Oliva, Francescantonio Existence and uniqueness of solutions to some singular equations with natural growth. (English) Zbl 07332104 Ann. Mat. Pura Appl. (4) 200, No. 1, 287-314 (2021). MSC: 35J25 35J60 35J75 35R99 35A01 PDF BibTeX XML Cite \textit{F. Oliva}, Ann. Mat. Pura Appl. (4) 200, No. 1, 287--314 (2021; Zbl 07332104) Full Text: DOI
Aregba-Driollet, Denise; Brull, Stéphane; Peng, Yue-Jun Global existence of smooth solutions for a nonconservative bitemperature Euler model. (English) Zbl 07332087 SIAM J. Math. Anal. 53, No. 2, 1886-1907 (2021). MSC: 35L60 35F55 35Q31 76N10 76W05 PDF BibTeX XML Cite \textit{D. Aregba-Driollet} et al., SIAM J. Math. Anal. 53, No. 2, 1886--1907 (2021; Zbl 07332087) Full Text: DOI
Hinz, Michael; Rozanova-Pierrat, Anna; Teplyaev, Alexander Non-Lipschitz uniform domain shape optimization in linear acoustics. (English) Zbl 07332064 SIAM J. Control Optim. 59, No. 2, 1007-1032 (2021). MSC: 28A75 28A80 35A15 35D30 35J25 35Q99 47A07 49Q10 PDF BibTeX XML Cite \textit{M. Hinz} et al., SIAM J. Control Optim. 59, No. 2, 1007--1032 (2021; Zbl 07332064) Full Text: DOI
Geng, Xianguo; Wang, Kedong; Chen, Mingming Long-time asymptotics for the spin-1 Gross-Pitaevskii equation. (English) Zbl 07331851 Commun. Math. Phys. 382, No. 1, 585-611 (2021). MSC: 35Q 35P 35K 35G 35A 35A22 35P25 35Q99 35G10 35K25 PDF BibTeX XML Cite \textit{X. Geng} et al., Commun. Math. Phys. 382, No. 1, 585--611 (2021; Zbl 07331851) Full Text: DOI
Rybalko, Yan; Shepelsky, Dmitry Long-time asymptotics for the integrable nonlocal focusing nonlinear Schrödinger equation for a family of step-like initial data. (English) Zbl 07331840 Commun. Math. Phys. 382, No. 1, 87-121 (2021). MSC: 35Q 35P 35K 35G 35A 35A22 35P25 35Q99 35G10 35K25 PDF BibTeX XML Cite \textit{Y. Rybalko} and \textit{D. Shepelsky}, Commun. Math. Phys. 382, No. 1, 87--121 (2021; Zbl 07331840) Full Text: DOI
Carrillo, José A.; Castro, Manuel J.; Kalliadasis, Serafim; Perez, Sergio P. High-order well-balanced finite-volume schemes for hydrodynamic equations with nonlocal free energy. (English) Zbl 07331003 SIAM J. Sci. Comput. 43, No. 2, A828-A858 (2021). MSC: 65 35Qxx 35Q35 35Q82 76M12 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., SIAM J. Sci. Comput. 43, No. 2, A828--A858 (2021; Zbl 07331003) Full Text: DOI
Wang, Mingxin Nonlinear second order parabolic equations (to appear). (English) Zbl 07330856 Boca Raton, FL: CRC Press (ISBN 978-0-367-71198-6/hbk; 978-0-367-71284-6/pbk). 298 p. (2021). MSC: 35-01 35K10 PDF BibTeX XML Cite \textit{M. Wang}, Nonlinear second order parabolic equations (to appear). Boca Raton, FL: CRC Press (2021; Zbl 07330856)
Langer, Ulrich; Steinbach, Olaf; Tröltzsch, Fredi; Yang, Huidong Unstructured space-time finite element methods for optimal control of parabolic equations. (English) Zbl 07330835 SIAM J. Sci. Comput. 43, No. 2, A744-A771 (2021). MSC: 49J20 35K20 65M60 65M50 65M15 65Y05 PDF BibTeX XML Cite \textit{U. Langer} et al., SIAM J. Sci. Comput. 43, No. 2, A744--A771 (2021; Zbl 07330835) Full Text: DOI
Zhan, Huashui; Feng, Zhaosheng Optimal partial boundary condition for degenerate parabolic equations. (English) Zbl 07330799 J. Differ. Equations 284, 156-182 (2021). MSC: 35K20 35K65 35B35 PDF BibTeX XML Cite \textit{H. Zhan} and \textit{Z. Feng}, J. Differ. Equations 284, 156--182 (2021; Zbl 07330799) Full Text: DOI
Vargas Junior, Edson Cilos; da Luz, Cleverson Roberto \( \sigma \)-evolution models with low regular time-dependent effective structural damping. (English) Zbl 07330752 J. Math. Anal. Appl. 499, No. 2, Article ID 125030, 25 p. (2021). MSC: 35B40 35L15 35R11 PDF BibTeX XML Cite \textit{E. C. Vargas Junior} and \textit{C. R. da Luz}, J. Math. Anal. Appl. 499, No. 2, Article ID 125030, 25 p. (2021; Zbl 07330752) Full Text: DOI
Krylov, N. V. A review of some new results in the theory of linear elliptic equations with drift in \(L_d\). (English) Zbl 07330700 Anal. Math. Phys. 11, No. 2, Paper No. 73, 13 p. (2021). Reviewer: Vincenzo Vespri (Firenze) MSC: 35-02 35B45 35B65 35J15 PDF BibTeX XML Cite \textit{N. V. Krylov}, Anal. Math. Phys. 11, No. 2, Paper No. 73, 13 p. (2021; Zbl 07330700) Full Text: DOI
El-Kalla, Ibrahim L.; Mohamed, E. M.; El-Saka, Hala A. A. An accelerated solution for some classes of nonlinear partial differential equations. (English) Zbl 07330593 J. Egypt. Math. Soc. 29, Paper No. 7, 11 p. (2021). MSC: 35G20 35A01 35A02 35A25 35A35 PDF BibTeX XML Cite \textit{I. L. El-Kalla} et al., J. Egypt. Math. Soc. 29, Paper No. 7, 11 p. (2021; Zbl 07330593) Full Text: DOI
Kostin, Andrey B.; Piskarev, Sergey I. Inverse source problem for the abstract fractional differential equation. (English) Zbl 07330242 J. Inverse Ill-Posed Probl. 29, No. 2, 267-281 (2021). MSC: 35R30 35K15 35K90 35R09 45Q05 PDF BibTeX XML Cite \textit{A. B. Kostin} and \textit{S. I. Piskarev}, J. Inverse Ill-Posed Probl. 29, No. 2, 267--281 (2021; Zbl 07330242) Full Text: DOI
Jiang, Su Zhen; Wu, Yu Jiang Recovering a time-dependent potential function in a multi-term time fractional diffusion equation by using a nonlinear condition. (English) Zbl 07330240 J. Inverse Ill-Posed Probl. 29, No. 2, 233-248 (2021). MSC: 35R30 35R11 35R25 35K20 65M32 PDF BibTeX XML Cite \textit{S. Z. Jiang} and \textit{Y. J. Wu}, J. Inverse Ill-Posed Probl. 29, No. 2, 233--248 (2021; Zbl 07330240) Full Text: DOI
Fedorov, Vladimir E.; Nagumanova, Anna V.; Kostić, Marko A class of inverse problems for fractional order degenerate evolution equations. (English) Zbl 07330236 J. Inverse Ill-Posed Probl. 29, No. 2, 173-184 (2021). MSC: 35R11 35R30 34G10 35Q35 PDF BibTeX XML Cite \textit{V. E. Fedorov} et al., J. Inverse Ill-Posed Probl. 29, No. 2, 173--184 (2021; Zbl 07330236) Full Text: DOI
Li, Xue-Yang; Xiao, Ai-Guo Space-fractional diffusion equation with variable coefficients: well-posedness and Fourier pseudospectral approximation. (English) Zbl 07329959 J. Sci. Comput. 87, No. 1, Paper No. 28, 34 p. (2021). MSC: 35R11 35K20 65M12 65M70 65T40 PDF BibTeX XML Cite \textit{X.-Y. Li} and \textit{A.-G. Xiao}, J. Sci. Comput. 87, No. 1, Paper No. 28, 34 p. (2021; Zbl 07329959) Full Text: DOI
Giacomoni, Jacques; Gouasmia, Abdelhamid; Mokrane, Abdelhafid Existence and global behavior of weak solutions to a doubly nonlinear evolution fractional \(p\)-Laplacian equation. (English) Zbl 07329783 Electron. J. Differ. Equ. 2021, Paper No. 09, 37 p. (2021). MSC: 35B40 35K59 35K55 35K10 35R11 PDF BibTeX XML Cite \textit{J. Giacomoni} et al., Electron. J. Differ. Equ. 2021, Paper No. 09, 37 p. (2021; Zbl 07329783) Full Text: Link
Dawidowicz, Antoni Leon; Poskrobko, Anna On chaos behaviour of nonlinear Lasota equation in Lebesgue space. (English) Zbl 07329775 J. Dyn. Control Syst. 27, No. 2, 371-378 (2021). MSC: 35B40 35B35 35F20 92B99 PDF BibTeX XML Cite \textit{A. L. Dawidowicz} and \textit{A. Poskrobko}, J. Dyn. Control Syst. 27, No. 2, 371--378 (2021; Zbl 07329775) Full Text: DOI
Suwińska, Maria Gevrey estimates of formal solutions for certain moment partial differential equations with variable coefficients. (English) Zbl 07329774 J. Dyn. Control Syst. 27, No. 2, 355-370 (2021). MSC: 35C10 35G10 PDF BibTeX XML Cite \textit{M. Suwińska}, J. Dyn. Control Syst. 27, No. 2, 355--370 (2021; Zbl 07329774) Full Text: DOI
Zhang, Bo; Weiss, Jordan; Small, Dylan S.; Zhao, Qingyuan Selecting and ranking individualized treatment rules with unmeasured confounding. (English) Zbl 07329747 J. Am. Stat. Assoc. 116, No. 533, 295-308 (2021). MSC: 62P10 62D20 62J15 PDF BibTeX XML Cite \textit{B. Zhang} et al., J. Am. Stat. Assoc. 116, No. 533, 295--308 (2021; Zbl 07329747) Full Text: DOI
Berghammer, Rudolf; Börm, Steffen; Winter, Michael Algorithmic counting of zero-dimensional finite topological spaces with respect to the covering dimension. (English) Zbl 07329295 Appl. Math. Comput. 389, Article ID 125523, 15 p. (2021). MSC: 54 55 PDF BibTeX XML Cite \textit{R. Berghammer} et al., Appl. Math. Comput. 389, Article ID 125523, 15 p. (2021; Zbl 07329295) Full Text: DOI
Lu, Jianfeng; Steinerberger, Stefan Optimal trapping for Brownian motion: a nonlinear analogue of the torsion function. (English) Zbl 07329011 Potential Anal. 54, No. 4, 687-698 (2021). MSC: 35J25 35B51 49K20 60J60 PDF BibTeX XML Cite \textit{J. Lu} and \textit{S. Steinerberger}, Potential Anal. 54, No. 4, 687--698 (2021; Zbl 07329011) Full Text: DOI
Fall, Mouhamed Moustapha; Jarohs, Sven Gradient Estimates in fractional Dirichlet Problems. (English) Zbl 07329008 Potential Anal. 54, No. 4, 627-636 (2021). MSC: 35B45 35R11 35J25 35J61 35B65 PDF BibTeX XML Cite \textit{M. M. Fall} and \textit{S. Jarohs}, Potential Anal. 54, No. 4, 627--636 (2021; Zbl 07329008) Full Text: DOI
Li, Yachun; Peng, Yue-Jun; Zhao, Liang Convergence rate from hyperbolic systems of balance laws to parabolic systems. (English) Zbl 07328938 Appl. Anal. 100, No. 5, 1079-1095 (2021). MSC: 35B25 35B40 35K45 35L45 35L60 35B65 PDF BibTeX XML Cite \textit{Y. Li} et al., Appl. Anal. 100, No. 5, 1079--1095 (2021; Zbl 07328938) Full Text: DOI
Suzuki, Masamitsu Local existence and nonexistence for fractional in time weakly coupled reaction-diffusion systems. (English) Zbl 07328519 SN Partial Differ. Equ. Appl. 2, No. 1, Paper No. 2, 27 p. (2021). MSC: 35R11 35K57 35K51 35A01 26A33 46E35 PDF BibTeX XML Cite \textit{M. Suzuki}, SN Partial Differ. Equ. Appl. 2, No. 1, Paper No. 2, 27 p. (2021; Zbl 07328519) Full Text: DOI
Bønneland, Frederik Meyer; Jensen, Peter Gjøl; Larsen, Kim Guldstrand; Muñiz, Marco; Srba, Jiří Stubborn set reduction for two-player reachability games. (English) Zbl 07327954 Log. Methods Comput. Sci. 17, No. 1, Paper No. 21, 26 p. (2021). MSC: 03B70 68 PDF BibTeX XML Cite \textit{F. M. Bønneland} et al., Log. Methods Comput. Sci. 17, No. 1, Paper No. 21, 26 p. (2021; Zbl 07327954) Full Text: Link arXiv
Feng, Xiaomeng Solvability of the Neumann problem for complex hessian equations in balls. (English) Zbl 07327578 Complex Var. Elliptic Equ. 66, No. 3, 361-375 (2021). MSC: 32W50 35J25 35J60 PDF BibTeX XML Cite \textit{X. Feng}, Complex Var. Elliptic Equ. 66, No. 3, 361--375 (2021; Zbl 07327578) Full Text: DOI
Huynh, Le Nhat; Zhou, Yong; O’Regan, Donal; Tuan, Nguyen Huy Fractional Landweber method for an initial inverse problem for time-fractional wave equations. (English) Zbl 07327343 Appl. Anal. 100, No. 4, 860-878 (2021). MSC: 35R11 35A25 35R30 35L20 PDF BibTeX XML Cite \textit{L. N. Huynh} et al., Appl. Anal. 100, No. 4, 860--878 (2021; Zbl 07327343) Full Text: DOI
Kawamoto, Atsushi; Machida, Manabu Global Lipschitz stability for a fractional inverse transport problem by Carleman estimates. (English) Zbl 07327337 Appl. Anal. 100, No. 4, 752-771 (2021). MSC: 35R09 35R11 35R30 35Q49 PDF BibTeX XML Cite \textit{A. Kawamoto} and \textit{M. Machida}, Appl. Anal. 100, No. 4, 752--771 (2021; Zbl 07327337) Full Text: DOI
Anop, Anna; Denk, Robert; Murach, Aleksandr Elliptic problems with rough boundary data in generalized Sobolev spaces. (English) Zbl 07327300 Commun. Pure Appl. Anal. 20, No. 2, 697-735 (2021). MSC: 35J40 35R60 46E35 60H40 PDF BibTeX XML Cite \textit{A. Anop} et al., Commun. Pure Appl. Anal. 20, No. 2, 697--735 (2021; Zbl 07327300) Full Text: DOI
Dinh, Van Duong Random data theory for the cubic fourth-order nonlinear Schrödinger equation. (English) Zbl 07327298 Commun. Pure Appl. Anal. 20, No. 2, 651-680 (2021). MSC: 35Q55 35Q41 35A01 35A02 35R60 PDF BibTeX XML Cite \textit{V. D. Dinh}, Commun. Pure Appl. Anal. 20, No. 2, 651--680 (2021; Zbl 07327298) Full Text: DOI
Tuan, Nguyen Huy; Au, Vo Van; Xu, Runzhang Semilinear Caputo time-fractional pseudo-parabolic equations. (English) Zbl 07327296 Commun. Pure Appl. Anal. 20, No. 2, 583-621 (2021). MSC: 35R11 35B44 26A33 33E12 35B40 35K70 35K20 44A20 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Commun. Pure Appl. Anal. 20, No. 2, 583--621 (2021; Zbl 07327296) Full Text: DOI
Zheng, Guojie; Xu, Dihong; Wang, Taige A unique continuation property for a class of parabolic differential inequalities in a bounded domain. (English) Zbl 07327294 Commun. Pure Appl. Anal. 20, No. 2, 547-558 (2021). MSC: 35B60 35K20 35R45 93B07 93D15 PDF BibTeX XML Cite \textit{G. Zheng} et al., Commun. Pure Appl. Anal. 20, No. 2, 547--558 (2021; Zbl 07327294) Full Text: DOI
Zhao, Wenqiang; Zhang, Yijin High-order Wong-Zakai approximations for non-autonomous stochastic \(p\)-Laplacian equations on \(\mathbb{R}^N\). (English) Zbl 07327279 Commun. Pure Appl. Anal. 20, No. 1, 243-280 (2021). MSC: 35R60 35B40 35B41 35B65 35K15 35K92 60H15 PDF BibTeX XML Cite \textit{W. Zhao} and \textit{Y. Zhang}, Commun. Pure Appl. Anal. 20, No. 1, 243--280 (2021; Zbl 07327279) Full Text: DOI
Alqahtani, Awatif; Jleli, Mohamed; Samet, Bessem Finite-time blow-up for inhomogeneous parabolic equations with nonlinear memory. (English) Zbl 07327112 Complex Var. Elliptic Equ. 66, No. 1, 84-93 (2021). MSC: 35B44 35K15 35K58 35R09 35B33 PDF BibTeX XML Cite \textit{A. Alqahtani} et al., Complex Var. Elliptic Equ. 66, No. 1, 84--93 (2021; Zbl 07327112) Full Text: DOI
Klimov, Vladimir S. Interior estimates for solutions of linear elliptic inequalities. (English. Russian original) Zbl 07326748 Izv. Math. 85, No. 1, 92-110 (2021); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 85, No. 1, 98-117 (2021). MSC: 35R45 35J30 PDF BibTeX XML Cite \textit{V. S. Klimov}, Izv. Math. 85, No. 1, 92--110 (2021; Zbl 07326748); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 85, No. 1, 98--117 (2021) Full Text: DOI
Chen, Pengyu; Zhang, Xuping Existence of attractors for stochastic diffusion equations with fractional damping and time-varying delay. (English) Zbl 07326365 J. Math. Phys. 62, No. 2, 022705, 23 p. (2021). MSC: 35B41 35R11 35K15 35K58 35R60 PDF BibTeX XML Cite \textit{P. Chen} and \textit{X. Zhang}, J. Math. Phys. 62, No. 2, 022705, 23 p. (2021; Zbl 07326365) Full Text: DOI
Langer, Ulrich; Steinbach, Olaf; Tröltzsch, Fredi; Yang, Huidong Space-time finite element discretization of parabolic optimal control problems with energy regularization. (English) Zbl 07326333 SIAM J. Numer. Anal. 59, No. 2, 675-695 (2021). MSC: 65 35K20 49J20 65M15 65M50 65M60 PDF BibTeX XML Cite \textit{U. Langer} et al., SIAM J. Numer. Anal. 59, No. 2, 675--695 (2021; Zbl 07326333) Full Text: DOI
Dai, Wei; Liu, Zhao; Qin, Guolin Classification of nonnegative solutions to static Schrödinger-Hartree-Maxwell type equations. (English) Zbl 07326323 SIAM J. Math. Anal. 53, No. 2, 1379-1410 (2021). MSC: 35B53 35J30 35J91 35R11 PDF BibTeX XML Cite \textit{W. Dai} et al., SIAM J. Math. Anal. 53, No. 2, 1379--1410 (2021; Zbl 07326323) Full Text: DOI
Colli, Pierluigi; Gilardi, Gianni; Munteanu, Ionut Stabilisation of a linearised Cahn-Hilliard system for phase separation by proportional boundary feedbacks. (English) Zbl 07325686 Int. J. Control 94, No. 2, 452-460 (2021). MSC: 93D15 35K52 35Q79 35Q93 93C20 PDF BibTeX XML Cite \textit{P. Colli} et al., Int. J. Control 94, No. 2, 452--460 (2021; Zbl 07325686) Full Text: DOI
Coville, Jérôme; Gui, Changfeng; Zhao, Mingfeng Propagation acceleration in reaction diffusion equations with anomalous diffusions. (English) Zbl 07324160 Nonlinearity 34, No. 3, 1544-1576 (2021). MSC: 35B51 35K15 35K55 35K57 35R09 35R11 35C07 PDF BibTeX XML Cite \textit{J. Coville} et al., Nonlinearity 34, No. 3, 1544--1576 (2021; Zbl 07324160) Full Text: DOI
Bao, Ngoc Tran; Caraballo, Tomás; Tuan, Nguyen Huy; Zhou, Yong Existence and regularity results for terminal value problem for nonlinear fractional wave equations. (English) Zbl 07324157 Nonlinearity 34, No. 3, 1448-1502 (2021). MSC: 35R11 35L20 26A33 35B65 PDF BibTeX XML Cite \textit{N. T. Bao} et al., Nonlinearity 34, No. 3, 1448--1502 (2021; Zbl 07324157) Full Text: DOI
Tang, H. S.; Li, L.; Grossberg, M.; Liu, Y. J.; Jia, Y. M.; Li, S. S.; Dong, W. B. An exploratory study on machine learning to couple numerical solutions of partial differential equations. (English) Zbl 07323672 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105729, 11 p. (2021). Reviewer: Chandrasekhar Salimath (Bengaluru) MSC: 65N55 65N06 68T07 35J05 35K20 PDF BibTeX XML Cite \textit{H. S. Tang} et al., Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105729, 11 p. (2021; Zbl 07323672) Full Text: DOI
Kaltenbacher, Barbara; Rundell, William Some inverse problems for wave equations with fractional derivative attenuation. (English) Zbl 07323238 Inverse Probl. 37, No. 4, Article ID 045002, 28 p. (2021). MSC: 35R30 35L20 35R11 PDF BibTeX XML Cite \textit{B. Kaltenbacher} and \textit{W. Rundell}, Inverse Probl. 37, No. 4, Article ID 045002, 28 p. (2021; Zbl 07323238) Full Text: DOI
Sun, Lei A note on naturally ordered semigroups of partial transformations preserving an equivalence. (English) Zbl 07323131 Bull. Iran. Math. Soc. 47, No. 1, 135-141 (2021). MSC: 20M20 PDF BibTeX XML Cite \textit{L. Sun}, Bull. Iran. Math. Soc. 47, No. 1, 135--141 (2021; Zbl 07323131) Full Text: DOI
Abels, Helmut Book review of: A. Miranville, The Cahn-Hilliard equation: recent advances and applications. (English) Zbl 07323058 Jahresber. Dtsch. Math.-Ver. 123, No. 1, 57-62 (2021). MSC: 00A17 35-02 76-02 35K35 35K59 35B41 PDF BibTeX XML Cite \textit{H. Abels}, Jahresber. Dtsch. Math.-Ver. 123, No. 1, 57--62 (2021; Zbl 07323058) Full Text: DOI
Winter, Raphael Convergence to the Landau equation from the truncated BBGKY hierarchy in the weak-coupling limit. (English) Zbl 07319887 J. Differ. Equations 283, 1-36 (2021). MSC: 35Q 35A 76Y 35F 82D 45K 82D10 35A35 35F20 45K05 76Y05 PDF BibTeX XML Cite \textit{R. Winter}, J. Differ. Equations 283, 1--36 (2021; Zbl 07319887) Full Text: DOI
Zaitseva, N. V. Classical solutions of hyperbolic differential-difference equations with several nonlocal terms. (English) Zbl 07319684 Lobachevskii J. Math. 42, No. 1, 231-236 (2021). MSC: 35R10 35L10 35A01 39A12 PDF BibTeX XML Cite \textit{N. V. Zaitseva}, Lobachevskii J. Math. 42, No. 1, 231--236 (2021; Zbl 07319684) Full Text: DOI
Yang, Yiling; Fan, Engui Soliton resolution for the short-pulse equation. (English) Zbl 07319446 J. Differ. Equations 280, 644-689 (2021). MSC: 35Q51 35Q15 37K15 35C20 78A60 35L20 35B40 35B35 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{E. Fan}, J. Differ. Equations 280, 644--689 (2021; Zbl 07319446) Full Text: DOI
Palmieri, Alessandro On the blow-up of solutions to semilinear damped wave equations with power nonlinearity in compact Lie groups. (English) Zbl 07319411 J. Differ. Equations 281, 85-104 (2021). MSC: 35B44 35L71 43A30 43A77 58J45 35L52 35R09 35B33 PDF BibTeX XML Cite \textit{A. Palmieri}, J. Differ. Equations 281, 85--104 (2021; Zbl 07319411) Full Text: DOI
Kao, Chiu-Yen; Mohammadi, Seyyed Abbas Tuning the total displacement of membranes. (English) Zbl 07319190 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105706, 19 p. (2021). MSC: 49J20 35J05 35J20 74E30 PDF BibTeX XML Cite \textit{C.-Y. Kao} and \textit{S. A. Mohammadi}, Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105706, 19 p. (2021; Zbl 07319190) Full Text: DOI
Mukherjee, N.; Volpert, V. Bifurcation scenario of Turing patterns in prey-predator model with nonlocal consumption in the prey dynamics. (English) Zbl 07319170 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105677, 12 p. (2021). MSC: 35B32 35B36 35K51 35K57 35R09 92D25 PDF BibTeX XML Cite \textit{N. Mukherjee} and \textit{V. Volpert}, Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105677, 12 p. (2021; Zbl 07319170) Full Text: DOI
Choudhury, Projesh Nath; Sivakumar, K. C. Matrices with positive semidefinite real part. (English) Zbl 07318839 Linear Multilinear Algebra 69, No. 3, 448-470 (2021). MSC: 15B48 15A09 15A45 PDF BibTeX XML Cite \textit{P. N. Choudhury} and \textit{K. C. Sivakumar}, Linear Multilinear Algebra 69, No. 3, 448--470 (2021; Zbl 07318839) Full Text: DOI
Wang, Hanxiao Extended backward stochastic Volterra integral equations, quasilinear parabolic equations, and Feynman-Kac formula. (English) Zbl 07318765 Stoch. Dyn. 21, No. 1, Article ID 2150004, 37 p. (2021). MSC: 60H20 45D05 35K40 35K59 PDF BibTeX XML Cite \textit{H. Wang}, Stoch. Dyn. 21, No. 1, Article ID 2150004, 37 p. (2021; Zbl 07318765) Full Text: DOI
Goodrich, Christopher S. Partial regularity of minimizers of asymptotically convex functionals with Morrey coefficients. (English) Zbl 07318535 J. Math. Anal. Appl. 498, No. 2, Article ID 124962, 25 p. (2021). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 35B65 35J25 PDF BibTeX XML Cite \textit{C. S. Goodrich}, J. Math. Anal. Appl. 498, No. 2, Article ID 124962, 25 p. (2021; Zbl 07318535) Full Text: DOI
Kita, Naoyasu; Wada, Takeshi Sharp asymptotic behavior of solutions to Benjamin-Ono type equations – short range case. (English) Zbl 07317481 J. Math. Anal. Appl. 497, No. 2, Article ID 124879, 13 p. (2021). MSC: 35B40 35G25 35R09 PDF BibTeX XML Cite \textit{N. Kita} and \textit{T. Wada}, J. Math. Anal. Appl. 497, No. 2, Article ID 124879, 13 p. (2021; Zbl 07317481) Full Text: DOI
Zhan, Huashui; Feng, Zhaosheng Existence and stability of the doubly nonlinear anisotropic parabolic equation. (English) Zbl 07317181 J. Math. Anal. Appl. 497, No. 1, Article ID 124850, 23 p. (2021). MSC: 35K59 35K92 35K20 35D30 PDF BibTeX XML Cite \textit{H. Zhan} and \textit{Z. Feng}, J. Math. Anal. Appl. 497, No. 1, Article ID 124850, 23 p. (2021; Zbl 07317181) Full Text: DOI
Kao, Chiu-Yen; Mohammadi, Seyyed Abbas Extremal rearrangement problems involving Poisson’s equation with Robin boundary conditions. (English) Zbl 07316871 J. Sci. Comput. 86, No. 3, Paper No. 40, 29 p. (2021). MSC: 35Q93 49J20 49M99 35J20 74E30 PDF BibTeX XML Cite \textit{C.-Y. Kao} and \textit{S. A. Mohammadi}, J. Sci. Comput. 86, No. 3, Paper No. 40, 29 p. (2021; Zbl 07316871) Full Text: DOI
Shin, Jaemin; Lee, Hyun Geun A linear, high-order, and unconditionally energy stable scheme for the epitaxial thin film growth model without slope selection. (English) Zbl 07316834 Appl. Numer. Math. 163, 30-42 (2021). MSC: 65M22 65L06 65M12 35A02 35R09 76A20 35Q35 PDF BibTeX XML Cite \textit{J. Shin} and \textit{H. G. Lee}, Appl. Numer. Math. 163, 30--42 (2021; Zbl 07316834) Full Text: DOI
Ding, Pengyan; Yang, Zhijian Longtime behavior for an extensible beam equation with rotational inertia and structural nonlinear damping. (English) Zbl 07316097 J. Math. Anal. Appl. 496, No. 1, Article ID 124785, 26 p. (2021). MSC: 35B41 35L35 35L77 35R09 35R11 74K10 PDF BibTeX XML Cite \textit{P. Ding} and \textit{Z. Yang}, J. Math. Anal. Appl. 496, No. 1, Article ID 124785, 26 p. (2021; Zbl 07316097) Full Text: DOI
Sun, Jian-Wen Lower bounds for some nonlocal dispersal equations. (English) Zbl 07315662 J. Math. Anal. Appl. 495, No. 2, Article ID 124781, 8 p. (2021). MSC: 35R09 35K15 35K05 PDF BibTeX XML Cite \textit{J.-W. Sun}, J. Math. Anal. Appl. 495, No. 2, Article ID 124781, 8 p. (2021; Zbl 07315662) Full Text: DOI
Bonder, Julián Fernández; Cheng, Zhiwei; Mikayelyan, Hayk Fractional optimal maximization problem and the unstable fractional obstacle problem. (English) Zbl 07315354 J. Math. Anal. Appl. 495, No. 1, Article ID 124686, 11 p. (2021). MSC: 35R11 35J86 35J25 35Q93 PDF BibTeX XML Cite \textit{J. F. Bonder} et al., J. Math. Anal. Appl. 495, No. 1, Article ID 124686, 11 p. (2021; Zbl 07315354) Full Text: DOI
Le, Phuong Classification of nonnegative solutions to an equation involving the Laplacian of arbitrary order. (English) Zbl 07314924 Discrete Contin. Dyn. Syst. 41, No. 4, 1605-1626 (2021). MSC: 35R11 35J30 35J61 35J75 35B06 35B53 35A02 PDF BibTeX XML Cite \textit{P. Le}, Discrete Contin. Dyn. Syst. 41, No. 4, 1605--1626 (2021; Zbl 07314924) Full Text: DOI
Martinez, Patrick; Vancostenoble, Judith Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. (English) Zbl 07314578 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 695-721 (2021). MSC: 92D25 92D40 35F20 35K57 35Q92 35R30 PDF BibTeX XML Cite \textit{P. Martinez} and \textit{J. Vancostenoble}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 695--721 (2021; Zbl 07314578) Full Text: DOI
Laurençot, Philippe; Walker, Christoph Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. (English) Zbl 07314577 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 677-694 (2021). MSC: 35K86 74H20 35Q74 74M25 35M86 35K25 PDF BibTeX XML Cite \textit{P. Laurençot} and \textit{C. Walker}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 677--694 (2021; Zbl 07314577) Full Text: DOI
Dondl, Patrick W.; Jesenko, Martin Threshold phenomenon for homogenized fronts in random elastic media. (English) Zbl 07314562 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 353-372 (2021). MSC: 35R11 35K15 35D40 74A40 74N20 PDF BibTeX XML Cite \textit{P. W. Dondl} and \textit{M. Jesenko}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 353--372 (2021; Zbl 07314562) Full Text: DOI
Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen Deep quench approximation and optimal control of general Cahn-Hilliard systems with fractional operators and double obstacle potentials. (English) Zbl 07314557 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 243-271 (2021). MSC: 35K90 35K45 49K20 49K27 35R11 PDF BibTeX XML Cite \textit{P. Colli} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 243--271 (2021; Zbl 07314557) Full Text: DOI
Ma, Lingwei; Zhang, Zhenqiu Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. (English) Zbl 07314355 Discrete Contin. Dyn. Syst. 41, No. 2, 537-552 (2021). MSC: 35R11 35B50 35J57 35J61 PDF BibTeX XML Cite \textit{L. Ma} and \textit{Z. Zhang}, Discrete Contin. Dyn. Syst. 41, No. 2, 537--552 (2021; Zbl 07314355) Full Text: DOI
Ayazoglu, Rabil; Saraç, Yeşim; Şener, S. Şule; Alisoy, Gülizar Existence and multiplicity of solutions for a Schrödinger-Kirchhoff type equation involving the fractional \(p(.,.)\)-Laplacian operator in \(\mathbb{R}^N\). (English) Zbl 07311755 Collect. Math. 72, No. 1, 129-156 (2021). MSC: 35R11 35J62 35J20 35B09 PDF BibTeX XML Cite \textit{R. Ayazoglu} et al., Collect. Math. 72, No. 1, 129--156 (2021; Zbl 07311755) Full Text: DOI
Zhou, Yanjie; Zhang, Yanan; Liang, Ye; Luo, Zhendong A reduced-order extrapolated model based on splitting implicit finite difference scheme and proper orthogonal decomposition for the fourth-order nonlinear Rosenau equation. (English) Zbl 07311186 Appl. Numer. Math. 162, 192-200 (2021). MSC: 35Q53 35G20 65M06 65M12 65M99 65B05 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Appl. Numer. Math. 162, 192--200 (2021; Zbl 07311186) Full Text: DOI
Li, Jiyong; Wang, Tingchun Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation. (English) Zbl 07311184 Appl. Numer. Math. 162, 150-170 (2021). MSC: 81Q05 81R20 35Q55 65L12 35R20 81R05 35G30 81-10 PDF BibTeX XML Cite \textit{J. Li} and \textit{T. Wang}, Appl. Numer. Math. 162, 150--170 (2021; Zbl 07311184) Full Text: DOI
Klingenberg, Christian; Lai, Ru-Yu; Li, Qin Reconstruction of the emission coefficient in the nonlinear radiative transfer equation. (English) Zbl 07310942 SIAM J. Appl. Math. 81, No. 1, 91-106 (2021). MSC: 35R30 35L50 35R09 PDF BibTeX XML Cite \textit{C. Klingenberg} et al., SIAM J. Appl. Math. 81, No. 1, 91--106 (2021; Zbl 07310942) Full Text: DOI
Nandal, Sarita; Pandey, Dwijendra Narain Numerical technique for fractional variable-order differential equation of fourth-order with delay. (English) Zbl 07310824 Appl. Numer. Math. 161, 391-407 (2021). MSC: 65M70 65M12 65N12 65D07 35R11 35R07 PDF BibTeX XML Cite \textit{S. Nandal} and \textit{D. N. Pandey}, Appl. Numer. Math. 161, 391--407 (2021; Zbl 07310824) Full Text: DOI
Pasha, Syed Ahmed; Nawaz, Yasir; Arif, Muhammad Shoaib A third-order accurate in time method for boundary layer flow problems. (English) Zbl 07310801 Appl. Numer. Math. 161, 13-26 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65M12 76D07 80A19 80A21 35K10 35K55 PDF BibTeX XML Cite \textit{S. A. Pasha} et al., Appl. Numer. Math. 161, 13--26 (2021; Zbl 07310801) Full Text: DOI
Yuttanan, Boonrod; Razzaghi, Mohsen; Vo, Thieu N. A numerical method based on fractional-order generalized Taylor wavelets for solving distributed-order fractional partial differential equations. (English) Zbl 07310779 Appl. Numer. Math. 160, 349-367 (2021). MSC: 65T60 65M15 65D32 65H10 35B65 35R11 PDF BibTeX XML Cite \textit{B. Yuttanan} et al., Appl. Numer. Math. 160, 349--367 (2021; Zbl 07310779) Full Text: DOI
Chacón-Cortés, L. F.; Gutiérrez-García, Ismael; Torresblanca-Badillo, Anselmo; Vargas, Andrés Finite time blow-up for a \(p\)-adic nonlocal semilinear ultradiffusion equation. (English) Zbl 07310642 J. Math. Anal. Appl. 494, No. 2, Article ID 124599, 22 p. (2021). MSC: 35B44 35R09 35K15 35K58 PDF BibTeX XML Cite \textit{L. F. Chacón-Cortés} et al., J. Math. Anal. Appl. 494, No. 2, Article ID 124599, 22 p. (2021; Zbl 07310642) Full Text: DOI
Jin, Bangti; Zhou, Zhi An inverse potential problem for subdiffusion: stability and reconstruction. (English) Zbl 07310610 Inverse Probl. 37, No. 1, Article ID 015006, 26 p. (2021). MSC: 35R30 35K20 35R11 PDF BibTeX XML Cite \textit{B. Jin} and \textit{Z. Zhou}, Inverse Probl. 37, No. 1, Article ID 015006, 26 p. (2021; Zbl 07310610) Full Text: DOI
Mayboroda, S.; Poggi, B. Carleson perturbations of elliptic operators on domains with low dimensional boundaries. (English) Zbl 07310591 J. Funct. Anal. 280, No. 8, Article ID 108930, 92 p. (2021). MSC: 35J25 34 PDF BibTeX XML Cite \textit{S. Mayboroda} and \textit{B. Poggi}, J. Funct. Anal. 280, No. 8, Article ID 108930, 92 p. (2021; Zbl 07310591) Full Text: DOI
Gu, Jiawen; Zhou, Deqin Local controllability and stability of the periodic fifth-order KdV equation with a nonlinear dispersive term. (English) Zbl 07309706 J. Math. Anal. Appl. 494, No. 1, Article ID 124635, 17 p. (2021). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 93D23 93C20 35Q53 PDF BibTeX XML Cite \textit{J. Gu} and \textit{D. Zhou}, J. Math. Anal. Appl. 494, No. 1, Article ID 124635, 17 p. (2021; Zbl 07309706) Full Text: DOI
Yayla, Sema; Cardozo, Camila L.; Jorge Silva, Marcio A.; Narciso, Vando Dynamics of a Cauchy problem related to extensible beams under nonlocal and localized damping effects. (English) Zbl 07309703 J. Math. Anal. Appl. 494, No. 1, Article ID 124620, 32 p. (2021). MSC: 35L35 35L76 35B40 35R09 74K10 PDF BibTeX XML Cite \textit{S. Yayla} et al., J. Math. Anal. Appl. 494, No. 1, Article ID 124620, 32 p. (2021; Zbl 07309703) Full Text: DOI
Pham, Trieu Duong; Reissig, Michael Semilinear mixed problems in exterior domains for \(\sigma \)-evolution equations with friction and coefficients depending on spatial variables. (English) Zbl 07309695 J. Math. Anal. Appl. 494, No. 1, Article ID 124587, 37 p. (2021). MSC: 35L71 35L15 35R11 PDF BibTeX XML Cite \textit{T. D. Pham} and \textit{M. Reissig}, J. Math. Anal. Appl. 494, No. 1, Article ID 124587, 37 p. (2021; Zbl 07309695) Full Text: DOI
Jleli, Mohamed; Samet, Bessem New blow-up phenomena for hyperbolic inequalities with combined nonlinearities. (English) Zbl 07309674 J. Math. Anal. Appl. 494, No. 1, Article ID 124444, 22 p. (2021). MSC: 35R45 35L71 35L15 35B33 35B44 PDF BibTeX XML Cite \textit{M. Jleli} and \textit{B. Samet}, J. Math. Anal. Appl. 494, No. 1, Article ID 124444, 22 p. (2021; Zbl 07309674) Full Text: DOI
Zhou, Yong; He, Jia Wei Well-posedness and regularity for fractional damped wave equations. (English) Zbl 07308740 Monatsh. Math. 194, No. 2, 425-458 (2021). MSC: 35R11 35L20 26A33 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{J. W. He}, Monatsh. Math. 194, No. 2, 425--458 (2021; Zbl 07308740) Full Text: DOI
Yang, Hui; Zou, Wenming On isolated singularities of fractional semi-linear elliptic equations. (English) Zbl 07307587 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 403-420 (2021). MSC: 35R11 35A21 35J25 35J61 35B09 35B40 35J70 PDF BibTeX XML Cite \textit{H. Yang} and \textit{W. Zou}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 403--420 (2021; Zbl 07307587) Full Text: DOI
Chan, Hardy; Gómez-Castro, David; Vázquez, Juan Luis Blow-up phenomena in nonlocal eigenvalue problems: when theories of \(L^1\) and \(L^2\) meet. (English) Zbl 07306989 J. Funct. Anal. 280, No. 7, Article ID 108845, 69 p. (2021). MSC: 35R09 35R11 35J25 35B50 35D30 45C05 PDF BibTeX XML Cite \textit{H. Chan} et al., J. Funct. Anal. 280, No. 7, Article ID 108845, 69 p. (2021; Zbl 07306989) Full Text: DOI
Mansouri, D.; Bendoukha, S.; Abdelmalek, S.; Youkana, A. On the complete synchronization of a time-fractional reaction-diffusion system with the Newton-Leipnik nonlinearity. (English) Zbl 07305515 Appl. Anal. 100, No. 3, 675-694 (2021). MSC: 35R11 35K51 35K57 PDF BibTeX XML Cite \textit{D. Mansouri} et al., Appl. Anal. 100, No. 3, 675--694 (2021; Zbl 07305515) Full Text: DOI
Azroul, E.; Benkirane, A.; Shimi, M.; Srati, M. On a class of fractional \(p(x)\)-Kirchhoff type problems. (English) Zbl 07305251 Appl. Anal. 100, No. 2, 383-402 (2021). MSC: 35R11 35D30 35J92 35J25 35R09 35P30 35S15 PDF BibTeX XML Cite \textit{E. Azroul} et al., Appl. Anal. 100, No. 2, 383--402 (2021; Zbl 07305251) Full Text: DOI
Tuan, Nguyen Huy; Huynh, Le Nhat; Zhou, Yong Regularization of a backward problem for 2-D time-fractional diffusion equations with discrete random noise. (English) Zbl 07305249 Appl. Anal. 100, No. 2, 335-360 (2021). MSC: 35R25 35R11 35K20 47J06 47H10 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Appl. Anal. 100, No. 2, 335--360 (2021; Zbl 07305249) Full Text: DOI
González-Pinto, S.; Hernández-Abreu, D.; Pérez-Rodríguez, S. AMFR-W-methods for parabolic problems with mixed derivates. Applications to the Heston model. (English) Zbl 07305188 J. Comput. Appl. Math. 387, Article ID 112518, 19 p. (2021). MSC: 65M06 35L25 PDF BibTeX XML Cite \textit{S. González-Pinto} et al., J. Comput. Appl. Math. 387, Article ID 112518, 19 p. (2021; Zbl 07305188) Full Text: DOI
Kang, Hao; Ruan, Shigui Nonlinear age-structured population models with nonlocal diffusion and nonlocal boundary conditions. (English) Zbl 07303714 J. Differ. Equations 278, 430-462 (2021). MSC: 35F31 35R09 92D25 35P20 45K05 45A05 45G10 47D06 PDF BibTeX XML Cite \textit{H. Kang} and \textit{S. Ruan}, J. Differ. Equations 278, 430--462 (2021; Zbl 07303714) Full Text: DOI
Maia, L. A.; Raom, D.; Ruviaro, R.; Sobral, Y. D. Mini-max algorithm via Pohozaev manifold. (English) Zbl 07303412 Nonlinearity 34, No. 1, 642-668 (2021). MSC: 35J20 35J91 65N99 65N22 PDF BibTeX XML Cite \textit{L. A. Maia} et al., Nonlinearity 34, No. 1, 642--668 (2021; Zbl 07303412) Full Text: DOI
Kurasov, Pavel; Mugnolo, Delio; Wolf, Verena Analytic solutions for stochastic hybrid models of gene regulatory networks. (English) Zbl 07303134 J. Math. Biol. 82, No. 1-2, Paper No. 9, 30 p. (2021). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q92 92D10 92D20 92C37 35B09 35R60 47D06 93C20 35F46 PDF BibTeX XML Cite \textit{P. Kurasov} et al., J. Math. Biol. 82, No. 1--2, Paper No. 9, 30 p. (2021; Zbl 07303134) Full Text: DOI
Feng, Xiaojing; Yang, Xia Existence of ground state solutions for fractional Schrödinger-Poisson systems with doubly critical growth. (English) Zbl 07302841 Mediterr. J. Math. 18, No. 2, Paper No. 41, 14 p. (2021). MSC: 35J47 35R11 35A01 35J50 PDF BibTeX XML Cite \textit{X. Feng} and \textit{X. Yang}, Mediterr. J. Math. 18, No. 2, Paper No. 41, 14 p. (2021; Zbl 07302841) Full Text: DOI
Gao, Hongya; Huang, Miaomiao; Deng, Hua; Ren, Wei Global integrability for solutions to quasilinear elliptic systems. (English) Zbl 07302641 Manuscr. Math. 164, No. 1-2, 23-37 (2021). MSC: 35J57 35J62 35B99 PDF BibTeX XML Cite \textit{H. Gao} et al., Manuscr. Math. 164, No. 1--2, 23--37 (2021; Zbl 07302641) Full Text: DOI
Nunes, Ruikson S. O. Exact boundary controllability and energy decay for a system of wave equations linearly coupled. (English) Zbl 07302523 Mediterr. J. Math. 18, No. 1, Paper No. 30, 12 p. (2021). MSC: 35L52 35L53 35B40 35B45 93B05 49J20 PDF BibTeX XML Cite \textit{R. S. O. Nunes}, Mediterr. J. Math. 18, No. 1, Paper No. 30, 12 p. (2021; Zbl 07302523) Full Text: DOI
Li, Li A fractional parabolic inverse problem involving a time-dependent magnetic potential. (English) Zbl 07302459 SIAM J. Math. Anal. 53, No. 1, 435-452 (2021). MSC: 35R11 35R30 35J25 PDF BibTeX XML Cite \textit{L. Li}, SIAM J. Math. Anal. 53, No. 1, 435--452 (2021; Zbl 07302459) Full Text: DOI
Bank, Miriam; Ben-Artzi, Matania; Schonbek, Maria E. Viscous conservation laws in 1D with measure initial data. (English) Zbl 07301466 Q. Appl. Math. 79, No. 1, 103-124 (2021). MSC: 35K15 35K59 35R60 35L65 35B45 PDF BibTeX XML Cite \textit{M. Bank} et al., Q. Appl. Math. 79, No. 1, 103--124 (2021; Zbl 07301466) Full Text: DOI
Wang, Fuliang; Die, Hu; Xiang, Mingqi Combined effects of logarithmic and superlinear nonlinearities in fractional Laplacian systems. (English) Zbl 07301274 Anal. Math. Phys. 11, No. 1, Paper No. 9, 34 p. (2021). MSC: 35R11 35J57 47G20 PDF BibTeX XML Cite \textit{F. Wang} et al., Anal. Math. Phys. 11, No. 1, Paper No. 9, 34 p. (2021; Zbl 07301274) Full Text: DOI
Tokutome, Kimiki; Yamada, Toshihiro Acceleration of automatic differentiation of solutions to parabolic partial differential equations: a higher order discretization. (English) Zbl 07300815 Numer. Algorithms 86, No. 2, 593-635 (2021). MSC: 65M75 65C20 PDF BibTeX XML Cite \textit{K. Tokutome} and \textit{T. Yamada}, Numer. Algorithms 86, No. 2, 593--635 (2021; Zbl 07300815) Full Text: DOI
Bastin, Georges; Coron, Jean-Michel; Hayat, Amaury Feedforward boundary control of \(2\times 2\) nonlinear hyperbolic systems with application to Saint-Venant equations. (English) Zbl 1455.93083 Eur. J. Control 57, 41-53 (2021). MSC: 93C20 93C10 93C43 35L40 PDF BibTeX XML Cite \textit{G. Bastin} et al., Eur. J. Control 57, 41--53 (2021; Zbl 1455.93083) Full Text: DOI