×

An isotonic partial credit model for ordering subjects on the basis of their sum scores. (English) Zbl 1272.62127

Psychometrika 77, No. 3, 479-494 (2012); correction ibid. 80, No. 2, 514-515 (2015).
Summary: In practice, the sum of the item scores is often used as a basis for comparing subjects. For items that have more than two ordered score categories, only the partial credit model (PCM) and special cases of this model imply that the subjects are stochastically ordered on the common latent variable. However, the PCM is very restrictive with respect to the constraints that it imposes on the data. In this paper, sufficient conditions for the stochastic ordering of subjects by their sum score are obtained. These conditions define the isotonic (nonparametric) PCM model. The isotonic PCM is more flexible than the PCM, which makes it useful for a wider variety of tests. Also, observable properties of the isotonic PCM are derived in the form of inequality constraints. It is shown how to obtain estimates of the score distribution under these constraints by using the Gibbs sampling algorithm. A small simulation study shows that the Bayesian \(p\)-values based on the log-likelihood ratio statistic can be used to assess the fit of the isotonic PCM to the data, where model-data fit can be taken as a justification of the use of the sum score to order subjects.

MSC:

62P15 Applications of statistics to psychology

Software:

truncdist; MSP5; R
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agresti, A. (1990). Categorical data analysis. New York: Wiley. · Zbl 0716.62001
[2] Andersen, E.B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123–140. · Zbl 0276.62048 · doi:10.1007/BF02291180
[3] Douglas, R., Fienberg, S.E., Lee, M.-L.T., Sampson, A.R., & Whitaker, L.R. (1991). Positive dependence concepts for ordinal contingency tables. In H.W. Block, A.R. Sampson, & T.H. Savits (Eds.), Topics in statistical dependence (pp. 189–202). Hayward: Institute of Mathematical Statistics. · Zbl 0768.62041
[4] Gelman, A., Meng, X.L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6, 733–807. · Zbl 0859.62028
[5] Grayson, D.A. (1988). Two-group classification in latent trait theory: Scores with monotone likelihood ratio. Psychometrika, 53, 383–392. · Zbl 0718.62147 · doi:10.1007/BF02294219
[6] Hemker, B.T. (1996). Unidimensional IRT models for polytomous items, with results for Mokken scale analysis. Unpublished doctoral dissertation, Utrecht University, The Netherlands.
[7] Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1996). Polytomous IRT models and monotone likelihood ratio of the total score. Psychometrika, 61, 679–693. · Zbl 0906.62120 · doi:10.1007/BF02294042
[8] Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1997). Stochastic ordering using the latent trait and the sum score in polytomous IRT models. Psychometrika, 62, 331–347. · Zbl 0887.62115 · doi:10.1007/BF02294555
[9] Hoijtink, H. (1998). Constrained latent class analysis using the Gibbs sampler and posterior predictive p-values: Applications to educational testing. Statistica Sinica, 8, 691–711. · Zbl 0901.62133
[10] Hoijtink, H., & Molenaar, I.W. (1997). A multidimensional item response model: Constrained latent class analysis using Gibbs sampler and posterior predictive checks. Psychometrika, 62, 171–189. · Zbl 1003.62548 · doi:10.1007/BF02295273
[11] Holland, P.W., & Rosenbaum, P.R. (1986). Conditional association and unidimensionality in monotone latent variable models. Annals of Statistics, 14, 1523–1543. · Zbl 0625.62102 · doi:10.1214/aos/1176350174
[12] Huynh, H. (1994). A new proof for monotone likelihood ratio for the sum of independent Bernoulli random variables. Psychometrika, 59, 77–79. · Zbl 0826.62011 · doi:10.1007/BF02294266
[13] Junker, B.W. (1993). Conditional association, essential independence and monotone unidimensional item response models. Annals of Statistics, 21, 1359–1378. · Zbl 0791.62099 · doi:10.1214/aos/1176349262
[14] Karabatsos, G. (2001). The Rasch model, additive conjoint measurement, and new models of probabilistic measurement theory. Journal of Applied Measurement, 2, 389–423.
[15] Karabatsos, G., & Sheu, C.-F. (2004). Order-constrained Bayes inference for dichotomous models of unidimensional nonparametric IRT. Applied Psychological Measurement, 28, 110–125. · doi:10.1177/0146621603260678
[16] Karlin, S. (1968). Total positivity. Palo Alto: Stanford University Press. · Zbl 0219.47030
[17] Karlin, S., & Rinott, Y. (1980). Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions. Journal of Multivariate Analysis, 10, 467–498. · Zbl 0469.60006 · doi:10.1016/0047-259X(80)90065-2
[18] Laudy, O., & Hoijtink, H. (2007). Bayesian methods for the analysis of inequality constrained contingency tables. Statistical Methods in Medical Research, 16, 123–138. · Zbl 1122.62317 · doi:10.1177/0962280206071925
[19] Lazarsfeld, P.F., & Henry, N.W. (1968). Latent structure analysis. Boston: Houghton Mifflin. · Zbl 0182.52201
[20] Lehmann, E.L. (1959). Testing statistical hypotheses. New York: Wiley. · Zbl 0089.14102
[21] Ligtvoet, R., Van der Ark, L.A., Bergsma, W.P., & Sijtsma, K. (2011). Polytomous latent scales for the investigation of the ordering of items. Psychometrika, 73, 200–216. · Zbl 1284.62723 · doi:10.1007/s11336-010-9199-8
[22] Ligtvoet, R., & Vermunt, J.K. (2012). Latent class models for testing monotonicity and invariant item ordering for polytomous items. British Journal of Mathematical & Statistical Psychology, 65, 237–250. doi: 10.1111/j.2044-8317.2011.02019.x . · doi:10.1111/j.2044-8317.2011.02019.x
[23] Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174. · Zbl 0493.62094 · doi:10.1007/BF02296272
[24] Meng, X.L. (1994). Posterior predictive p-values. Annals of Statistics, 22, 1142–1160. · Zbl 0820.62027 · doi:10.1214/aos/1176325622
[25] Mokken, R.J. (1971). A theory and procedure of scale analysis. Berlin: De Gruyter.
[26] Molenaar, I.W. (1997). Nonparametric models for polytomous responses. In W.J. van der Linden & R.K. Hambleton (Eds.), Handbook of modern item response theory (pp. 369–380). New York: Springer.
[27] Molenaar, I.W., & Sijtsma, K. (2000). User’s manual MSP5 for Windows [Software manual]. Groningen, The Netherlands: IEC ProGAMMA.
[28] Muraki, E. (1992). A generalized partial credit model: Applications for an EM algorithm. Applied Psychological Measurement, 16, 159–177. · doi:10.1177/014662169201600206
[29] Nadarajah, S., & Kotz, S. (2006). R Programs for computing truncated distributions. Journal of Statistical Software, 16(2), 1–8. · Zbl 1140.93479
[30] R Development Core Team (2009). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org .
[31] Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Nielsen and Lydiche.
[32] Samejima, F. (1969). Estimation of latent trait ability using a response pattern of graded scores. Psychometrika Monograph, No. 17.
[33] Samejima, F. (1972). A general model for free-response data. Psychometrika Monograph, No. 18. · Zbl 0248.92009
[34] Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60, 281–304. · Zbl 0833.62099 · doi:10.1007/BF02301417
[35] Scheiblechner, H. (1999). Additive conjoint isotonic probabilistic models (ADISOP). Psychometrika, 64, 295–316. · Zbl 04555553 · doi:10.1007/BF02294297
[36] Scheiblechner, H. (2007). A unified nonparametric IRT model for d-dimensional psychological test data (d-ISOP). Psychometrika, 72, 43–67. · Zbl 1201.62139 · doi:10.1007/s11336-005-1282-1
[37] Ünlü, A. (2008). A note on monotone likelihood ratio of the total score variable in unidimensional item response theory. British Journal of Mathematical & Statistical Psychology, 61, 179–187. · doi:10.1348/000711007X173391
[38] Van der Ark, L.A. (2005). Stochastic ordering of the latent trait by the sum score under various polytomous IRT models. Psychometrika, 70, 283–304. · Zbl 1306.62513 · doi:10.1007/s11336-000-0862-3
[39] Van der Ark, L.A., & Bergsma, W.P. (2010). A note on stochastic ordering of the latent trait using the sum of polytomous item scores. Psychometrika, 75, 272–279. · Zbl 1234.62161 · doi:10.1007/s11336-010-9147-7
[40] Van der Ark, L.A., Hemker, B.T., & Sijtsma, K. (2002). Hierarchically related nonparametric IRT models, and practical data analysis methods. In G.A. Marcoulides & I. Moustaki (Eds.), Latent variable and latent structure models (pp. 41–62). Mahwah: Erlbaum.
[41] Van Onna, H.J.M. (2002). Bayesian estimation and model selection in ordered latent class models for polytomous items. Psychometrika, 67, 519–538. · Zbl 1297.62247 · doi:10.1007/BF02295129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.