Touail, Y. A new generalization of metric spaces satisfying the \(T_2\)-separation axiom and some related fixed point results. (English. Russian original) Zbl 07763827 Russ. Math. 67, No. 5, 76-86 (2023); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 5, 58-70 (2023). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{Y. Touail}, Russ. Math. 67, No. 5, 76--86 (2023; Zbl 07763827); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 5, 58--70 (2023) Full Text: DOI
Hosseini, Amin Some fixed point theorems in the complex valued metric-like spaces. (English) Zbl 07759400 Lobachevskii J. Math. 44, No. 7, 2689-2699 (2023). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{A. Hosseini}, Lobachevskii J. Math. 44, No. 7, 2689--2699 (2023; Zbl 07759400) Full Text: DOI
Makhoshi, Vuledzani; Khumalo, Melusi; Nazir, Talat Iterated function system of generalized cyclic contractions in partial metric spaces. (English) Zbl 07752909 J. Nonlinear Convex Anal. 24, No. 9, 1977-1996 (2023). MSC: 28A80 54E40 PDF BibTeX XML Cite \textit{V. Makhoshi} et al., J. Nonlinear Convex Anal. 24, No. 9, 1977--1996 (2023; Zbl 07752909) Full Text: Link
Bera, Subhajit; Tripathy, Binod Chandra Statistical convergence in a bicomplex valued metric space. (English) Zbl 07746226 Ural Math. J. 9, No. 1, 49-63 (2023). MSC: 40A35 40J05 30G35 PDF BibTeX XML Cite \textit{S. Bera} and \textit{B. C. Tripathy}, Ural Math. J. 9, No. 1, 49--63 (2023; Zbl 07746226) Full Text: DOI MNR
Aphane, Maggie; Moshokoa, Seithuti; Ncongwane, Fanyana On the 0-Cauchy completion of a partial \(b\)-metric space. (English) Zbl 07740701 Quaest. Math. 46, No. 9, 1743-1750 (2023). MSC: 54D99 54E50 54E99 PDF BibTeX XML Cite \textit{M. Aphane} et al., Quaest. Math. 46, No. 9, 1743--1750 (2023; Zbl 07740701) Full Text: DOI
Kim, Chang Il; Han, Gil Jun A fixed point theorem on partial metric spaces satisfying an implicit relation. (English) Zbl 1521.54028 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 30, No. 1, 25-34 (2023). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{C. I. Kim} and \textit{G. J. Han}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 30, No. 1, 25--34 (2023; Zbl 1521.54028) Full Text: DOI
Kumar, Santosh; Kessy, Johnson Allen Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces. (English) Zbl 07729574 Math. Bohem. 148, No. 2, 223-236 (2023). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{J. A. Kessy}, Math. Bohem. 148, No. 2, 223--236 (2023; Zbl 07729574) Full Text: DOI
Jost, Jürgen; Wenzel, Walter Geometric algebra for sets with betweenness relations. (English) Zbl 07729047 Beitr. Algebra Geom. 64, No. 3, 555-579 (2023). MSC: 06A06 20F05 54E35 05C05 05C12 51K05 53A04 54E50 92B05 PDF BibTeX XML Cite \textit{J. Jost} and \textit{W. Wenzel}, Beitr. Algebra Geom. 64, No. 3, 555--579 (2023; Zbl 07729047) Full Text: DOI
Siva, G. Fixed points of closed graph operators on \(N\)-cone metric spaces. (English) Zbl 07720037 Indian J. Math. 65, No. 1, 53-71 (2023). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{G. Siva}, Indian J. Math. 65, No. 1, 53--71 (2023; Zbl 07720037)
Djedid, Zahia; Alsharif, Sharifa New fixed-point theorems on partially \(E\)-cone metric spaces. (English) Zbl 07711629 Jordan J. Math. Stat. 16, No. 2, 249-267 (2023). MSC: 47H10 15A60 47A30 47B15 PDF BibTeX XML Cite \textit{Z. Djedid} and \textit{S. Alsharif}, Jordan J. Math. Stat. 16, No. 2, 249--267 (2023; Zbl 07711629) Full Text: DOI
Saluja, G. S.; Hyun, Ho Geun; Kim, Jong Kyu Generalized integral type \(F\)-contraction in partial metric spaces and common fixed point. (English) Zbl 1514.54032 Nonlinear Funct. Anal. Appl. 28, No. 1, 107-121 (2023). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{G. S. Saluja} et al., Nonlinear Funct. Anal. Appl. 28, No. 1, 107--121 (2023; Zbl 1514.54032) Full Text: Link
Okeke, Chibueze C.; Jolaoso, Lateef O.; Shehu, Yekini Inertial accelerated algorithms for solving split feasibility with multiple output sets in Hilbert spaces. (English) Zbl 07702465 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 2, 769-790 (2023). MSC: 47H09 47H10 49J20 49J40 PDF BibTeX XML Cite \textit{C. C. Okeke} et al., Int. J. Nonlinear Sci. Numer. Simul. 24, No. 2, 769--790 (2023; Zbl 07702465) Full Text: DOI
Sharma, Shagun; Chandok, Sumit Existence of best proximity point in quasi partial metric space with an application. (English) Zbl 1510.54045 J. Anal. 31, No. 2, 1271-1286 (2023). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{S. Sharma} and \textit{S. Chandok}, J. Anal. 31, No. 2, 1271--1286 (2023; Zbl 1510.54045) Full Text: DOI
Wangwe, Lucas; Kumar, Santosh Fixed point results for interpolative \(\psi\)-Hardy-Rogers type contraction mappings in quasi-partial \(b\)-metric space with an applications. (English) Zbl 1507.54026 J. Anal. 31, No. 1, 387-404 (2023). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{L. Wangwe} and \textit{S. Kumar}, J. Anal. 31, No. 1, 387--404 (2023; Zbl 1507.54026) Full Text: DOI
Hofmann, Dirk; Nora, Pedro Duality theory for enriched Priestley spaces. (English) Zbl 1498.18005 J. Pure Appl. Algebra 227, No. 3, Article ID 107231, 32 p. (2023). Reviewer: Hirokazu Nishimura (Tsukuba) MSC: 18A40 18B10 18C15 18C20 18D20 PDF BibTeX XML Cite \textit{D. Hofmann} and \textit{P. Nora}, J. Pure Appl. Algebra 227, No. 3, Article ID 107231, 32 p. (2023; Zbl 1498.18005) Full Text: DOI arXiv
Asil, Maryam Simkhah; Sedghi, Shaban; Lee, Jung Rye Partial \(S\)-metric spaces and fixed point results. (English) Zbl 1520.54020 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 29, No. 4, 401-419 (2022). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{M. S. Asil} et al., J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 29, No. 4, 401--419 (2022; Zbl 1520.54020) Full Text: DOI
Nithiarayaphaks, Woraphak; Sintunavarat, Wutiphol A luxurious proof of the generalized Caristi-Kirk fixed point result using theory on ball spaces. (English) Zbl 07732591 Thai J. Math., Spec. Iss.: Annual Meeting in Mathematics 2021, 124-129 (2022). MSC: 54H25 47H09 47H10 PDF BibTeX XML Cite \textit{W. Nithiarayaphaks} and \textit{W. Sintunavarat}, Thai J. Math., 124--129 (2022; Zbl 07732591) Full Text: Link
Saluja, Gurucharan Singh On some common fixed point theorems for generalized integral type \(F\)-contractions in partial metric spaces. (English) Zbl 07709149 Facta Univ., Ser. Math. Inf. 37, No. 4, 667-682 (2022). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{G. S. Saluja}, Facta Univ., Ser. Math. Inf. 37, No. 4, 667--682 (2022; Zbl 07709149) Full Text: DOI
Gautam, Pragati; Kumar, Santosh; Verma, Swapnil; Gupta, Gauri Existence of common fixed point in Kannan \(\mathrm{F}\)-contractive mappings in quasi-partial b-metric space with an application. (English) Zbl 1520.54025 Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 23, 19 p. (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{P. Gautam} et al., Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 23, 19 p. (2022; Zbl 1520.54025) Full Text: DOI
Kumar Datta, Sanjib; Sarkar, Rakesh; Biswas, Nityagopal; Sarkar, Tandra Some common fixed point theorems for rational type contraction mappings in partial metric spaces. (English) Zbl 07690120 Gaṇita 72, No. 1, 29-37 (2022). MSC: 54H25 54E50 54E99 06A06 PDF BibTeX XML Cite \textit{S. Kumar Datta} et al., Gaṇita 72, No. 1, 29--37 (2022; Zbl 07690120) Full Text: Link
Reintjes, Moritz; Temple, Blake On the optimal regularity implied by the assumptions of geometry. I: Connections on tangent bundles. (English) Zbl 1515.83188 Methods Appl. Anal. 29, No. 4, 303-396 (2022). MSC: 83C75 58J05 PDF BibTeX XML Cite \textit{M. Reintjes} and \textit{B. Temple}, Methods Appl. Anal. 29, No. 4, 303--396 (2022; Zbl 1515.83188) Full Text: DOI arXiv
Gunaseelan, M.; Joseph, G. Arul; Aphane, M.; Gaba, Y. U. Some fixed point results on complex partial metric space. (English) Zbl 07659994 Indian J. Math. 64, No. 2, 263-277 (2022). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{M. Gunaseelan} et al., Indian J. Math. 64, No. 2, 263--277 (2022; Zbl 07659994)
Wu, Zhao-qi; Zhang, Lin; Zhu, Chuan-xi; Yuan, Cheng-gui Some new fixed point results under constraint inequalities in comparable complete partially ordered Menger PM-spaces. (English) Zbl 1511.54056 Appl. Math., Ser. B (Engl. Ed.) 37, No. 4, 494-512 (2022). MSC: 54H25 54E70 54E40 54E50 54F05 PDF BibTeX XML Cite \textit{Z.-q. Wu} et al., Appl. Math., Ser. B (Engl. Ed.) 37, No. 4, 494--512 (2022; Zbl 1511.54056) Full Text: DOI
Hoc, N. H.; Nguyen, L. V. Existence of minima of functions in partial metric spaces and applications to fixed point theory. (English) Zbl 07650947 Acta Math. Hung. 168, No. 2, 345-362 (2022). Reviewer: Nicolae-Adrian Secelean (Sibiu) MSC: 54H25 54E40 49J27 PDF BibTeX XML Cite \textit{N. H. Hoc} and \textit{L. V. Nguyen}, Acta Math. Hung. 168, No. 2, 345--362 (2022; Zbl 07650947) Full Text: DOI
Tiwari, S. K.; Rathour, L.; Mishra, L. N. Existence of fixed point theorems for complex partial b-metric spaces using S-contractive mapping. (English) Zbl 1511.54053 J. Linear Topol. Algebra 11, No. 3, 177-188 (2022). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{S. K. Tiwari} et al., J. Linear Topol. Algebra 11, No. 3, 177--188 (2022; Zbl 1511.54053) Full Text: DOI
Moradi, Sirous; Adegani, Ebrahim Analouei; Khojasteh, Farshid; Moradipour, Mojtaba \(M_b^\ast\)-metric space and its applications. (English) Zbl 1498.54089 J. Nonlinear Convex Anal. 23, No. 3, 397-419 (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{S. Moradi} et al., J. Nonlinear Convex Anal. 23, No. 3, 397--419 (2022; Zbl 1498.54089) Full Text: Link
Saluja, G. S.; Kim, Jong Kyu; Lim, Won Hee Coincidence point and fixed point theorems in partial metric spaces for contractive type mappings with applications. (English) Zbl 1498.54104 J. Appl. Math. Inform. 40, No. 5-6, 1053-1071 (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{G. S. Saluja} et al., J. Appl. Math. Inform. 40, No. 5--6, 1053--1071 (2022; Zbl 1498.54104) Full Text: DOI
Singh, Pravin; Singh, Virath A generalization of a partial \(b\)-metric and fixed point theorems. (English) Zbl 1498.54109 Aust. J. Math. Anal. Appl. 19, No. 1, Article No. 2, 8 p. (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{P. Singh} and \textit{V. Singh}, Aust. J. Math. Anal. Appl. 19, No. 1, Article No. 2, 8 p. (2022; Zbl 1498.54109) Full Text: Link
Saluja, G. S. Some common fixed point theorems on partial metric spaces involving auxiliary function. (English) Zbl 1497.54075 Aligarh Bull. Math. 41, No. 1, 1-26 (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{G. S. Saluja}, Aligarh Bull. Math. 41, No. 1, 1--26 (2022; Zbl 1497.54075) Full Text: Link
Maheswari, J. Uma; Anbarasan, A.; Gunaseelan, M.; Parvaneh, V.; Bonab, S. Hadi Solving an integral equation via \(\mathscr{C}^{\star}\)-algebra-valued partial \(b\)-metrics. (English) Zbl 07611944 Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 18, 14 p. (2022). MSC: 47-XX 54-XX PDF BibTeX XML Cite \textit{J. U. Maheswari} et al., Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 18, 14 p. (2022; Zbl 07611944) Full Text: DOI
Matvejchuk, Marjan; Vladova, Elena Strong rojections in Hilbert space and quantum logic. (English) Zbl 1514.81012 Int. J. Theor. Phys. 61, No. 9, Paper No. 237, 14 p. (2022). MSC: 81P10 03G12 06C15 51F20 46C05 PDF BibTeX XML Cite \textit{M. Matvejchuk} and \textit{E. Vladova}, Int. J. Theor. Phys. 61, No. 9, Paper No. 237, 14 p. (2022; Zbl 1514.81012) Full Text: DOI
Nuray, Fatih Statistical convergence in partial metric spaces. (English) Zbl 1507.40007 Korean J. Math. 30, No. 1, 155-160 (2022). MSC: 40A35 40J05 PDF BibTeX XML Cite \textit{F. Nuray}, Korean J. Math. 30, No. 1, 155--160 (2022; Zbl 1507.40007) Full Text: DOI
Ranjbar, Ghorban Khalilzadeh Common fixed point of a tripled power graphic \((F, \psi)\)-contraction pair on tripled partial \(b\)-metric spaces with application. (English) Zbl 07596000 J. Geom. Anal. 32, No. 12, Paper No. 301, 22 p. (2022). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{G. K. Ranjbar}, J. Geom. Anal. 32, No. 12, Paper No. 301, 22 p. (2022; Zbl 07596000) Full Text: DOI
Hai, Le Phuoc; Khanh, Phan Quoc; Soubeyran, Antoine General versions of the Ekeland variational principle: Ekeland points and stop and go dynamics. (English) Zbl 07595953 J. Optim. Theory Appl. 195, No. 1, 347-373 (2022). MSC: 90C30 49J52 49J53 90C26 91E45 PDF BibTeX XML Cite \textit{L. P. Hai} et al., J. Optim. Theory Appl. 195, No. 1, 347--373 (2022; Zbl 07595953) Full Text: DOI
Tiwari, Rakesh; Rani, Shobha Common fixed point theorem for expansive mapping in partial \(b\)-metric space. (English) Zbl 1497.54079 J. Adv. Math. Stud. 15, No. 2, 141-155 (2022). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{R. Tiwari} and \textit{S. Rani}, J. Adv. Math. Stud. 15, No. 2, 141--155 (2022; Zbl 1497.54079) Full Text: Link
Aslantas, Mustafa Finding a solution to an optimization problem and an application. (English) Zbl 1490.54036 J. Optim. Theory Appl. 194, No. 1, 121-141 (2022). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{M. Aslantas}, J. Optim. Theory Appl. 194, No. 1, 121--141 (2022; Zbl 1490.54036) Full Text: DOI
Mani, Gunaseelan; Mishra, Lakshmi Narayan; Mishra, Vishnu Narayan Common fixed point theorems in complex partial b-metric space with an application to integral equations. (English) Zbl 1486.54062 Adv. Stud.: Euro-Tbil. Math. J. 15, No. 1, 129-149 (2022). MSC: 54H25 47H10 45G10 PDF BibTeX XML Cite \textit{G. Mani} et al., Adv. Stud.: Euro-Tbil. Math. J. 15, No. 1, 129--149 (2022; Zbl 1486.54062) Full Text: DOI
Zimmer, Andrew Subelliptic estimates from Gromov hyperbolicity. (English) Zbl 1498.32005 Adv. Math. 402, Article ID 108334, 94 p. (2022). Reviewer: Andrea Galasso (Taipei) MSC: 32F45 32Q20 53C23 PDF BibTeX XML Cite \textit{A. Zimmer}, Adv. Math. 402, Article ID 108334, 94 p. (2022; Zbl 1498.32005) Full Text: DOI arXiv
Pattar, Rahul Raju; Kiran, N. Uday Strictly hyperbolic Cauchy problems on \(\mathbb{R}^n\) with unbounded and singular coefficients. (English) Zbl 1487.35242 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 68, No. 1, 11-45 (2022). MSC: 35L15 35S05 35B65 35B30 PDF BibTeX XML Cite \textit{R. R. Pattar} and \textit{N. U. Kiran}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 68, No. 1, 11--45 (2022; Zbl 1487.35242) Full Text: DOI arXiv
Ladyzhenskaya, Olga A. [Seregin, Gregory A.; Kalantarov, Varga K.; Zelik, Sergey V.] Attractors for semigroups and evolution equations. With an introduction by Gregory A. Seregin, Varga K. Kalantarov and Sergey V. Zelik. Reprint of the 1991 edition with a new introduction. (English) Zbl 1496.47001 Cambridge Mathematical Library. Cambridge: Cambridge University Press (ISBN 978-1-00-922982-1/pbk; 978-1-00-922981-4/ebook). xxviii, 68 p. (2022). MSC: 47-02 58-02 35-02 01A75 47H20 35B40 47-03 58-03 35-03 47D06 PDF BibTeX XML Cite \textit{O. A. Ladyzhenskaya}, Attractors for semigroups and evolution equations. With an introduction by Gregory A. Seregin, Varga K. Kalantarov and Sergey V. Zelik. Reprint of the 1991 edition with a new introduction. Cambridge: Cambridge University Press (2022; Zbl 1496.47001) Full Text: DOI
Priya, M.; Uthayakumar, R. Fractal set of generalized countable partial iterated function system with generalized contractions via partial Hausdorff metric. (English) Zbl 1494.28009 Topology Appl. 308, Article ID 108000, 13 p. (2022). MSC: 28A80 28A78 47H10 PDF BibTeX XML Cite \textit{M. Priya} and \textit{R. Uthayakumar}, Topology Appl. 308, Article ID 108000, 13 p. (2022; Zbl 1494.28009) Full Text: DOI
Mykhaylyuk, Volodymyr; Myronyk, Vadym Metrizability of partial metric spaces. (English) Zbl 1483.54014 Topology Appl. 308, Article ID 107949, 13 p. (2022). Reviewer: Evgeniy Petrov (Slovyansk) MSC: 54E35 54E18 54E20 54E30 PDF BibTeX XML Cite \textit{V. Mykhaylyuk} and \textit{V. Myronyk}, Topology Appl. 308, Article ID 107949, 13 p. (2022; Zbl 1483.54014) Full Text: DOI
Pattar, Rahul Raju; Kiran, N. Uday Energy estimates and global well-posedness for a broad class of strictly hyperbolic Cauchy problems with coefficients singular in time. (English) Zbl 1482.35128 J. Pseudo-Differ. Oper. Appl. 13, No. 1, Paper No. 9, 53 p. (2022). MSC: 35L15 35B65 35B30 35S05 PDF BibTeX XML Cite \textit{R. R. Pattar} and \textit{N. U. Kiran}, J. Pseudo-Differ. Oper. Appl. 13, No. 1, Paper No. 9, 53 p. (2022; Zbl 1482.35128) Full Text: DOI arXiv
Eriksson-Bique, Sylvester; Giovannardi, Gianmarco; Korte, Riikka; Shanmugalingam, Nageswari; Speight, Gareth Regularity of solutions to the fractional Cheeger-Laplacian on domains in metric spaces of bounded geometry. (English) Zbl 1477.30056 J. Differ. Equations 306, 590-632 (2022). MSC: 30L99 31E05 35R11 35A15 PDF BibTeX XML Cite \textit{S. Eriksson-Bique} et al., J. Differ. Equations 306, 590--632 (2022; Zbl 1477.30056) Full Text: DOI arXiv
Maheswari, Uma; Ravichandran, M.; Anbarasan, A.; Rathour, Laxmi; Mishra, Vishnu Narayan Some results on coupled fixed point on complex partial \(b\)-metric space. (English) Zbl 1510.54035 Gaṇita 71, No. 2, 17-27 (2021). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{U. Maheswari} et al., Gaṇita 71, No. 2, 17--27 (2021; Zbl 1510.54035) Full Text: Link
Altiparmak, Ebru; Karahan, Ibrahim Fixed point theorems for Geraghty type contraction mappings in complete partial \(b_v(s)\)-metric spaces. (English) Zbl 1513.54110 Sahand Commun. Math. Anal. 18, No. 2, 45-62 (2021). MSC: 54H25 47H09 47H10 PDF BibTeX XML Cite \textit{E. Altiparmak} and \textit{I. Karahan}, Sahand Commun. Math. Anal. 18, No. 2, 45--62 (2021; Zbl 1513.54110) Full Text: DOI
Konar, Pulak; Chandok, Sumit; Bhandari, Samir Kumar; de la Sen, Manuel An interesting approach to the existence of coupled fixed point. (English) Zbl 07543208 AIMS Math. 6, No. 3, 2217-2227 (2021). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{P. Konar} et al., AIMS Math. 6, No. 3, 2217--2227 (2021; Zbl 07543208) Full Text: DOI
Saluja, Gurucharan Singh Some fixed point theorems on partial metric spaces satisfying an implicit contractive condition with applications. (English) Zbl 1491.54151 J. Int. Math. Virtual Inst. 11, No. 1, 101-117 (2021). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{G. S. Saluja}, J. Int. Math. Virtual Inst. 11, No. 1, 101--117 (2021; Zbl 1491.54151) Full Text: DOI
Tiwari, Sanjay Kumar; Pandey, Himanshu Kumar A common fixed point theorem for compatible maps in complex valued metric spaces. (English) Zbl 1491.54165 South East Asian J. Math. Math. Sci. 17, No. 3, 209-214 (2021). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{S. K. Tiwari} and \textit{H. K. Pandey}, South East Asian J. Math. Math. Sci. 17, No. 3, 209--214 (2021; Zbl 1491.54165) Full Text: Link
Gautam, Pragati; Mishra, Vishnu Narayan; Ali, Rifaqat; Verma, Swapnil Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial \(b\)-metric space. (English) Zbl 1484.47110 AIMS Math. 6, No. 2, 1727-1742 (2021). MSC: 47H10 47H09 54H25 PDF BibTeX XML Cite \textit{P. Gautam} et al., AIMS Math. 6, No. 2, 1727--1742 (2021; Zbl 1484.47110) Full Text: DOI
Kumar, Deepak; Sadat, Sadia; Lee, Jung Rye; Park, Choonkil Some theorems in partial metric space using auxiliary functions. (English) Zbl 1484.47117 AIMS Math. 6, No. 7, 6734-6748 (2021). MSC: 47H10 54H25 47H09 PDF BibTeX XML Cite \textit{D. Kumar} et al., AIMS Math. 6, No. 7, 6734--6748 (2021; Zbl 1484.47117) Full Text: DOI
Arunchai, Areerat; Ngeonkam, Boonyarit Fixed point theorems in partial \(b\)-metric-like spaces. (English) Zbl 1499.54156 J. Nonlinear Anal. Optim. 12, No. 2, 95-101 (2021). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{A. Arunchai} and \textit{B. Ngeonkam}, J. Nonlinear Anal. Optim. 12, No. 2, 95--101 (2021; Zbl 1499.54156)
Park, Sehie Revisit to generalized KKM maps. (English) Zbl 1480.54039 J. Nonlinear Convex Anal. 22, No. 11, 2405-2412 (2021). MSC: 54H25 PDF BibTeX XML Cite \textit{S. Park}, J. Nonlinear Convex Anal. 22, No. 11, 2405--2412 (2021; Zbl 1480.54039) Full Text: Link
Pukach, P. Ya.; Repetylo, S. M.; Symotiuk, M. M.; Vovk, M. I. Dirichlet-Neumann problem for the partial differential equations with deviation over the space argument. (English) Zbl 1484.35142 Carpathian Math. Publ. 13, No. 2, 315-325 (2021). MSC: 35C10 35G31 PDF BibTeX XML Cite \textit{P. Ya. Pukach} et al., Carpathian Math. Publ. 13, No. 2, 315--325 (2021; Zbl 1484.35142) Full Text: DOI
Saleh, Hayel N.; Imdad, Mohammad; Karapinar, Erdal A study of common fixed points that belong to zeros of a certain given function with applications. (English) Zbl 1484.54053 Nonlinear Anal., Model. Control 26, No. 5, 781-800 (2021). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 54H25 47H10 47H09 45G15 PDF BibTeX XML Cite \textit{H. N. Saleh} et al., Nonlinear Anal., Model. Control 26, No. 5, 781--800 (2021; Zbl 1484.54053) Full Text: DOI
Gautam, Pragati; Verma, Swapnil Fixed point via implicit contraction mapping on quasi-partial b-metric space. (English) Zbl 1476.54065 J. Anal. 29, No. 4, 1251-1263 (2021). MSC: 54H25 47H10 54E40 PDF BibTeX XML Cite \textit{P. Gautam} and \textit{S. Verma}, J. Anal. 29, No. 4, 1251--1263 (2021; Zbl 1476.54065) Full Text: DOI
Aydi, Hassen; Felhi, Abdelbasset; Sahmim, Slah On fixed points in quasi partial \(b\)-metric spaces and an application to dynamic programming. (English) Zbl 1476.54053 Thai J. Math. 19, No. 2, 407-419 (2021). MSC: 54H25 46J10 47H09 47H10 54E40 PDF BibTeX XML Cite \textit{H. Aydi} et al., Thai J. Math. 19, No. 2, 407--419 (2021; Zbl 1476.54053) Full Text: Link
Filip, Alexandru-Darius Conversions between generalized metric spaces and standard metric spaces with applications in fixed point theory. (English) Zbl 1488.54131 Carpathian J. Math. 37, No. 2, 345-354 (2021). MSC: 54H25 54Exx 47H10 47H09 68Q25 68Q55 PDF BibTeX XML Cite \textit{A.-D. Filip}, Carpathian J. Math. 37, No. 2, 345--354 (2021; Zbl 1488.54131) Full Text: DOI
Sharma, Yogita; Jain, Shishir Coupled fixed point theorems in modular metric spaces endowed with a graph. (English) Zbl 1490.54104 Kyungpook Math. J. 61, No. 2, 441-453 (2021). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{Y. Sharma} and \textit{S. Jain}, Kyungpook Math. J. 61, No. 2, 441--453 (2021; Zbl 1490.54104) Full Text: DOI
Parvaneh, Vahid; Mohammadi, Babak; Aydi, Hassen On Geraghty-Wardowski type contractions and an application. (English) Zbl 1482.54074 Afr. Mat. 32, No. 7-8, 1697-1708 (2021). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{V. Parvaneh} et al., Afr. Mat. 32, No. 7--8, 1697--1708 (2021; Zbl 1482.54074) Full Text: DOI
Nazam, Muhammad; Hamid, Zahida; Al Sulami, Hamed; Hussain, Aftab Common fixed-point theorems in the partial \(b\)-metric spaces and an application to the system of boundary value problems. (English) Zbl 1489.54185 J. Funct. Spaces 2021, Article ID 7777754, 11 p. (2021). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{M. Nazam} et al., J. Funct. Spaces 2021, Article ID 7777754, 11 p. (2021; Zbl 1489.54185) Full Text: DOI
Aranda, Andres; Bradley-Williams, David; Hng, Eng Keat; Hubička, Jan; Karamanlis, Miltiadis; Kompatscher, Michael; Konečný, Matěj; Pawliuk, Micheal Completing graphs to metric spaces. (English) Zbl 1471.05107 Contrib. Discrete Math. 16, No. 2, 71-89 (2021). MSC: 05D10 20B27 54E35 03C15 22F50 37B05 PDF BibTeX XML Cite \textit{A. Aranda} et al., Contrib. Discrete Math. 16, No. 2, 71--89 (2021; Zbl 1471.05107) Full Text: Link
Kaya, U. A short proof of completion theorem for metric spaces. (English) Zbl 1476.54026 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 13, No. 2, 61-64 (2021). MSC: 54E50 54A20 06A06 PDF BibTeX XML Cite \textit{U. Kaya}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 13, No. 2, 61--64 (2021; Zbl 1476.54026) Full Text: MNR
Wu, Zhaoqi; Zhu, Chuanxi; Yuan, Chenggui Best proximity point theorems for generalized weak contractive mappings in partially ordered Menger PM-spaces. (Chinese. English summary) Zbl 1477.54163 Acta Math. Sin., Chin. Ser. 64, No. 2, 177-188 (2021). MSC: 54H25 54E70 54E40 54F05 PDF BibTeX XML Cite \textit{Z. Wu} et al., Acta Math. Sin., Chin. Ser. 64, No. 2, 177--188 (2021; Zbl 1477.54163)
Huang, Yi; Papadopoulos, Athanase Optimal Lipschitz maps on one-holed tori and the Thurston metric theory of Teichmüller space. (English) Zbl 1478.32037 Geom. Dedicata 214, 465-488 (2021). MSC: 32G15 30F60 30F10 53C23 53C70 PDF BibTeX XML Cite \textit{Y. Huang} and \textit{A. Papadopoulos}, Geom. Dedicata 214, 465--488 (2021; Zbl 1478.32037) Full Text: DOI arXiv HAL
Mabula, M. D.; Miñana, J. J.; Valero, O. On fixed point theory in partially ordered (quasi-)metric spaces and an application to complexity analysis of algorithms. (English) Zbl 1476.54081 Kikianty, Eder (ed.) et al., Positivity and its applications. Proceedings from the conference Positivity X, Pretoria, South Africa, July 8–12, 2019. Cham: Birkhäuser. Trends Math., 251-266 (2021). MSC: 54H25 54E40 54F05 68Q25 PDF BibTeX XML Cite \textit{M. D. Mabula} et al., in: Positivity and its applications. Proceedings from the conference Positivity X, Pretoria, South Africa, July 8--12, 2019. Cham: Birkhäuser. 251--266 (2021; Zbl 1476.54081) Full Text: DOI
Moshokoa, Seithuti; Ncongwane, Fanyana On the bicompletion of a partial quasi-metric space and \(T_0\)-quasi-metric spaces. (English) Zbl 1488.54090 Afr. Mat. 32, No. 3-4, 347-361 (2021). MSC: 54E35 54E50 54E99 54D35 PDF BibTeX XML Cite \textit{S. Moshokoa} and \textit{F. Ncongwane}, Afr. Mat. 32, No. 3--4, 347--361 (2021; Zbl 1488.54090) Full Text: DOI
Minirani, S. n-fractals in partial metric spaces. (English) Zbl 1472.28009 Giri, Debasis (ed.) et al., Proceedings of the sixth international conference on mathematics and computing, ICMC 2020, Gangtok, Sikkim, India, March 18–20, 2020. Singapore: Springer. Adv. Intell. Syst. Comput. 1262, 529-534 (2021). MSC: 28A80 PDF BibTeX XML Cite \textit{S. Minirani}, Adv. Intell. Syst. Comput. 1262, 529--534 (2021; Zbl 1472.28009) Full Text: DOI
Ćmiel, Hanna; Kuhlmann, Franz-Viktor; Kuhlmann, Katarzyna A generic approach to measuring the strength of completeness/compactness of various types of spaces and ordered structures. (English) Zbl 1476.54001 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 4, Paper No. 156, 44 p. (2021). Reviewer: K. P. Hart (Delft) MSC: 54A05 03E25 06A06 06F20 12J15 12J20 47H10 54C10 54C60 54D30 54E50 54H25 PDF BibTeX XML Cite \textit{H. Ćmiel} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 4, Paper No. 156, 44 p. (2021; Zbl 1476.54001) Full Text: DOI arXiv
Pattar, Rahul Raju; Uday Kiran, N. Global well-posedness of a class of strictly hyperbolic Cauchy problems with coefficients non-absolutely continuous in time. (English) Zbl 1471.35191 Bull. Sci. Math. 171, Article ID 103037, 32 p. (2021). MSC: 35L30 35S05 35B65 35B30 PDF BibTeX XML Cite \textit{R. R. Pattar} and \textit{N. Uday Kiran}, Bull. Sci. Math. 171, Article ID 103037, 32 p. (2021; Zbl 1471.35191) Full Text: DOI arXiv
Iranmanesh, M.; Radenović, S.; Soleimany, F. Common fixed point theorems in partial idempotent-valued metric spaces. (English) Zbl 07370674 Fixed Point Theory 22, No. 1, 241-250 (2021). Reviewer: Zoran Kadelburg (Beograd) MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{M. Iranmanesh} et al., Fixed Point Theory 22, No. 1, 241--250 (2021; Zbl 07370674) Full Text: Link
Aslantas, Mustafa; Al-Zuhairi, Doaa Riyadh Abed Some best proximity point results for multivalued mappings on partial metric spaces. (English) Zbl 1474.54114 Math. Morav. 25, No. 1, 99-111 (2021). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{M. Aslantas} and \textit{D. R. A. Al-Zuhairi}, Math. Morav. 25, No. 1, 99--111 (2021; Zbl 1474.54114) Full Text: DOI
Karapınar, Erdal; Chen, Chi-Ming; Fulga, Andreea Nonunique coincidence point results via admissible mappings. (English) Zbl 1465.54032 J. Funct. Spaces 2021, Article ID 5538833, 10 p. (2021). Reviewer: Zoran D. Mitrović (Banja Luka) MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{E. Karapınar} et al., J. Funct. Spaces 2021, Article ID 5538833, 10 p. (2021; Zbl 1465.54032) Full Text: DOI
Berghammer, Rudolf; Börm, Steffen; Winter, Michael Algorithmic counting of zero-dimensional finite topological spaces with respect to the covering dimension. (English) Zbl 1508.54015 Appl. Math. Comput. 389, Article ID 125523, 15 p. (2021). MSC: 54E45 54F45 PDF BibTeX XML Cite \textit{R. Berghammer} et al., Appl. Math. Comput. 389, Article ID 125523, 15 p. (2021; Zbl 1508.54015) Full Text: DOI arXiv
Gartside, Paul; Mamatelashvili, Ana Tukey order, calibres and the rationals. (English) Zbl 1498.03100 Ann. Pure Appl. Logic 172, No. 1, Article ID 102873, 18 p. (2021). MSC: 03E04 03E15 54E35 54H05 54E52 PDF BibTeX XML Cite \textit{P. Gartside} and \textit{A. Mamatelashvili}, Ann. Pure Appl. Logic 172, No. 1, Article ID 102873, 18 p. (2021; Zbl 1498.03100) Full Text: DOI arXiv
Acar, Özlem; Coşkun, Sümeyye Generalized multivalued integral type contraction on weak partial metric space. (English) Zbl 1496.54023 Tbil. Math. J. 13, No. 3, 145-151 (2020). MSC: 54H25 47H10 54E40 PDF BibTeX XML Cite \textit{Ö. Acar} and \textit{S. Coşkun}, Tbil. Math. J. 13, No. 3, 145--151 (2020; Zbl 1496.54023) Full Text: DOI
Lael, Fatemeh; Saleem, Naeem; Abbas, Mujahid On the fixed points of multivalued mappings in \(b\)-metric spaces and their application to linear systems. (English) Zbl 1498.54081 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 82, No. 4, 121-130 (2020). MSC: 54H25 54E40 54C60 54F05 PDF BibTeX XML Cite \textit{F. Lael} et al., Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 82, No. 4, 121--130 (2020; Zbl 1498.54081) Full Text: Link
Saluja, G. S. Some fixed point theorems for generalized \((\psi-\varphi)\)-weakly contractive mappings in partial metric spaces under \(C\)-class function. (English) Zbl 1497.54074 Aligarh Bull. Math. 39, No. 1, 19-42 (2020). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{G. S. Saluja}, Aligarh Bull. Math. 39, No. 1, 19--42 (2020; Zbl 1497.54074) Full Text: Link
Miñana, Juan-José; Valero, Oscar On partial metric preserving functions and their characterization. (English) Zbl 1499.54083 Filomat 34, No. 7, 2315-2327 (2020). MSC: 54C30 54A10 54E50 PDF BibTeX XML Cite \textit{J.-J. Miñana} and \textit{O. Valero}, Filomat 34, No. 7, 2315--2327 (2020; Zbl 1499.54083) Full Text: DOI
Fernandez, Jerolina; Malviya, Neeraj; Dolićanin-Dekić, Diana; Pučić, Dženis The \(p_b\)-cone metric spaces over Banach algebra with applications. (English) Zbl 1499.54125 Filomat 34, No. 3, 983-998 (2020). MSC: 54E35 54E40 54H25 PDF BibTeX XML Cite \textit{J. Fernandez} et al., Filomat 34, No. 3, 983--998 (2020; Zbl 1499.54125) Full Text: DOI
Younis, Mudasir; Singh, Deepak; Radenović, Stojan; Imdad, Mohammad Convergence theorems for generalized contractions and applications. (English) Zbl 1491.54172 Filomat 34, No. 3, 945-964 (2020). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{M. Younis} et al., Filomat 34, No. 3, 945--964 (2020; Zbl 1491.54172) Full Text: DOI
Shoaib, Abdullah; Rasham, Tahair; Marino, Giuseppe; Lee, Jung Rye; Park, Choonkil Fixed point results for dominated mappings in rectangular \(b\)-metric spaces with applications. (English) Zbl 1484.47128 AIMS Math. 5, No. 5, 5221-5229 (2020). MSC: 47H10 54H25 46S40 PDF BibTeX XML Cite \textit{A. Shoaib} et al., AIMS Math. 5, No. 5, 5221--5229 (2020; Zbl 1484.47128) Full Text: DOI
Arshad, Muhammad; Alshoraify, Shaif; Shoaib, Abdullah Some fixed points of \(\alpha\)-\(\psi\)-\(K\)-contractive mappings in partial metric spaces. (English) Zbl 1484.47099 Bull. Math. Anal. Appl. 12, No. 4, 32-43 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{M. Arshad} et al., Bull. Math. Anal. Appl. 12, No. 4, 32--43 (2020; Zbl 1484.47099) Full Text: Link
Choudhury, Binayak S.; Metiya, Nikhilesh; Kundu, Sunirmal Existence, data-dependence and stability of coupled fixed point sets of some multivalued operators. (English) Zbl 1483.54027 Chaos Solitons Fractals 133, Article ID 109678, 7 p. (2020). MSC: 54H25 54C60 54E40 54F05 PDF BibTeX XML Cite \textit{B. S. Choudhury} et al., Chaos Solitons Fractals 133, Article ID 109678, 7 p. (2020; Zbl 1483.54027) Full Text: DOI
Mebawondu, A. A.; Izuchukwu, C.; Oyewole, K. O.; Mewomo, O. T. Solution of integral equations via new \(Z\)-contraction mapping in \(G_b\)-metric spaces. (English) Zbl 1480.54035 Proyecciones 39, No. 5, 1273-1294 (2020). MSC: 54H25 47H10 47H09 49J20 49J40 PDF BibTeX XML Cite \textit{A. A. Mebawondu} et al., Proyecciones 39, No. 5, 1273--1294 (2020; Zbl 1480.54035) Full Text: DOI
Afassinou, Komi; Narain, Ojen Kumar Fixed point and endpoint theorems for \((\alpha,\beta)\)-Meir-Keeler contraction on the partial Hausdorff metric. (English) Zbl 1489.54036 Thai J. Math. 18, No. 3, 1125-1137 (2020). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{K. Afassinou} and \textit{O. K. Narain}, Thai J. Math. 18, No. 3, 1125--1137 (2020; Zbl 1489.54036) Full Text: Link
Abdullahi, Muhammad Sirajo; Sumalai, Phumin; Gopal, Dhananjay; Kumam, Poom Jungck-type fixed point theorem in \(0\)-complete partial \(b_v(s)\)-metric spaces. (English) Zbl 1476.54022 Thai J. Math. 18, No. 1, 104-112 (2020). MSC: 54E25 54E40 54E50 PDF BibTeX XML Cite \textit{M. S. Abdullahi} et al., Thai J. Math. 18, No. 1, 104--112 (2020; Zbl 1476.54022) Full Text: Link
Sukprasert, Pakeeta; Nazam, Muhammad; Arshad, Muhammad; Muangchoo-In, Khanitin Fixed point results for \(\alpha_s\)-nonexpansive mappings on partial \(b\)-metric spaces. (English) Zbl 1490.54110 Thai J. Math. 18, No. 1, 38-52 (2020). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{P. Sukprasert} et al., Thai J. Math. 18, No. 1, 38--52 (2020; Zbl 1490.54110) Full Text: Link
Rashid, Tawseef; Jaradat, Mohammed M. M.; Khan, Qamrul Haq; Mitrović, Zoran D.; Aydi, Hassen; Mustafa, Zead A new approach in the context of ordered incomplete partial \(b\)-metric spaces. (English) Zbl 1475.54034 Open Math. 18, 996-1005 (2020). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{T. Rashid} et al., Open Math. 18, 996--1005 (2020; Zbl 1475.54034) Full Text: DOI
Saluja, G. S. Some fixed points theorems in partial cone metric spaces under contractive type conditions. (English) Zbl 1478.54109 An. Univ. Oradea, Fasc. Mat. 27, No. 2, 17-29 (2020). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{G. S. Saluja}, An. Univ. Oradea, Fasc. Mat. 27, No. 2, 17--29 (2020; Zbl 1478.54109)
Tiwari, Rakesh; Shrivastava, S. K.; Rani, Shobha Common fixed point theorems for weakly compatible mappings satisfying CLR property on partial metric spaces. (English) Zbl 1477.54155 South East Asian J. Math. Math. Sci. 16, No. 3, 361-372 (2020). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{R. Tiwari} et al., South East Asian J. Math. Math. Sci. 16, No. 3, 361--372 (2020; Zbl 1477.54155) Full Text: Link
Nedelcheva, Diana K. Altering points in partial metric space. (English) Zbl 1468.54057 Mladenov, Ivaïlo M. (ed.) et al., Proceedings of the 21st international conference on geometry, integrability and quantization, Varna, Bulgaria, June 3–8, 2019. Sofia: Avangard Prima; Sofia: Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering. Geom. Integrability Quantization 21, 221-231 (2020). MSC: 54H25 54C60 54E40 PDF BibTeX XML Cite \textit{D. K. Nedelcheva}, Geom. Integrability Quantization 21, 221--231 (2020; Zbl 1468.54057) Full Text: DOI
Karahan, Ibrahim; Isik, Irfan Partial \(b_v(s)\), partial \(v\)-generalized and \(b_v\left(\theta \right)\) metric spaces and related fixed points theorems. (English) Zbl 1488.54140 Facta Univ., Ser. Math. Inf. 35, No. 3, 621-640 (2020). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{I. Karahan} and \textit{I. Isik}, Facta Univ., Ser. Math. Inf. 35, No. 3, 621--640 (2020; Zbl 1488.54140) Full Text: DOI
Popa, Valeriu; Patriciu, Alina-Mihaela Fixed points for two pairs of absorbing mappings in weak partial metric spaces. (English) Zbl 1488.54165 Facta Univ., Ser. Math. Inf. 35, No. 2, 283-293 (2020). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{V. Popa} and \textit{A.-M. Patriciu}, Facta Univ., Ser. Math. Inf. 35, No. 2, 283--293 (2020; Zbl 1488.54165) Full Text: DOI
Saluja, Gurucharan Singh Some fixed point theorems for \(\mathcal{T}_F\)-type contraction under implicit relation in partial metric spaces. (English) Zbl 1465.54033 Funct. Anal. Approx. Comput. 12, No. 2, 39-46 (2020). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{G. S. Saluja}, Funct. Anal. Approx. Comput. 12, No. 2, 39--46 (2020; Zbl 1465.54033) Full Text: Link
Ge, Xun; Lin, Shou Some questions on partial metric spaces. (English) Zbl 1474.54088 Appl. Math., Ser. B (Engl. Ed.) 35, No. 4, 392-398 (2020). MSC: 54E35 54E50 54D10 54D35 PDF BibTeX XML Cite \textit{X. Ge} and \textit{S. Lin}, Appl. Math., Ser. B (Engl. Ed.) 35, No. 4, 392--398 (2020; Zbl 1474.54088) Full Text: DOI
Saluja, G. S. Some fixed point theorems for generalized \((\psi-\phi)\)-weak contraction mappings in partial metric spaces. (English) Zbl 1461.54104 Math. Morav. 24, No. 2, 99-115 (2020). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{G. S. Saluja}, Math. Morav. 24, No. 2, 99--115 (2020; Zbl 1461.54104) Full Text: DOI
Saluja, G. S. Some common fixed point theorems on partial metric spaces satisfying implicit relation. (English) Zbl 1462.54100 Math. Morav. 24, No. 1, 29-43 (2020). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{G. S. Saluja}, Math. Morav. 24, No. 1, 29--43 (2020; Zbl 1462.54100) Full Text: DOI
Popa, V.; Patriciu, A.-M. Common fixed points for two pairs of absorbing mappings in partial metric spaces. (English) Zbl 1474.54220 Acta Univ. Apulensis, Math. Inform. 61, 1-8 (2020). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{V. Popa} and \textit{A. M. Patriciu}, Acta Univ. Apulensis, Math. Inform. 61, 1--8 (2020; Zbl 1474.54220)
Hosseinzadeh, Hasan; Parvaneh, Vahid Meir-Keeler type contractive mappings in modular and partial modular metric spaces. (English) Zbl 1458.54041 Asian-Eur. J. Math. 13, No. 5, Article ID 2050087, 20 p. (2020). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{H. Hosseinzadeh} and \textit{V. Parvaneh}, Asian-Eur. J. Math. 13, No. 5, Article ID 2050087, 20 p. (2020; Zbl 1458.54041) Full Text: DOI