×

Unstable manifolds of relative periodic orbits in the symmetry-reduced state space of the Kuramoto-Sivashinsky system. (English) Zbl 1372.37057

Summary: Systems such as fluid flows in channels and pipes or the complex Ginzburg-Landau system, defined over periodic domains, exhibit both continuous symmetries, translational and rotational, as well as discrete symmetries under spatial reflections or complex conjugation. The simplest, and very common symmetry of this type is the equivariance of the defining equations under the orthogonal group \(\mathrm{O}(2)\). We formulate a novel symmetry reduction scheme for such systems by combining the method of slices with invariant polynomial methods, and show how it works by applying it to the Kuramoto-Sivashinsky system in one spatial dimension. As an example, we track a relative periodic orbit through a sequence of bifurcations to the onset of chaos. Within the symmetry-reduced state space we are able to compute and visualize the unstable manifolds of relative periodic orbits, their torus bifurcations, a transition to chaos via torus breakdown, and heteroclinic connections between various relative periodic orbits. It would be very hard to carry through such analysis in the full state space, without a symmetry reduction such as the one we present here.

MSC:

37C80 Symmetries, equivariant dynamical systems (MSC2010)
35Q35 PDEs in connection with fluid mechanics
37C27 Periodic orbits of vector fields and flows
35Q79 PDEs in connection with classical thermodynamics and heat transfer
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Armbruster, D., Guckenheimer, J., Holmes, P.: Kuramoto-Sivashinsky dynamics on the center-unstable manifold. SIAM J. Appl. Math. 49, 676-691 (1989) · Zbl 0687.34036 · doi:10.1137/0149039
[2] Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, Berlin (1982)
[3] Artuso, R., Aurell, E., Cvitanović, P.: Recycling of strange sets: I. Cycle expansions. Nonlinearity 3, 325-359 (1990) · Zbl 0702.58064 · doi:10.1088/0951-7715/3/2/005
[4] Artuso, R., Aurell, E., Cvitanović, P.: Recycling of strange sets: II. Applications. Nonlinearity 3, 361-386 (1990) · Zbl 0702.58064 · doi:10.1088/0951-7715/3/2/006
[5] Avila, M., Mellibovsky, F., Roland, N., Hof, B.: Streamwise-localized solutions at the onset of turbulence in pipe flow. Phys. Rev. Lett. 110, 224502 (2013) · doi:10.1103/PhysRevLett.110.224502
[6] Blackburn, H.M., Marques, F., Lopez, J.M.: Symmetry breaking of two-dimensional time-periodic wakes. J. Fluid Mech. 522, 395-411 (2005) · Zbl 1065.76097 · doi:10.1017/S0022112004002095
[7] Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Springer, Berlin (1975) · Zbl 0308.28010 · doi:10.1007/BFb0081279
[8] Budanur, N.B.: Exact coherent structures in spatiotemporal chaos: from qualitative description to quantitative predictions. PhD thesis, School of Physics, Georgia Inst. of Technology, Atlanta (2015)
[9] Budanur, N.B., Hof, B.: State space geometry of the laminar-turbulent boundary in pipe flow, in preparation (2017) · Zbl 1460.76374
[10] Budanur, N.B., Borrero-Echeverry, D., Cvitanović, P.: Periodic orbit analysis of a system with continuous symmetry: a tutorial. Chaos 25, 073112 (2015) · Zbl 1374.37001 · doi:10.1063/1.4923742
[11] Budanur, N.B., Cvitanović, P., Davidchack, R.L., Siminos, E.: Reduction of the SO(2) symmetry for spatially extended dynamical systems. Phys. Rev. Lett. 114, 084102 (2015) · doi:10.1103/PhysRevLett.114.084102
[12] Cartan, E.: La méthode du repère mobile, la théorie des groupes continus, et les espaces généralisés, Vol. 5, Exposés de Géométrie. Hermann, Paris (1935) · Zbl 0010.39501
[13] Chossat, P., Lauterbach, R.: Methods in Equivariant Bifurcations and Dynamical Systems. World Scientific, Singapore (2000) · Zbl 0968.37001 · doi:10.1142/4062
[14] Christiansen, F., Cvitanović, P., Putkaradze, V.: Spatiotemporal chaos in terms of unstable recurrent patterns. Nonlinearity 10, 55-70 (1997) · Zbl 0907.58042 · doi:10.1088/0951-7715/10/1/004
[15] Crawford, J.D., Knobloch, E.: Symmetry and symmetry-breaking bifurcations in uid dynamics. Ann. Rev. Fluid Mech. 23, 341-387 (1991) · Zbl 0717.76007 · doi:10.1146/annurev.fl.23.010191.002013
[16] Cvitanović, P.: Invariant measurement of strange sets in terms of cycles. Phys. Rev. Lett. 61, 2729-2732 (1988) · doi:10.1103/PhysRevLett.61.2729
[17] Cvitanović, P., Davidchack, R.L., Siminos, E.: On the state space geometry of the Kuramoto-Sivashinsky flow in a periodic domain. SIAM J. Appl. Dyn. Syst. 9, 1-33 (2010) · Zbl 1267.35027 · doi:10.1137/070705623
[18] Cvitanović, P., Borrero-Echeverry, D., Carroll, K., Robbins, B., Siminos, E.: Cartography of high-dimensional flows: a visual guide to sections and slices. Chaos 22, 047506 (2012) · Zbl 1319.76048 · doi:10.1063/1.4758309
[19] Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G.: Chaos: Classical and Quantum. Niels Bohr Institute, Copenhagen (2016)
[20] D’Humieres, D., Beasley, M.R., Huberman, B.A., Libchaber, A.: Chaotic states and routes to chaos in the forced pendulum. Phys. Rev. A 26, 3483-3496 (1982) · doi:10.1103/PhysRevA.26.3483
[21] Duguet, Y., Willis, A.P., Kerswell, R.R.: Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255-274 (2008) · Zbl 1151.76495 · doi:10.1017/S0022112008003248
[22] Farazmand, M.: An adjoint-based approach for finding invariant solutions of Navier-Stokes equations. J. Fluid Mech. 795, 278-312 (2016) · Zbl 1359.76077 · doi:10.1017/jfm.2016.203
[23] Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193-226 (1971) · Zbl 0246.58015 · doi:10.1512/iumj.1972.21.21017
[24] Field, M.J.: Equivariant dynamical systems. Trans. Am. Math. Soc. 259, 185-205 (1980) · Zbl 0447.58029 · doi:10.1090/S0002-9947-1980-0561832-4
[25] Gatermann, K.: Computer Algebra Methods for Equivariant Dynamical Systems. Springer, New York (2000) · Zbl 0944.65131 · doi:10.1007/BFb0104059
[26] Gibson, J.F.: Channel flow: a spectral Navier-Stokes simulator in C++, technical report. University of New Hampshire. www.Channelflow.org (2013)
[27] Gibson, J.F., Halcrow, J., Cvitanović, P.: Visualizing the geometry of state-space in plane Couette flow. J. Fluid Mech. 611, 107-130 (2008) · Zbl 1151.76453 · doi:10.1017/S002211200800267X
[28] Gilmore, R., Letellier, C.: The Symmetry of Chaos. Oxford University Press, Oxford (2007) · Zbl 1137.37017
[29] Greene, J.M., Kim, J.-S.: The steady states of the Kuramoto-Sivashinsky equation. Physica D 33, 99-120 (1988) · Zbl 0825.35107 · doi:10.1016/S0167-2789(98)90013-6
[30] Gutzwiller, M.C.: Periodic orbits and classical quantization conditions. J. Math. Phys. 12, 343-358 (1971) · doi:10.1063/1.1665596
[31] Hilbert, D.: Über die vollen Invariantensysteme. Math. Ann. 42, 313-373 (1893) · JFM 25.0173.01 · doi:10.1007/BF01444162
[32] Hindmarsh, AC; Stepleman, RS (ed.), ODEPACK, a systematized collection of ODE solvers, No. 1, 55-64 (1983), Amsterdam
[33] Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996) · Zbl 0890.76001 · doi:10.1017/CBO9780511622700
[34] Hopf, E.: Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differentialsystems. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 94, 3-22 (1942) · Zbl 0063.02065
[35] Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001)
[36] Kadanoff, L., Tang, C.: Escape rate from strange repellers. Proc. Natl. Acad. Sci. USA 81, 1276-1279 (1984) · Zbl 0548.58023 · doi:10.1073/pnas.81.4.1276
[37] Kevrekidis, I.G., Nicolaenko, B., Scovel, J.C.: Back in the saddle again: a computer assisted study of the Kuramoto-Sivashinsky equation. SIAM J. Appl. Math. 50, 760-790 (1990) · Zbl 0722.35011 · doi:10.1137/0150045
[38] Knobloch, E., Weiss, N.: Bifurcations in a model of double-diffusive convection. Phys. Lett. A 85, 127-130 (1981) · doi:10.1016/0375-9601(81)90882-3
[39] Krupa, M.: Bifurcations of relative equilibria. SIAM J. Math. Anal. 21, 1453-1486 (1990) · Zbl 0706.58043 · doi:10.1137/0521081
[40] Kuramoto, Y., Tsuzuki, T.: Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55, 356-369 (1976) · doi:10.1143/PTP.55.356
[41] Lan, Y., Cvitanović, P.: Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics. Phys. Rev. E 78, 026208 (2008) · doi:10.1103/PhysRevE.78.026208
[42] Lan, Y., Chandre, C., Cvitanović, P.: Variational method for locating invariant tori. Phys. Rev. E 74, 046206 (2006) · doi:10.1103/PhysRevE.74.046206
[43] Mainieri, R., Cvitanović, P. (ed.): A brief history of chaos. In: Chaos: Classical and Quantum. Niels Bohr Institute, Copenhagen (2016)
[44] Marques, F., Lopez, J.M., Blackburn, H.M.: Bifurcations in systems with Z2 spatio-temporal and O(2) spatial symmetry. Physica D 189, 247-276 (2004) · Zbl 1051.37025 · doi:10.1016/j.physd.2003.09.041
[45] Miranda, R., Stone, E.: The proto-Lorenz system. Phys. Lett. A 178, 105-113 (1993) · doi:10.1016/0375-9601(93)90735-I
[46] Neimark, J.: On some cases of periodic motions depending on parameters. Dokl. Akad. Nauk SSSR 129, 736-739 (1959). in Russian · Zbl 0089.29603
[47] Noether, E.: Der Endlichkeitssatz der Invarianten endlicher Gruppen. Math. Ann. 77, 89-92 (1915) · JFM 45.0198.01 · doi:10.1007/BF01456821
[48] Novak, S., Frehlich, R.G.: Transition to chaos in the Duffing oscillator. Phys. Rev. A 26, 3660-3663 (1982) · doi:10.1103/PhysRevA.26.3660
[49] Platt, N., Sirovich, L., Fitzmaurice, N.: An investigation of chaotic Kolmogorov flows. Phys. Fluids A 3, 681-696 (1991) · Zbl 0735.76038 · doi:10.1063/1.858074
[50] Rempel, E.L., Chian, A.C.: Intermittency induced by attractor-merging crisis in the Kuramoto-Sivashinsky equation. Phys. Rev. E 71, 016203 (2005) · doi:10.1103/PhysRevE.71.016203
[51] Rempel, E.L., Chian, A.C., Macau, E.E., Rosa, R.R.: Analysis of chaotic saddles in high-dimensional dynamical systems: the Kuramoto-Sivashinsky equation. Chaos 14, 545-556 (2004) · Zbl 1080.37087 · doi:10.1063/1.1759297
[52] Rempel, E.L., Chian, A.C., Miranda, R.A.: Chaotic saddles at the onset of intermittent spatiotemporal chaos. Phys. Rev. E 76, 056217 (2007) · doi:10.1103/PhysRevE.76.056217
[53] Ruelle, D.: Generalized zeta-functions for Axiom A basic sets. Bull. Am. Math. Soc. 82, 153-156 (1976) · Zbl 0316.58016 · doi:10.1090/S0002-9904-1976-14003-7
[54] Ruelle, D.: Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34, 231-242 (1976) · Zbl 0329.58014 · doi:10.1007/BF01403069
[55] Sacker, R.J.: A new approach to the perturbation theory of invariant surfaces. Commun. Pure Appl. Math. 18, 717-732 (1965) · Zbl 0133.35501 · doi:10.1002/cpa.3160180409
[56] Schneider, T.M., Eckhardt, B., Yorke, J.: Turbulence, transition, and the edge of chaos in pipe flow. Phys. Rev. Lett. 99, 034502 (2007) · doi:10.1103/PhysRevLett.99.034502
[57] Siminos, E.: Recurrent spatio-temporal structures in presence of continuous symmetries. PhD thesis, School of Physics, Georgia Institute of Technology, Atlanta (2009)
[58] Siminos, E., Cvitanović, P.: Continuous symmetry reduction and return maps for high-dimensional flows. Physica D 240, 187-198 (2011) · Zbl 1372.37048 · doi:10.1016/j.physd.2010.07.010
[59] Sivashinsky, G.I.: Nonlinear analysis of hydrodynamical instability in laminar ames—I. Derivation of basic equations. Acta Astronaut. 4, 1177-1206 (1977) · Zbl 0427.76047 · doi:10.1016/0094-5765(77)90096-0
[60] Skufca, J.D., Yorke, J.A., Eckhardt, B.: Edge of Chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101 (2006) · doi:10.1103/PhysRevLett.96.174101
[61] Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747-817 (1967) · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[62] Swift, J.W., Wiesenfeld, K.: Suppression of period doubling in symmetric systems. Phys. Rev. Lett. 52, 705-708 (1984) · doi:10.1103/PhysRevLett.52.705
[63] Toh, S., Itano, T.: A periodic-like solution in channel flow. J. Fluid Mech. 481, 67-76 (2003) · Zbl 1034.76014 · doi:10.1017/S0022112003003768
[64] Williams, R.F.: The structure of Lorenz attractors. Publ. Math. IHES 50, 73-99 (1979) · Zbl 0484.58021 · doi:10.1007/BF02684770
[65] Willis, A.P.: Openpipe flow: pipe flow code for incompressible flow, technical report. University of Sheffield. www.Openpipeflow.org (2014)
[66] Willis, A.P., Cvitanović, P., Avila, M.: Revealing the state space of turbulent pipe flow by symmetry reduction. J. Fluid Mech. 721, 514-540 (2013) · Zbl 1287.76155 · doi:10.1017/jfm.2013.75
[67] Willis, A.P., Short, K.Y., Cvitanović, P.: Symmetry reduction in high dimensions, illustrated in a turbulent pipe. Phys. Rev. E 93, 022204 (2016) · doi:10.1103/PhysRevE.93.022204
[68] Zammert, S., Eckhardt, B.: Crisis bifurcations in plane Poiseuille flow. Phys. Rev. E 91, 041003 (2015) · doi:10.1103/PhysRevE.91.041003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.