface problems. (English) Zbl 07708369 J. Sci. Comput. 96, No. 1, Paper No. 27, 25 p. (2023). MSC: 65Nxx 76Mxx 76Dxx PDF BibTeX XML Cite \textit{H. Dong} et al., J. Sci. Comput. 96, No. 1, Paper No. 27, 25 p. (2023; Zbl 07708369) Full Text: DOI arXiv
Bai, Xiangyu; Sun, Jiebao; Shen, Jie; Yao, Wenjuan; Guo, Zhichang A Ginzburg-Landau-\({H}^{-1}\) model and its SAV algorithm for image inpainting. (English) Zbl 1522.65164 J. Sci. Comput. 96, No. 2, Paper No. 40, 27 p. (2023). MSC: 65M32 65M30 65M06 65M50 65H10 65D18 68U10 94A08 35A15 35R09 35Q56 35B05 PDF BibTeX XML Cite \textit{X. Bai} et al., J. Sci. Comput. 96, No. 2, Paper No. 40, 27 p. (2023; Zbl 1522.65164) Full Text: DOI
Zhang, Guoyu; Huang, Chengming; Alikhanov, Anatoly A.; Yin, Baoli A high-order discrete energy decay and maximum-principle preserving scheme for time fractional Allen-Cahn equation. (English) Zbl 07708340 J. Sci. Comput. 96, No. 2, Paper No. 39, 21 p. (2023). MSC: 65Mxx 35Qxx 74Axx PDF BibTeX XML Cite \textit{G. Zhang} et al., J. Sci. Comput. 96, No. 2, Paper No. 39, 21 p. (2023; Zbl 07708340) Full Text: DOI arXiv