Zayed, Elsayed M. E. On the dynamics of a new nonlinear rational difference equation. (English) Zbl 1443.39010 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 2, 153-165 (2020). MSC: 39A30 39A22 39A10 PDF BibTeX XML Cite \textit{E. M. E. Zayed}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 2, 153--165 (2020; Zbl 1443.39010) Full Text: Link OpenURL
Alotaibi, A. M.; El-Moneam, M. A.; Noorani, M. S. M. On the rational difference equation \(y_{{n+1}}={\frac{\alpha_{0}y_{{n}}+\alpha_{1}y_{{n-p}}+\alpha_{2}y_{{n-q}} +\alpha_{3}y_{{n-r}}+\alpha_{4}y_{{n-s}}}{\beta_{0}y_{{n}}+\beta_{1}y_{{n-p}}+\beta_{2}y_{{n-q}}+\beta_{3}y_{{n-r}}+\beta_{4}y_{{n-s}}}}\). (English) Zbl 1438.39006 J. Nonlinear Sci. Appl. 11, No. 1, 80-97 (2018). MSC: 39A20 39A22 39A30 PDF BibTeX XML Cite \textit{A. M. Alotaibi} et al., J. Nonlinear Sci. Appl. 11, No. 1, 80--97 (2018; Zbl 1438.39006) Full Text: DOI OpenURL
Rabago, Julius Fergy T.; Bacani, Jerico B. On two nonlinear difference equations. (English) Zbl 1380.39007 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 24, No. 6, 375-394 (2017). MSC: 39A10 11B39 PDF BibTeX XML Cite \textit{J. F. T. Rabago} and \textit{J. B. Bacani}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 24, No. 6, 375--394 (2017; Zbl 1380.39007) Full Text: arXiv Link OpenURL
Ibrahim, T. F.; El-Moneam, M. A. Global stability of a higher-order difference equation. (English) Zbl 1374.39021 Iran. J. Sci. Technol., Trans. A, Sci. 41, No. 1, 51-58 (2017). MSC: 39A30 PDF BibTeX XML Cite \textit{T. F. Ibrahim} and \textit{M. A. El-Moneam}, Iran. J. Sci. Technol., Trans. A, Sci. 41, No. 1, 51--58 (2017; Zbl 1374.39021) Full Text: DOI OpenURL
Bektešević, Jasmin; Kulenović, Mustafa R. S.; Pilav, Esmir Global dynamics of cubic second order difference equation in the first quadrant. (English) Zbl 1422.39004 Adv. Difference Equ. 2015, Paper No. 176, 38 p. (2015). MSC: 39A10 39A30 65L12 65L20 37E99 37D10 PDF BibTeX XML Cite \textit{J. Bektešević} et al., Adv. Difference Equ. 2015, Paper No. 176, 38 p. (2015; Zbl 1422.39004) Full Text: DOI OpenURL
El-Moneam, M. A.; Zayed, E. M. E. On the dynamics of the nonlinear rational difference equation \(x_{n+1}=Ax_{n}+Bx_{n-k}+Cx_{n-l}+\frac{bx_{n-k}}{dx{n-k}-ex{n-1}}\). (English) Zbl 1328.39002 J. Egypt. Math. Soc. 23, No. 3, 494-499 (2015). MSC: 39A10 39A30 34C99 PDF BibTeX XML Cite \textit{M. A. El-Moneam} and \textit{E. M. E. Zayed}, J. Egypt. Math. Soc. 23, No. 3, 494--499 (2015; Zbl 1328.39002) Full Text: DOI OpenURL
El-Moneam, M. A.; Alamoudy, S. O. On study of the asymptotic behavior of some rational difference equations. (English) Zbl 1320.39002 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 22, No. 3, 157-176 (2015). MSC: 39A10 39A22 PDF BibTeX XML Cite \textit{M. A. El-Moneam} and \textit{S. O. Alamoudy}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 22, No. 3, 157--176 (2015; Zbl 1320.39002) Full Text: Link Link OpenURL
Hadžiabdić, Vahidin; Kulenović, Mustafa R. S.; Pilav, Esmir Dynamics of a two-dimensional competitive system of rational difference equations with quadratic terms. (English) Zbl 1417.39005 Adv. Difference Equ. 2014, Paper No. 301, 32 p. (2014). MSC: 39A10 39A30 37E99 37D10 37N25 PDF BibTeX XML Cite \textit{V. Hadžiabdić} et al., Adv. Difference Equ. 2014, Paper No. 301, 32 p. (2014; Zbl 1417.39005) Full Text: DOI OpenURL
Hu, Lin-Xia; Xia, Hong-Ming Global asymptotic stability of a second order rational difference equation. (English) Zbl 1334.39044 Appl. Math. Comput. 233, 377-382 (2014). MSC: 39A30 PDF BibTeX XML Cite \textit{L.-X. Hu} and \textit{H.-M. Xia}, Appl. Math. Comput. 233, 377--382 (2014; Zbl 1334.39044) Full Text: DOI OpenURL
El-Moneam, M. A.; Zayed, E. M. E. Dynamics of the rational difference equation \(x_{n+1}=Ax_n+Bx_{n-k}+Cx_{n-l}+\frac{bx_nx_{n-k}x_{n-l}}{dx_{n-k}-ex_{n-l}}\). (English) Zbl 1302.39019 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 21, No. 3-4, 317-331 (2014). MSC: 39A20 39A22 39A30 39A23 PDF BibTeX XML Cite \textit{M. A. El-Moneam} and \textit{E. M. E. Zayed}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 21, No. 3--4, 317--331 (2014; Zbl 1302.39019) Full Text: Link OpenURL
Jia, Xiumei; Li, Yongjun; Xue, Zichen Global asymptotic stability of a second order difference equation. (Chinese. English summary) Zbl 1313.39025 J. Northwest Norm. Univ., Nat. Sci. 50, No. 1, 11-14, 19 (2014). MSC: 39A30 39A23 39A20 PDF BibTeX XML Cite \textit{X. Jia} et al., J. Northwest Norm. Univ., Nat. Sci. 50, No. 1, 11--14, 19 (2014; Zbl 1313.39025) OpenURL
Zayed, E. M. E.; El-Moneam, M. A. Dynamics of the rational difference equation \( x_{x+1} = {\gamma x}_n + \frac{{\alpha x}_{n-1} + {\beta x}_{n-k}}{{Ax}_{n-1} + Bx_{n-k}}\). (English) Zbl 1301.39007 Commun. Appl. Nonlinear Anal. 21, No. 1, 43-53 (2014). Reviewer: Antonio Linero Bas (Murcia) MSC: 39A20 39A30 39A22 39A23 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, Commun. Appl. Nonlinear Anal. 21, No. 1, 43--53 (2014; Zbl 1301.39007) OpenURL
El-Moneam, M. A.; Alamoudy, S. O. On study of the asymptotic behavior of some rational difference equations. (English) Zbl 1282.39002 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 21, No. 1, 89-109 (2014). MSC: 39A10 39A22 39A12 39A99 34C99 PDF BibTeX XML Cite \textit{M. A. El-Moneam} and \textit{S. O. Alamoudy}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 21, No. 1, 89--109 (2014; Zbl 1282.39002) Full Text: Link OpenURL
Basu, Sukanya The roles of conic sections and elliptic curves in the global dynamics of a class of planar systems of rational difference equations. (English) Zbl 1391.39001 Adv. Difference Equ. 2013, Paper No. 292, 39 p. (2013). MSC: 39A05 PDF BibTeX XML Cite \textit{S. Basu}, Adv. Difference Equ. 2013, Paper No. 292, 39 p. (2013; Zbl 1391.39001) Full Text: DOI OpenURL
Tang, Guomei; Liu, Hua Global behavior of a higher order nonlinear difference equation. (English) Zbl 1300.39002 Math. Aeterna 3, No. 9, 739-747 (2013). Reviewer: Fengqin Zhang (Yuncheng) MSC: 39A20 39A23 39A30 PDF BibTeX XML Cite \textit{G. Tang} and \textit{H. Liu}, Math. Æterna 3, No. 9, 739--747 (2013; Zbl 1300.39002) OpenURL
Zayed, E. M. E.; El-Moneam, M. A. On the qualitative study of the nonlinear difference equation \(x_{n+1}=\frac{\alpha x_{n-\sigma}}{\beta+\gamma x^ p_{n-\tau}}\). (English) Zbl 1296.39007 Fasc. Math. 50, 137-147 (2013). Reviewer: Xueyan Liu (Chattanooga) MSC: 39A20 39A21 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, Fasc. Math. 50, 137--147 (2013; Zbl 1296.39007) OpenURL
He, Li Dynamics of the difference equation \( x_n = A - x^{p}_{n-k} / x^{q}_{n-m}\). (English) Zbl 1291.39036 Util. Math. 92, 65-71 (2013). MSC: 39A23 PDF BibTeX XML Cite \textit{L. He}, Util. Math. 92, 65--71 (2013; Zbl 1291.39036) OpenURL
Li, Xianyi; Zhou, Li Global dynamics for a higher-order rational difference equation. (English) Zbl 1277.39019 Rocky Mt. J. Math. 43, No. 4, 1261-1280 (2013). Reviewer: Fozi Dannan (Damascus) MSC: 39A20 39A21 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{X. Li} and \textit{L. Zhou}, Rocky Mt. J. Math. 43, No. 4, 1261--1280 (2013; Zbl 1277.39019) Full Text: DOI Euclid OpenURL
Atawna, S.; Abu-Saris, R.; Hashim, I.; Ismail, E. S. On the period-two cycles of \(x_{n + 1} = (\alpha + \beta x_n + \gamma x_{n - k})/(A + Bx_n + Cx_{n - k})\). (English) Zbl 1275.39004 Abstr. Appl. Anal. 2013, Article ID 179423, 10 p. (2013). MSC: 39A23 39A20 39A30 PDF BibTeX XML Cite \textit{S. Atawna} et al., Abstr. Appl. Anal. 2013, Article ID 179423, 10 p. (2013; Zbl 1275.39004) Full Text: DOI OpenURL
Basu, Sukanya Global behaviour of solutions to a class of second-order rational difference equations when prime period-two solutions exist. (English) Zbl 1337.39002 J. Difference Equ. Appl. 19, No. 6, 898-926 (2013). Reviewer: Raghib Abu-Saris (Edmonton) MSC: 39A20 39A23 39A05 PDF BibTeX XML Cite \textit{S. Basu}, J. Difference Equ. Appl. 19, No. 6, 898--926 (2013; Zbl 1337.39002) Full Text: DOI OpenURL
Fotiades, N.; Papaschinopoulos, G. Existence, uniqueness and attractivity of prime period two solution for a difference equation of exponential form. (English) Zbl 1280.39011 Appl. Math. Comput. 218, No. 23, 11648-11653 (2012). MSC: 39A23 39A10 PDF BibTeX XML Cite \textit{N. Fotiades} and \textit{G. Papaschinopoulos}, Appl. Math. Comput. 218, No. 23, 11648--11653 (2012; Zbl 1280.39011) Full Text: DOI OpenURL
Zhang, D. C.; Hou, C. M.; Wang, L. Y.; Ji, W. Q. Converging to a period-two solutions in the recursive sequence \(x_{n+1} = \frac{d+x_n+x_{n-1}}{x_n}\). (English) Zbl 1270.39007 Far East J. Appl. Math. 73, No. 1, 17-24 (2012). Reviewer: Ti-Jun Xiao (Fudan) MSC: 39A20 39A23 PDF BibTeX XML Cite \textit{D. C. Zhang} et al., Far East J. Appl. Math. 73, No. 1, 17--24 (2012; Zbl 1270.39007) Full Text: Link OpenURL
Wang, Qi; Zhang, Gengrong; Zeng, Fanping; Chen, Zhanhe Convergence of the solutions of a higher-order rational difference equation. (English) Zbl 1265.39029 Math. Appl. 25, No. 3, 488-495 (2012). MSC: 39A23 39A22 39A20 PDF BibTeX XML Cite \textit{Q. Wang} et al., Math. Appl. 25, No. 3, 488--495 (2012; Zbl 1265.39029) OpenURL
Kulenović, M. R. S.; Merino, Orlando; Nurkanović, M. Global dynamics of certain competitive system in the plane. (English) Zbl 1257.37032 J. Difference Equ. Appl. 18, No. 12, 1951-1966 (2012). MSC: 37G35 39A10 PDF BibTeX XML Cite \textit{M. R. S. Kulenović} et al., J. Difference Equ. Appl. 18, No. 12, 1951--1966 (2012; Zbl 1257.37032) Full Text: DOI OpenURL
Zayed, Elsayed M. E. On the rational recursive sequence. (English) Zbl 1251.39008 Acta Math. Vietnam. 37, No. 2, 251-266 (2012). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{E. M. E. Zayed}, Acta Math. Vietnam. 37, No. 2, 251--266 (2012; Zbl 1251.39008) OpenURL
Kalabušić, S.; Kulenović, M. R. S; Pilav, E. Dynamics of a two-dimensional system of rational difference equations of Leslie-Gower type. (English) Zbl 1384.37031 Adv. Difference Equ. 2011, Paper No. 29, 29 p. (2011). MSC: 37C75 39A33 39A30 PDF BibTeX XML Cite \textit{S. Kalabušić} et al., Adv. Difference Equ. 2011, Paper No. 29, 29 p. (2011; Zbl 1384.37031) Full Text: DOI OpenURL
Xiao, Qian; Shi, Qi-Hong Qualitative behavior of a rational difference equation. (English) Zbl 1263.39018 Adv. Difference Equ. 2011, Paper No. 6 (2011). MSC: 39A30 39A23 PDF BibTeX XML Cite \textit{Q. Xiao} and \textit{Q.-H. Shi}, Adv. Difference Equ. 2011, Paper No. 6 (2011; Zbl 1263.39018) Full Text: DOI OpenURL
Stević, Stevo On the difference equation \(x_{n} = x_{n - 2}/(b_{n} + c_{n}x_{n - 1}x_{n - 2})\). (English) Zbl 1256.39009 Appl. Math. Comput. 218, No. 8, 4507-4513 (2011). Reviewer: Dan-Mircea Borş (Iaşi) MSC: 39A20 39A23 PDF BibTeX XML Cite \textit{S. Stević}, Appl. Math. Comput. 218, No. 8, 4507--4513 (2011; Zbl 1256.39009) Full Text: DOI OpenURL
Stević, Stevo On a system of difference equations with period two coefficients. (English) Zbl 1256.39008 Appl. Math. Comput. 218, No. 8, 4317-4324 (2011). Reviewer: Yuming Chen (Waterloo) MSC: 39A20 39A23 PDF BibTeX XML Cite \textit{S. Stević}, Appl. Math. Comput. 218, No. 8, 4317--4324 (2011; Zbl 1256.39008) Full Text: DOI OpenURL
Kalabušić, S.; Kulenović, M. R. S. Dynamics of certain anti-competitive systems of rational difference equations in the plane. (English) Zbl 1243.39012 J. Difference Equ. Appl. 17, No. 11, 1599-1615 (2011). Reviewer: Roman Šimon Hilscher (Brno) MSC: 39A22 39A30 39A20 PDF BibTeX XML Cite \textit{S. Kalabušić} and \textit{M. R. S. Kulenović}, J. Difference Equ. Appl. 17, No. 11, 1599--1615 (2011; Zbl 1243.39012) Full Text: DOI OpenURL
Zayed, Elsayed M. Dynamics of the nonlinear rational difference equation \(x_{n+1}=Ax_n+Bx_{n-k}+\frac{px_n+x_{n-k}}{q+x_{n-k}}\). (English) Zbl 1213.39014 Eur. J. Pure Appl. Math. 3, No. 2, 254-268 (2010). MSC: 39A20 39A23 39A30 PDF BibTeX XML Cite \textit{E. M. Zayed}, Eur. J. Pure Appl. Math. 3, No. 2, 254--268 (2010; Zbl 1213.39014) Full Text: Link OpenURL
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive two sequences \(x_{n+1}=ax_{n-k}+bx_{n-k}/(cx_n+\delta dx_{n-k})\). (English) Zbl 1227.39009 Acta Math. Vietnam. 35, No. 3, 355-369 (2010). Reviewer: Fei Xue (Hartford) MSC: 39A20 39A23 39A30 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, Acta Math. Vietnam. 35, No. 3, 355--369 (2010; Zbl 1227.39009) Full Text: Link OpenURL
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \( x_{n+1}=\dfrac {\alpha _{0}x_{n}+\alpha _{1}x_{n-l}+\alpha _{2}x_{n-k}} {\beta _{0}x_{n}+\beta _{1}x_{n-l}+\beta _{2}x_{n-k}} \). (English) Zbl 1224.39015 Math. Bohem. 135, No. 3, 319-336 (2010). MSC: 39A20 39A22 39A23 39A30 65Q10 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, Math. Bohem. 135, No. 3, 319--336 (2010; Zbl 1224.39015) Full Text: EuDML EMIS OpenURL
Kulenović, M. R. S.; Merino, Orlando Invariant manifolds for competitive discrete systems in the plane. (English) Zbl 1202.37027 Int. J. Bifurcation Chaos Appl. Sci. Eng. 20, No. 8, 2471-2486 (2010). MSC: 37D10 37E30 37C70 PDF BibTeX XML Cite \textit{M. R. S. Kulenović} and \textit{O. Merino}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 20, No. 8, 2471--2486 (2010; Zbl 1202.37027) Full Text: DOI arXiv OpenURL
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=Ax_{n}+Bx_{n-k}+\frac{\beta x_{n}+\gamma x_{n-k}}{cx_{n}+Dx_{n-k}}\). (English) Zbl 1204.39008 Acta Appl. Math. 111, No. 3, 287-301 (2010). Reviewer: N. C. Apreutesei (Iaşi) MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, Acta Appl. Math. 111, No. 3, 287--301 (2010; Zbl 1204.39008) Full Text: DOI EuDML OpenURL
Jia, Xiu-Mei; Hu, Lin-Xia Global attractivity of a higher-order nonlinear difference equation. (English) Zbl 1201.39006 Appl. Math. Comput. 216, No. 3, 857-861 (2010). Reviewer: Miloš Čanak (Beograd) MSC: 39A20 39A30 39A22 PDF BibTeX XML Cite \textit{X.-M. Jia} and \textit{L.-X. Hu}, Appl. Math. Comput. 216, No. 3, 857--861 (2010; Zbl 1201.39006) Full Text: DOI OpenURL
Basu, Sukanya; Merino, Orlando Global behavior of solutions to two classes of second-order rational difference equations. (English) Zbl 1177.39016 Adv. Difference Equ. 2009, Article ID 128602, 27 p. (2009). MSC: 39A23 39A20 PDF BibTeX XML Cite \textit{S. Basu} and \textit{O. Merino}, Adv. Difference Equ. 2009, Article ID 128602, 27 p. (2009; Zbl 1177.39016) Full Text: DOI arXiv EuDML OpenURL
Kulenović, M. R. S.; Merino, Orlando Global bifurcation for discrete competitive systems in the plane. (English) Zbl 1175.37058 Discrete Contin. Dyn. Syst., Ser. B 12, No. 1, 133-149 (2009). Reviewer: Valery A. Gaiko (Minsk) MSC: 37G35 39A10 39A30 39A23 39A28 PDF BibTeX XML Cite \textit{M. R. S. Kulenović} and \textit{O. Merino}, Discrete Contin. Dyn. Syst., Ser. B 12, No. 1, 133--149 (2009; Zbl 1175.37058) Full Text: DOI OpenURL
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=\Big ( A+\sum _{i=0}^{k}\alpha _{i}x_{n-i}\Big ) \Big / \sum _{i=0}^{k}\beta _{i}x_{n-i}\). (English) Zbl 1199.39025 Math. Bohem. 133, No. 3, 225-239 (2008). MSC: 39A22 39A20 39A30 39A23 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, Math. Bohem. 133, No. 3, 225--239 (2008; Zbl 1199.39025) Full Text: EuDML EMIS OpenURL
Burgić, Dž.; Kalabušić, S.; Kulenović, M. R. S. Period-two trichotomies of a difference equation of order higher than two. (English) Zbl 1153.39008 Sarajevo J. Math. 4(16), No. 1, 73-90 (2008). Reviewer: Rodica Luca Tudorache (Iaşi) MSC: 39A11 39A10 39A20 PDF BibTeX XML Cite \textit{Dž. Burgić} et al., Sarajevo J. Math. 4(16), No. 1, 73--90 (2008; Zbl 1153.39008) OpenURL
Camouzis, E.; Ladas, G. Global convergence in difference equations. (English) Zbl 1143.39010 Commun. Appl. Nonlinear Anal. 14, No. 4, 1-16 (2007). Reviewer: Raghib Abu-Saris (Sharjah) MSC: 39A20 39A11 PDF BibTeX XML Cite \textit{E. Camouzis} and \textit{G. Ladas}, Commun. Appl. Nonlinear Anal. 14, No. 4, 1--16 (2007; Zbl 1143.39010) OpenURL
Kulenović, M. R. S.; Merino, Orlando Stability analysis of Pielou’s equation with period-two coefficient. (English) Zbl 1123.39004 J. Difference Equ. Appl. 13, No. 5, 383-406 (2007). Reviewer: Wei Nian Li (Binzhou) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{M. R. S. Kulenović} and \textit{O. Merino}, J. Difference Equ. Appl. 13, No. 5, 383--406 (2007; Zbl 1123.39004) Full Text: DOI OpenURL
Berenhaut, Kenneth S.; Stević, Stevo The behaviour of the positive solutions of the difference equation \(x_n = A + (\frac{x_{n-2}}{x_{n-1}})^p\). (English) Zbl 1111.39003 J. Difference Equ. Appl. 12, No. 9, 909-918 (2006). Reviewer: Lothar Berg (Rostock) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{K. S. Berenhaut} and \textit{S. Stević}, J. Difference Equ. Appl. 12, No. 9, 909--918 (2006; Zbl 1111.39003) Full Text: DOI OpenURL
Chen, Haibo; Wang, Haihua Global attractivity of the difference equation \(x_{n+1}=(x_{n}+\alpha x_{n-1})/(\beta +x_{n})\). (English) Zbl 1108.39005 Appl. Math. Comput. 181, No. 2, 1431-1438 (2006). Reviewer: Lothar Berg (Rostock) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{H. Chen} and \textit{H. Wang}, Appl. Math. Comput. 181, No. 2, 1431--1438 (2006; Zbl 1108.39005) Full Text: DOI OpenURL
Sun, Taixiang; Xi, Hongjian On solutions of the nonlinear difference equation \(x_{n+1}=f(p_n,x_{n-2s},x_{n-2t-1})\). (English) Zbl 1092.39012 J. Difference Equ. Appl. 11, No. 15, 1273-1280 (2005). Reviewer: Gennadij Demidenko (Novosibirsk) MSC: 39A11 39A10 PDF BibTeX XML Cite \textit{T. Sun} and \textit{H. Xi}, J. Difference Equ. Appl. 11, No. 15, 1273--1280 (2005; Zbl 1092.39012) Full Text: DOI OpenURL
Stević, Stevo Periodic character of a difference equation. (English) Zbl 1083.39011 Rostocker Math. Kolloq. 59, 3-10 (2005). Reviewer: Wei Nian Li (Binzhou) MSC: 39A11 39A10 PDF BibTeX XML Cite \textit{S. Stević}, Rostocker Math. Kolloq. 59, 3--10 (2005; Zbl 1083.39011) OpenURL
DeVault, R.; Schultz, S. W. On the dynamics of \(x_{n+1}= \frac {\beta x_n+\gamma x_{n-1}} {Bx_n+Dx_{n-2}}\). (English) Zbl 1079.39015 Commun. Appl. Nonlinear Anal. 12, No. 2, 35-39 (2005). Reviewer: Raghib Abu-Saris (Sharjah) MSC: 39A20 39A11 PDF BibTeX XML Cite \textit{R. DeVault} and \textit{S. W. Schultz}, Commun. Appl. Nonlinear Anal. 12, No. 2, 35--39 (2005; Zbl 1079.39015) OpenURL
Kalabušić, S.; Kulenović, M. R. S. Rate of convergence of solutions of rational difference equation of second order. (English) Zbl 1079.39007 Adv. Difference Equ. 2004, No. 2, 121-139 (2004). Reviewer: Raghib Abu-Saris (Sharjah) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{S. Kalabušić} and \textit{M. R. S. Kulenović}, Adv. Difference Equ. 2004, No. 2, 121--139 (2004; Zbl 1079.39007) Full Text: DOI EuDML OpenURL
Tian, Hongjiong; Guo, Qian Dynamics of linear multistep methods for delay differential equations. (English) Zbl 1071.65117 Int. J. Bifurcation Chaos Appl. Sci. Eng. 14, No. 1, 329-336 (2004). Reviewer: Rudolf Scherer (Karlsruhe) MSC: 65L20 65L06 65L12 34K28 34K13 PDF BibTeX XML Cite \textit{H. Tian} and \textit{Q. Guo}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 14, No. 1, 329--336 (2004; Zbl 1071.65117) Full Text: DOI OpenURL
Camouzis, E.; Ladas, G.; Quinn, E. P. On the dynamics of \(x_{n+1}=\frac{\alpha+\beta x_n+\gamma x_n+\delta x_{n-2}}{A+x_n}\). (English) Zbl 1069.39021 J. Difference Equ. Appl. 10, No. 11, 963-976 (2004). Reviewer: Roman Hilscher (Brno) MSC: 39A20 39A11 PDF BibTeX XML Cite \textit{E. Camouzis} et al., J. Difference Equ. Appl. 10, No. 11, 963--976 (2004; Zbl 1069.39021) Full Text: DOI OpenURL
Yan, Xingxue; Li, Wantong Dynamic behavior of a recursive sequence. (English) Zbl 1069.39025 Appl. Math. Comput. 157, No. 3, 713-727 (2004). Reviewer: Roman Hilscher (Brno) MSC: 39A20 39A11 PDF BibTeX XML Cite \textit{X. Yan} and \textit{W. Li}, Appl. Math. Comput. 157, No. 3, 713--727 (2004; Zbl 1069.39025) Full Text: DOI OpenURL
Clark, C. A.; Kulenović, M. R. S.; Valicenti, S. On the dynamics of \(x_{n+1}=\frac{px_{n-1}+x_{n-2}}{x_n}\). (English) Zbl 1056.39007 Math. Sci. Res. J. 8, No. 5, 137-146 (2004). Reviewer: Fozi Dannan (Doha) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{C. A. Clark} et al., Math. Sci. Res. J. 8, No. 5, 137--146 (2004; Zbl 1056.39007) OpenURL
He, Wansheng; Li, Wantong; Yan, Xinxue Global attractivity of the difference equation \(x_{n+1}=\alpha+(x_{n-k}/x_{n})\). (English) Zbl 1056.39021 Appl. Math. Comput. 151, No. 3, 879-885 (2004). Reviewer: Akira Tsutsumi (Suita) MSC: 39A12 39A10 39A11 PDF BibTeX XML Cite \textit{W. He} et al., Appl. Math. Comput. 151, No. 3, 879--885 (2004; Zbl 1056.39021) Full Text: DOI OpenURL
El-Owaidy, H. M.; Ahmed, A. M.; Mousa, M. S. On asymptotic behaviour of the difference equation \(x_{x+1}=\alpha + \frac {x_{n-k}}{x_n}\). (English) Zbl 1042.39001 Appl. Math. Comput. 147, No. 1, 163-167 (2004). Reviewer: Oleg Anashkin (Simferopol) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{H. M. El-Owaidy} et al., Appl. Math. Comput. 147, No. 1, 163--167 (2004; Zbl 1042.39001) Full Text: DOI OpenURL
Chatterjee, E.; Grove, E. A.; Kostrov, Y.; Ladas, G. On the trichotomy character of \(x_{n+1}=\frac{\alpha+\gamma x_{n-1}}{A+Bx_n+x_{n-2}}\). (English) Zbl 1319.39006 J. Difference Equ. Appl. 9, No. 12, 1113-1128 (2003). MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{E. Chatterjee} et al., J. Difference Equ. Appl. 9, No. 12, 1113--1128 (2003; Zbl 1319.39006) Full Text: DOI OpenURL
Kalabušić, S.; Kulenović, M. R. S. On the recursive sequence \(x_{n+1}=\frac{\gamma x_{n-1}+\delta x_{n-2}}{Cx_{n-1}+Dx_{n-2}}\). (English) Zbl 1050.39009 J. Difference Equ. Appl. 9, No. 8, 701-720 (2003). Reviewer: Ioannis P. Stavroulakis (Ioannina) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{S. Kalabušić} and \textit{M. R. S. Kulenović}, J. Difference Equ. Appl. 9, No. 8, 701--720 (2003; Zbl 1050.39009) Full Text: DOI OpenURL
Gibbons, C. H.; Kulenović, M. R. S.; Ladas, G. On the dynamics of \(x_{n+1}=\frac{\alpha+\beta x_n+\gamma x_{n-1}}{A+B x_n}\). (English) Zbl 1062.39008 Elaydi, S. (ed.) et al., New trends in difference equations. Proceedings of the 5th international conference on difference equations and applications, Temuco, Chile, January 2–7, 2000. London: Taylor & Francis (ISBN 0-415-28389-2/hbk). 141-158 (2002). MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{C. H. Gibbons} et al., in: New trends in difference equations. Proceedings of the 5th international conference on difference equations and applications, Temuco, Chile, January 2--7, 2000. London: Taylor \& Francis. 141--158 (2002; Zbl 1062.39008) OpenURL
He, Wan-Sheng; Li, Wan-Tong; Yan, Xing-Xue Global attractivity in a nonlinear difference equation. (English) Zbl 1031.39004 Int. J. Appl. Math. 11, No. 3, 283-293 (2002). Reviewer: Fozi Dannan (Doha) MSC: 39A11 39B05 39A12 PDF BibTeX XML Cite \textit{W.-S. He} et al., Int. J. Appl. Math. 11, No. 3, 283--293 (2002; Zbl 1031.39004) OpenURL
Gibbons, C. H.; Kulenović, M. R. S.; Ladas, G.; Voulov, H. D. On the trichotomy character of \(x_{n+1}=(\alpha+\beta x_n+\gamma x_{n-1})/(A+x_n)\). (English) Zbl 1005.39017 J. Difference Equ. Appl. 8, No. 1, 75-92 (2002). Reviewer: N.C.Apreutesei (Iasi) MSC: 39A11 39B05 PDF BibTeX XML Cite \textit{C. H. Gibbons} et al., J. Difference Equ. Appl. 8, No. 1, 75--92 (2002; Zbl 1005.39017) Full Text: DOI OpenURL
Stević, Stevo A global convergence result with applications to periodic solutions. (English) Zbl 1002.39004 Indian J. Pure Appl. Math. 33, No. 1, 45-53 (2002). Reviewer: Roman Hilscher (East Lansing) MSC: 39A11 PDF BibTeX XML Cite \textit{S. Stević}, Indian J. Pure Appl. Math. 33, No. 1, 45--53 (2002; Zbl 1002.39004) OpenURL
Gibbons, C. H.; Kulenovic, M. R. S.; Ladas, G. On the recursive sequence \(x_{n+1}=\frac{\alpha+\beta x_{n-1}}{\gamma+x_n}\). (English) Zbl 1039.39004 Math. Sci. Res. Hot-Line 4, No. 2, 1-11 (2000). MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{C. H. Gibbons} et al., Math. Sci. Res. Hot-Line 4, No. 2, 1--11 (2000; Zbl 1039.39004) OpenURL
Barclay, Graeme J.; Griffiths, David F.; Higham, Desmond J. Theta method dynamics. (English) Zbl 0953.65054 LMS J. Comput. Math. 3, 27-43 (2000). MSC: 65L12 65L10 65L20 65M20 34B15 34C25 PDF BibTeX XML Cite \textit{G. J. Barclay} et al., LMS J. Comput. Math. 3, 27--43 (2000; Zbl 0953.65054) Full Text: DOI Link OpenURL
DeVault, R.; Ladas, G.; Schultz, S. W. On the recursive sequence \(x_{n+1}=\frac A{x_n}+\frac 1{x_{n-2}}\). (English) Zbl 0904.39012 Proc. Am. Math. Soc. 126, No. 11, 3257-3261 (1998). Reviewer: E.Thandapani (Salem) MSC: 39A12 39A10 39A30 PDF BibTeX XML Cite \textit{R. DeVault} et al., Proc. Am. Math. Soc. 126, No. 11, 3257--3261 (1998; Zbl 0904.39012) Full Text: DOI OpenURL
Busby, Robert C.; Fair, Wyman Quadratic operator equations and periodic operator continued fractions. (English) Zbl 0827.47008 J. Comput. Appl. Math. 54, No. 3, 377-387 (1994). MSC: 47A50 49M99 PDF BibTeX XML Cite \textit{R. C. Busby} and \textit{W. Fair}, J. Comput. Appl. Math. 54, No. 3, 377--387 (1994; Zbl 0827.47008) Full Text: DOI OpenURL
Smith, H. L. Subharmonic bifurcation in an S-I-R epidemic model. (English) Zbl 0578.92023 J. Math. Biol. 17, 163-177 (1983). MSC: 92D25 35B32 PDF BibTeX XML Cite \textit{H. L. Smith}, J. Math. Biol. 17, 163--177 (1983; Zbl 0578.92023) Full Text: DOI OpenURL