Katsanikas, Matthaios; Agaoglou, Makrina; Wiggins, Stephen Bifurcation of dividing surfaces constructed from period-doubling bifurcations of periodic orbits in a caldera potential energy surface. (English) Zbl 07558026 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 7, Article ID 2230015, 18 p. (2022). MSC: 37Jxx 34Cxx 70Hxx PDF BibTeX XML Cite \textit{M. Katsanikas} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 7, Article ID 2230015, 18 p. (2022; Zbl 07558026) Full Text: DOI OpenURL
Davini, Andrea; Kosygina, Elena Stochastic homogenization of a class of nonconvex viscous HJ equations in one space dimension. (English) Zbl 07555106 J. Differ. Equations 333, 231-267 (2022). MSC: 35B27 35D40 35F21 35R60 60K37 PDF BibTeX XML Cite \textit{A. Davini} and \textit{E. Kosygina}, J. Differ. Equations 333, 231--267 (2022; Zbl 07555106) Full Text: DOI OpenURL
Yang, Gang; Zhang, Jian Ground states for Dirac equation with singular potential and asymptotically periodic condition. (English) Zbl 07540964 Appl. Math. Lett. 132, Article ID 108169, 8 p. (2022). MSC: 35Q41 81Q05 35A15 35B40 PDF BibTeX XML Cite \textit{G. Yang} and \textit{J. Zhang}, Appl. Math. Lett. 132, Article ID 108169, 8 p. (2022; Zbl 07540964) Full Text: DOI OpenURL
Katsanikas, M.; Wiggins, S. The nature of reactive and non-reactive trajectories for a three dimensional caldera potential energy surface. (English) Zbl 07529715 Physica D 435, Article ID 133293, 12 p. (2022). MSC: 37-XX 70-XX PDF BibTeX XML Cite \textit{M. Katsanikas} and \textit{S. Wiggins}, Physica D 435, Article ID 133293, 12 p. (2022; Zbl 07529715) Full Text: DOI OpenURL
Diana, Vito; Bacigalupo, Andrea; Lepidi, Marco; Gambarotta, Luigi Anisotropic peridynamics for homogenized microstructured materials. (English) Zbl 07526016 Comput. Methods Appl. Mech. Eng. 392, Article ID 114704, 31 p. (2022). MSC: 74-XX 82-XX PDF BibTeX XML Cite \textit{V. Diana} et al., Comput. Methods Appl. Mech. Eng. 392, Article ID 114704, 31 p. (2022; Zbl 07526016) Full Text: DOI OpenURL
Wang, Shi-Ying; Chen, Peng; Li, Lin Ground state solution for a non-autonomous 1-Laplacian problem involving periodic potential in \(\protect \mathbb{R}^N\). (English) Zbl 07514675 C. R., Math., Acad. Sci. Paris 360, 297-304 (2022). MSC: 35J62 35A01 35A15 PDF BibTeX XML Cite \textit{S.-Y. Wang} et al., C. R., Math., Acad. Sci. Paris 360, 297--304 (2022; Zbl 07514675) Full Text: DOI OpenURL
Peletier, Mark A.; Schlottke, Mikola C. Gamma-convergence of a gradient-flow structure to a non-gradient-flow structure. (English) Zbl 1486.35026 Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 103, 44 p. (2022). MSC: 35B25 35B27 35K15 35K57 35K67 35R06 37L05 60H10 60F10 70G75 PDF BibTeX XML Cite \textit{M. A. Peletier} and \textit{M. C. Schlottke}, Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 103, 44 p. (2022; Zbl 1486.35026) Full Text: DOI OpenURL
Chen, Zhuo; Ji, Chao Existence and concentration of ground state solutions for a class of fractional Schrödinger equations. (English) Zbl 07473134 Asymptotic Anal. 126, No. 3-4, 229-253 (2022). MSC: 35Qxx PDF BibTeX XML Cite \textit{Z. Chen} and \textit{C. Ji}, Asymptotic Anal. 126, No. 3--4, 229--253 (2022; Zbl 07473134) Full Text: DOI OpenURL
Psaltis, Steven; Timms, Robert; Please, Colin; Chapman, S. Jonathan Homogenization of spirally wound high-contrast layered materials. (English) Zbl 1481.78018 SIAM J. Appl. Math. 82, No. 1, 168-193 (2022). MSC: 78A57 78A48 80A19 35B27 78M40 80M40 35B20 35B40 PDF BibTeX XML Cite \textit{S. Psaltis} et al., SIAM J. Appl. Math. 82, No. 1, 168--193 (2022; Zbl 1481.78018) Full Text: DOI arXiv OpenURL
Constantineau, Kevin; García-Azpeitia, Carlos; Lessard, Jean-Philippe Spatial relative equilibria and periodic solutions of the Coulomb \((n+1)\)-body problem. (English) Zbl 07434852 Qual. Theory Dyn. Syst. 21, No. 1, Paper No. 3, 19 p. (2022). MSC: 70F10 65G40 47H11 34C25 37G40 PDF BibTeX XML Cite \textit{K. Constantineau} et al., Qual. Theory Dyn. Syst. 21, No. 1, Paper No. 3, 19 p. (2022; Zbl 07434852) Full Text: DOI arXiv OpenURL
Kharkongor, Bornesson; Pohlong, S. S.; Mahato, Mangal C. Net transport in a periodically driven potential-free system. (English) Zbl 07542633 Physica A 562, Article ID 125341, 8 p. (2021). MSC: 82-XX PDF BibTeX XML Cite \textit{B. Kharkongor} et al., Physica A 562, Article ID 125341, 8 p. (2021; Zbl 07542633) Full Text: DOI OpenURL
Xu, Xionghui; Sun, Jijiang Ground state solutions for periodic discrete nonlinear Schrödinger equations. (English) Zbl 07533471 AIMS Math. 6, No. 12, 13057-13071 (2021). MSC: 35Q55 35Q51 39A12 39A70 PDF BibTeX XML Cite \textit{X. Xu} and \textit{J. Sun}, AIMS Math. 6, No. 12, 13057--13071 (2021; Zbl 07533471) Full Text: DOI OpenURL
Manafian, Jalil; Ilhan, Onur Alp; Ismael, Hajar Farhan; Mohammed, Sizar Abid; Mazanova, Saadat Periodic wave solutions and stability analysis for the (3+1)-D potential-YTSF equation arising in fluid mechanics. (English) Zbl 07476634 Int. J. Comput. Math. 98, No. 8, 1594-1616 (2021). MSC: 35Qxx 35D30 35Q51 PDF BibTeX XML Cite \textit{J. Manafian} et al., Int. J. Comput. Math. 98, No. 8, 1594--1616 (2021; Zbl 07476634) Full Text: DOI OpenURL
Surulere, S. A.; Shatalov, M. Y.; Mkolesia, A. C.; Fedotov, I. Dynamics of nonlinear longitudinal vibrations in a 1D nano-scale continuum described by the generalized Morse potential. (English) Zbl 07446963 Nonlinear Dyn. Syst. Theory 21, No. 2, 202-215 (2021). MSC: 70K25 70H03 70H25 35L05 PDF BibTeX XML Cite \textit{S. A. Surulere} et al., Nonlinear Dyn. Syst. Theory 21, No. 2, 202--215 (2021; Zbl 07446963) Full Text: Link OpenURL
Katsanikas, M.; Agaoglou, M.; Wiggins, S. Bifurcation of dividing surfaces constructed from a pitchfork bifurcation of periodic orbits in a symmetric potential energy surface with a post-transition-state bifurcation. (English) Zbl 1485.37054 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 14, Article ID 2130041, 16 p. (2021). MSC: 37J20 37J46 70H33 PDF BibTeX XML Cite \textit{M. Katsanikas} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 14, Article ID 2130041, 16 p. (2021; Zbl 1485.37054) Full Text: DOI arXiv OpenURL
Strzelecki, Daniel Bifurcations of quasi-periodic solutions from relative equilibria in the Lennard-Jones 2-body problem. (English) Zbl 1484.37060 Celest. Mech. Dyn. Astron. 133, No. 9, Paper No. 44, 12 p. (2021). MSC: 37J20 37J46 37N05 70F10 70K50 PDF BibTeX XML Cite \textit{D. Strzelecki}, Celest. Mech. Dyn. Astron. 133, No. 9, Paper No. 44, 12 p. (2021; Zbl 1484.37060) Full Text: DOI OpenURL
Schiebl, Mark; Romero, Ignacio Energy-momentum conserving integration schemes for molecular dynamics. (English) Zbl 1479.74128 Comput. Mech. 67, No. 3, 915-935 (2021). MSC: 74S20 74A25 PDF BibTeX XML Cite \textit{M. Schiebl} and \textit{I. Romero}, Comput. Mech. 67, No. 3, 915--935 (2021; Zbl 1479.74128) Full Text: DOI arXiv OpenURL
Veliev, O. A. On the Schrödinger operator with a periodic PT-symmetric matrix potential. (English) Zbl 07422186 J. Math. Phys. 62, No. 10, 103501, 11 p. (2021). MSC: 34L40 34L15 34L05 PDF BibTeX XML Cite \textit{O. A. Veliev}, J. Math. Phys. 62, No. 10, 103501, 11 p. (2021; Zbl 07422186) Full Text: DOI arXiv OpenURL
Dinh, Van Duong On the instability of standing waves for the nonlinear Schrödinger equation with inverse-square potential. (English) Zbl 1479.35773 Complex Var. Elliptic Equ. 66, No. 10, 1699-1716 (2021). MSC: 35Q55 35Q41 35B35 35B10 33C10 PDF BibTeX XML Cite \textit{V. D. Dinh}, Complex Var. Elliptic Equ. 66, No. 10, 1699--1716 (2021; Zbl 1479.35773) Full Text: DOI OpenURL
Nanni, Luca Solving the Schrödinger equation of an electron in a periodic crystal potential through elliptic functions. (English) Zbl 1476.81039 J. Math. Chem. 59, No. 8, 1864-1874 (2021). MSC: 81Q05 81Q35 33E05 82D25 PDF BibTeX XML Cite \textit{L. Nanni}, J. Math. Chem. 59, No. 8, 1864--1874 (2021; Zbl 1476.81039) Full Text: DOI arXiv OpenURL
Petkov, Vesselin; Tzvetkov, Nikolay On the nonlinear wave equation with time-periodic potential. (English) Zbl 1470.35237 Int. Math. Res. Not. 2021, No. 6, 4301-4323 (2021). MSC: 35L71 35L15 35B40 35B45 PDF BibTeX XML Cite \textit{V. Petkov} and \textit{N. Tzvetkov}, Int. Math. Res. Not. 2021, No. 6, 4301--4323 (2021; Zbl 1470.35237) Full Text: DOI arXiv OpenURL
Dalla Riva, Matteo; Lanza de Cristoforis, Massimo; Musolino, Paolo Singularly perturbed boundary value problems. A functional analytic approach. (English) Zbl 1481.35005 Cham: Springer (ISBN 978-3-030-76258-2/hbk; 978-3-030-76259-9/ebook). xvi, 672 p. (2021). Reviewer: Sergei V. Rogosin (Minsk) MSC: 35-02 31B10 35B25 35B30 35J66 47H30 35B10 35C15 35C20 35J25 35P15 42B20 45P05 46N20 47G40 PDF BibTeX XML Cite \textit{M. Dalla Riva} et al., Singularly perturbed boundary value problems. A functional analytic approach. Cham: Springer (2021; Zbl 1481.35005) Full Text: DOI OpenURL
Korotyaev, Evgeny; Mokeev, Dmitrii Periodic Dirac operator with dislocation. (English) Zbl 1481.34103 J. Differ. Equations 296, 369-411 (2021). Reviewer: Jiři Lipovský (Hradec Králové) MSC: 34L40 34L15 47E05 34L05 PDF BibTeX XML Cite \textit{E. Korotyaev} and \textit{D. Mokeev}, J. Differ. Equations 296, 369--411 (2021; Zbl 1481.34103) Full Text: DOI arXiv OpenURL
Alvarez-Ramírez, Martha; García, Antonio; Vidarte, Jhon Armbruster-Guckenheimer-Kim Hamiltonian system in 1:1 resonance. (English) Zbl 1468.70013 Russ. J. Nonlinear Dyn. 17, No. 1, 59-76 (2021). MSC: 70H33 70K28 70F15 PDF BibTeX XML Cite \textit{M. Alvarez-Ramírez} et al., Russ. J. Nonlinear Dyn. 17, No. 1, 59--76 (2021; Zbl 1468.70013) Full Text: DOI MNR OpenURL
Veliev, Oktay Non-self-adjoint Schrödinger operator with a periodic potential. (English) Zbl 1487.47001 Cham: Springer (ISBN 978-3-030-72682-9/hbk; 978-3-030-72685-0/pbk; 978-3-030-72683-6/ebook). x, 294 p. (2021). MSC: 47-02 47B28 81Q12 PDF BibTeX XML Cite \textit{O. Veliev}, Non-self-adjoint Schrödinger operator with a periodic potential. Cham: Springer (2021; Zbl 1487.47001) Full Text: DOI OpenURL
Korotyaev, Evgeny; Møller, Jacob Schach Schrödinger operators periodic in octants. (English) Zbl 1466.35102 Lett. Math. Phys. 111, No. 2, Paper No. 55, 23 p. (2021). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J10 35P05 PDF BibTeX XML Cite \textit{E. Korotyaev} and \textit{J. S. Møller}, Lett. Math. Phys. 111, No. 2, Paper No. 55, 23 p. (2021; Zbl 1466.35102) Full Text: DOI arXiv OpenURL
Boumaza, H.; Lafitte, O. Integrated density of states: from the finite range to the periodic Airy-Schrödinger operator. (English) Zbl 1462.81086 J. Math. Phys. 62, No. 4, 043503, 22 p. (2021). MSC: 81Q10 81Q20 34L40 34L05 81Q80 82D25 82B30 PDF BibTeX XML Cite \textit{H. Boumaza} and \textit{O. Lafitte}, J. Math. Phys. 62, No. 4, 043503, 22 p. (2021; Zbl 1462.81086) Full Text: DOI OpenURL
Ding, Yanheng; Dong, Xiaojing Infinitely many solutions of Dirac equations with concave and convex nonlinearities. (English) Zbl 1481.35349 Z. Angew. Math. Phys. 72, No. 1, Paper No. 39, 17 p. (2021). MSC: 35Q40 35Q41 49J35 35B38 35A01 81V80 PDF BibTeX XML Cite \textit{Y. Ding} and \textit{X. Dong}, Z. Angew. Math. Phys. 72, No. 1, Paper No. 39, 17 p. (2021; Zbl 1481.35349) Full Text: DOI OpenURL
Liang, Jinhao Large coupling asymptotics for the Lyapunov exponent of finitely smooth quasi-periodic Schrödinger operators. (English) Zbl 1473.37042 Nonlinearity 34, No. 4, 2116-2154 (2021). Reviewer: Nicolae Lupa (Timişoara) MSC: 37D25 39A70 34L40 PDF BibTeX XML Cite \textit{J. Liang}, Nonlinearity 34, No. 4, 2116--2154 (2021; Zbl 1473.37042) Full Text: DOI OpenURL
Bégout, Pascal; Schindler, Ian On a stationary Schrödinger equation with periodic magnetic potential. (English) Zbl 1460.35316 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 72, 32 p. (2021). MSC: 35Q55 35A01 35D30 PDF BibTeX XML Cite \textit{P. Bégout} and \textit{I. Schindler}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 72, 32 p. (2021; Zbl 1460.35316) Full Text: DOI arXiv OpenURL
Hairer, Martin; Pardoux, Étienne Fluctuations around a homogenised semilinear random PDE. (English) Zbl 1456.35243 Arch. Ration. Mech. Anal. 239, No. 1, 151-217 (2021). MSC: 35R60 35B27 35K20 35K58 60H05 PDF BibTeX XML Cite \textit{M. Hairer} and \textit{É. Pardoux}, Arch. Ration. Mech. Anal. 239, No. 1, 151--217 (2021; Zbl 1456.35243) Full Text: DOI arXiv OpenURL
Dinh, Van Duong Existence, non-existence and blow-up behaviour of minimizers for the mass-critical fractional non-linear Schrödinger equations with periodic potentials. (English) Zbl 1459.35376 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3252-3292 (2020). MSC: 35R11 35A15 35B44 35J61 35Q55 PDF BibTeX XML Cite \textit{V. D. Dinh}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3252--3292 (2020; Zbl 1459.35376) Full Text: DOI arXiv OpenURL
Danilov, Leonid Ivanovich On the spectrum of a Landau Hamiltonian with a periodic electric potential \(V\in L^p_{\text{loc}}(\mathbb{R}^2)\), \(p>1\). (Russian. English summary) Zbl 1458.35283 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 55, 42-59 (2020). MSC: 35P05 35J10 PDF BibTeX XML Cite \textit{L. I. Danilov}, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 55, 42--59 (2020; Zbl 1458.35283) Full Text: DOI MNR OpenURL
Bountis, Anastasios; Kaloudis, Konstantinos; Oikonomou, Thomas; Manda, Bertin Many; Skokos, Charalampos Stability properties of 1-dimensional Hamiltonian lattices with nonanalytic potentials. (English) Zbl 1465.37084 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 15, Article ID 2030047, 19 p. (2020). Reviewer: Utkir A. Rozikov (Tashkent) MSC: 37K60 37K45 37J25 37J46 PDF BibTeX XML Cite \textit{A. Bountis} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 15, Article ID 2030047, 19 p. (2020; Zbl 1465.37084) Full Text: DOI arXiv OpenURL
Lyu, Wenyang; Naik, Shibabrat; Wiggins, Stephen The role of depth and flatness of a potential energy surface in chemical reaction dynamics. (English) Zbl 1465.37070 Regul. Chaotic Dyn. 25, No. 5, 453-475 (2020). Reviewer: Dieter Erle (Dortmund) MSC: 37J39 37J20 37G05 53Z15 80A32 92E20 PDF BibTeX XML Cite \textit{W. Lyu} et al., Regul. Chaotic Dyn. 25, No. 5, 453--475 (2020; Zbl 1465.37070) Full Text: DOI arXiv OpenURL
Ferdousi, Mariya; Babaie-Janvier, T.; Robinson, P. A. Nonlinear wave-wave interactions in the brain. (English) Zbl 1455.92005 J. Theor. Biol. 500, Article ID 110308, 17 p. (2020). MSC: 92B20 92C55 PDF BibTeX XML Cite \textit{M. Ferdousi} et al., J. Theor. Biol. 500, Article ID 110308, 17 p. (2020; Zbl 1455.92005) Full Text: DOI Link OpenURL
Beklaryan, L. A.; Beklaryan, A. L. On the existence of periodic and bounded solutions for functional differential equations of pointwise type with a strongly nonlinear right-hand side. (English) Zbl 1464.34090 Lobachevskii J. Math. 41, No. 11, 2136-2142 (2020). Reviewer: Yingxin Guo (Qufu) MSC: 34K13 34K12 34K04 PDF BibTeX XML Cite \textit{L. A. Beklaryan} and \textit{A. L. Beklaryan}, Lobachevskii J. Math. 41, No. 11, 2136--2142 (2020; Zbl 1464.34090) Full Text: DOI OpenURL
Ait Mahiout, Latifa; Panasenko, Grigory; Volpert, Vitaly Homogenization of the diffusion equation with a singular potential for a model of a biological cell network. (English) Zbl 1454.35016 Z. Angew. Math. Phys. 71, No. 6, Paper No. 181, 19 p. (2020). Reviewer: Adrian Muntean (Karlstad) MSC: 35B27 92B05 35K15 PDF BibTeX XML Cite \textit{L. Ait Mahiout} et al., Z. Angew. Math. Phys. 71, No. 6, Paper No. 181, 19 p. (2020; Zbl 1454.35016) Full Text: DOI OpenURL
Solekhudin, Imam Boundary interface water infiltration into layered soils using dual reciprocity methods. (English) Zbl 1464.76199 Eng. Anal. Bound. Elem. 119, 280-292 (2020). MSC: 76S05 76M15 PDF BibTeX XML Cite \textit{I. Solekhudin}, Eng. Anal. Bound. Elem. 119, 280--292 (2020; Zbl 1464.76199) Full Text: DOI OpenURL
Guo, Yongfeng; Lou, Xiaojuan; Dong, Qiang; Wang, Linjie Dynamic characteristics of periodic potential system driven by correlated noise and periodic signal. (Chinese. English summary) Zbl 1474.93107 J. Anhui Univ., Nat. Sci. 44, No. 1, 7-13 (2020). MSC: 93B99 65L06 PDF BibTeX XML Cite \textit{Y. Guo} et al., J. Anhui Univ., Nat. Sci. 44, No. 1, 7--13 (2020; Zbl 1474.93107) Full Text: DOI OpenURL
Fenucci, Marco; Jorba, Àngel Braids with the symmetries of Platonic polyhedra in the Coulomb (N+1)-body problem. (English) Zbl 1465.70047 Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105105, 12 p. (2020). MSC: 70F10 34C25 37N20 65L07 PDF BibTeX XML Cite \textit{M. Fenucci} and \textit{À. Jorba}, Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105105, 12 p. (2020; Zbl 1465.70047) Full Text: DOI arXiv OpenURL
Li, Gui-Dong; Li, Yong-Yong; Tang, Chun-Lei A positive solution of asymptotically periodic Schrödinger equations with local superlinear nonlinearities. (English) Zbl 1463.35245 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 30, 15 p. (2020). MSC: 35J50 35A01 35B09 35D30 PDF BibTeX XML Cite \textit{G.-D. Li} et al., Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 30, 15 p. (2020; Zbl 1463.35245) Full Text: DOI OpenURL
Zhang, Liang; Chen, Guanwei Infinitely many homoclinic solutions for perturbed second-order Hamiltonian systems with subquadratic potentials. (English) Zbl 1463.34168 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 9, 23 p. (2020). MSC: 34C37 34C14 34E10 37J46 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{G. Chen}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 9, 23 p. (2020; Zbl 1463.34168) Full Text: DOI OpenURL
Katsanikas, Matthaios; García-Garrido, Víctor J.; Wiggins, S. Detection of dynamical matching in a Caldera Hamiltonian system using Lagrangian descriptors. (English) Zbl 1460.37076 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2030026, 16 p. (2020). MSC: 37M21 37M15 37C27 37D10 65P10 PDF BibTeX XML Cite \textit{M. Katsanikas} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2030026, 16 p. (2020; Zbl 1460.37076) Full Text: DOI arXiv OpenURL
Daneri, Sara; Runa, Eris Pattern formation for a local/nonlocal interaction functional arising in colloidal systems. (English) Zbl 1456.82210 SIAM J. Math. Anal. 52, No. 3, 2531-2560 (2020). Reviewer: Nasir N. Ganikhodjaev (Tashkent) MSC: 82B21 49N20 49S05 PDF BibTeX XML Cite \textit{S. Daneri} and \textit{E. Runa}, SIAM J. Math. Anal. 52, No. 3, 2531--2560 (2020; Zbl 1456.82210) Full Text: DOI arXiv OpenURL
Ureña, Antonio J. To what extent are unstable the maxima of the potential? (English) Zbl 1453.37055 Ann. Mat. Pura Appl. (4) 199, No. 5, 1763-1775 (2020). Reviewer: Cristian Lăzureanu (Timisoara) MSC: 37J25 37J12 37J46 70H14 70K20 70H12 70K42 PDF BibTeX XML Cite \textit{A. J. Ureña}, Ann. Mat. Pura Appl. (4) 199, No. 5, 1763--1775 (2020; Zbl 1453.37055) Full Text: DOI OpenURL
Karabut, E. A.; Zhuravleva, E. N. Construction of exact solutions of the problem of the motion of a fluid with a free boundary using infinite systems of differential equations. (English. Russian original) Zbl 1456.76017 Theor. Math. Phys. 202, No. 3, 371-380 (2020); translation from Teor. Mat. Fiz. 202, No. 3, 425-436 (2020). MSC: 76B07 76M40 PDF BibTeX XML Cite \textit{E. A. Karabut} and \textit{E. N. Zhuravleva}, Theor. Math. Phys. 202, No. 3, 371--380 (2020; Zbl 1456.76017); translation from Teor. Mat. Fiz. 202, No. 3, 425--436 (2020) Full Text: DOI OpenURL
Danilov, L. I. Spectrum of the Landau Hamiltonian with a periodic electric potential. (English. Russian original) Zbl 1445.81023 Theor. Math. Phys. 202, No. 1, 41-57 (2020); translation from Teor. Mat. Fiz. 202, No. 1, 47-65 (2020). MSC: 81Q10 81V10 35P05 PDF BibTeX XML Cite \textit{L. I. Danilov}, Theor. Math. Phys. 202, No. 1, 41--57 (2020; Zbl 1445.81023); translation from Teor. Mat. Fiz. 202, No. 1, 47--65 (2020) Full Text: DOI OpenURL
Ignat, Radu; Monteil, Antonin A De Giorgi-type conjecture for minimal solutions to a nonlinear Stokes equation. (English) Zbl 1441.35008 Commun. Pure Appl. Math. 73, No. 4, 771-854 (2020). MSC: 35A15 35Q35 35J20 PDF BibTeX XML Cite \textit{R. Ignat} and \textit{A. Monteil}, Commun. Pure Appl. Math. 73, No. 4, 771--854 (2020; Zbl 1441.35008) Full Text: DOI arXiv OpenURL
Liu, Bo Wen Homographic solutions of the \(N\)-body generalized Lennard-Jones system. (English) Zbl 1473.70024 Acta Math. Sin., Engl. Ser. 36, No. 5, 597-604 (2020). MSC: 70F10 70H12 82C22 34C25 PDF BibTeX XML Cite \textit{B. W. Liu}, Acta Math. Sin., Engl. Ser. 36, No. 5, 597--604 (2020; Zbl 1473.70024) Full Text: DOI arXiv OpenURL
Canevari, Giacomo; Zarnescu, Arghir Design of effective bulk potentials for nematic liquid crystals via colloidal homogenisation. (English) Zbl 1440.35097 Math. Models Methods Appl. Sci. 30, No. 2, 309-342 (2020). MSC: 35J50 35B27 76M50 76A15 PDF BibTeX XML Cite \textit{G. Canevari} and \textit{A. Zarnescu}, Math. Models Methods Appl. Sci. 30, No. 2, 309--342 (2020; Zbl 1440.35097) Full Text: DOI arXiv OpenURL
Damanik, David; Gan, Zheng; Krüger, Helge Limit-periodic Schrödinger operators with a discontinuous Lyapunov exponent. (English) Zbl 1448.35343 J. Funct. Anal. 279, No. 4, Article ID 108565, 15 p. (2020). MSC: 35P05 47B36 37D25 47A10 47A35 PDF BibTeX XML Cite \textit{D. Damanik} et al., J. Funct. Anal. 279, No. 4, Article ID 108565, 15 p. (2020; Zbl 1448.35343) Full Text: DOI OpenURL
Korotyaev, Evgeny; Saburova, Natalia Invariants for Laplacians on periodic graphs. (English) Zbl 1454.47038 Math. Ann. 377, No. 1-2, 723-758 (2020). Reviewer: Sarah Eberle (Frankfurt am Main) MSC: 47B36 05C63 31C20 47A10 PDF BibTeX XML Cite \textit{E. Korotyaev} and \textit{N. Saburova}, Math. Ann. 377, No. 1--2, 723--758 (2020; Zbl 1454.47038) Full Text: DOI arXiv OpenURL
Li, Jing Reducibility for Schrödinger operator with finite smooth and time-quasi-periodic potential. (English) Zbl 1440.35222 Chin. Ann. Math., Ser. B 41, No. 3, 419-440 (2020). Reviewer: Michael Perelmuter (Kyïv) MSC: 35P05 37K55 81Q15 PDF BibTeX XML Cite \textit{J. Li}, Chin. Ann. Math., Ser. B 41, No. 3, 419--440 (2020; Zbl 1440.35222) Full Text: DOI arXiv OpenURL
Schwetlick, Hartmut; Sutton, Daniel C.; Zimmer, Johannes Effective Hamiltonian dynamics via the Maupertuis principle. (English) Zbl 1434.70041 Discrete Contin. Dyn. Syst., Ser. S 13, No. 4, 1395-1410 (2020). MSC: 70H05 37J46 70H25 35B27 PDF BibTeX XML Cite \textit{H. Schwetlick} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 4, 1395--1410 (2020; Zbl 1434.70041) Full Text: DOI arXiv OpenURL
Wang, Jun; Zhao, Tingting; Xiao, Lu Existence and asymptotical behavior of the minimizer of Hartree type equation with periodic potentials. (English) Zbl 1439.35448 Complex Var. Elliptic Equ. 65, No. 5, 740-764 (2020). Reviewer: Huansong Zhou (Wuhan) MSC: 35Q55 35J61 35J20 35Q60 49J40 35B32 35A01 35B40 35R09 90C30 PDF BibTeX XML Cite \textit{J. Wang} et al., Complex Var. Elliptic Equ. 65, No. 5, 740--764 (2020; Zbl 1439.35448) Full Text: DOI OpenURL
Bordag, M. On Bose-Einstein condensation in one-dimensional lattices of delta functions. (English) Zbl 1430.81072 Mod. Phys. Lett. A 35, No. 3, Article ID 2040005, 8 p. (2020). MSC: 81T55 82C10 PDF BibTeX XML Cite \textit{M. Bordag}, Mod. Phys. Lett. A 35, No. 3, Article ID 2040005, 8 p. (2020; Zbl 1430.81072) Full Text: DOI OpenURL
Gu, Long-Jiang Multiple solutions for a Choquard system with periodic potential. (English) Zbl 1433.35057 J. Math. Anal. Appl. 484, No. 1, Article ID 123704, 23 p. (2020). MSC: 35J47 35J61 PDF BibTeX XML Cite \textit{L.-J. Gu}, J. Math. Anal. Appl. 484, No. 1, Article ID 123704, 23 p. (2020; Zbl 1433.35057) Full Text: DOI OpenURL
Kosygina, Elena; Yilmaz, Atilla; Zeitouni, Ofer Homogenization of a class of one-dimensional nonconvex viscous Hamilton-Jacobi equations with random potential. (English) Zbl 1437.35046 Commun. Partial Differ. Equations 45, No. 1, 32-56 (2020). MSC: 35B27 35F21 60K37 93E20 PDF BibTeX XML Cite \textit{E. Kosygina} et al., Commun. Partial Differ. Equations 45, No. 1, 32--56 (2020; Zbl 1437.35046) Full Text: DOI arXiv OpenURL
Shi, Xiao-Yang; Zhang, Jia-Ming; Bao, Jing-Dong Can quantum fluctuation enhance diffusion in a corrugated plane? (English) Zbl 07568312 Physica A 527, Article ID 121289, 11 p. (2019). MSC: 82-XX PDF BibTeX XML Cite \textit{X.-Y. Shi} et al., Physica A 527, Article ID 121289, 11 p. (2019; Zbl 07568312) Full Text: DOI OpenURL
Chen, Ruyin; Lv, Xiaona Anomalous transports in a space-time inseparable system. (English) Zbl 07562378 Physica A 514, 336-344 (2019). MSC: 82-XX PDF BibTeX XML Cite \textit{R. Chen} and \textit{X. Lv}, Physica A 514, 336--344 (2019; Zbl 07562378) Full Text: DOI OpenURL
Heberling, Tamra; Davis, Lisa; Gedeon, Tomas Approximation of the mean escape time for a tilted periodic potential. (English) Zbl 1481.60169 Commun. Comput. Phys. 25, No. 1, 1-40 (2019). MSC: 60J70 60H35 60J65 35R60 PDF BibTeX XML Cite \textit{T. Heberling} et al., Commun. Comput. Phys. 25, No. 1, 1--40 (2019; Zbl 1481.60169) Full Text: DOI OpenURL
Nechayeva, Marina; Randol, Burton Stable configurations of repelling points on flat tori. (English) Zbl 1474.43013 Unif. Distrib. Theory 14, No. 2, 87-102 (2019). MSC: 43A85 31C12 37A46 37C25 PDF BibTeX XML Cite \textit{M. Nechayeva} and \textit{B. Randol}, Unif. Distrib. Theory 14, No. 2, 87--102 (2019; Zbl 1474.43013) Full Text: DOI OpenURL
Danilov, Leonid Ivanovich On the spectrum of a relativistic Landau Hamiltonian with a periodic electric potential. (Russian. English summary) Zbl 1452.35121 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 54, 3-26 (2019). MSC: 35P05 35Q41 PDF BibTeX XML Cite \textit{L. I. Danilov}, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 54, 3--26 (2019; Zbl 1452.35121) Full Text: DOI MNR OpenURL
Iñarrea, Manuel; Lanchares, Víctor; Palacián, Jesús F.; Pascual, Ana I.; Salas, J. Pablo; Yanguas, Patricia Effects of a soft-core Coulomb potential on the dynamics of a Hydrogen atom near a metal surface. (English) Zbl 07263921 Commun. Nonlinear Sci. Numer. Simul. 68, 94-105 (2019). MSC: 37Jxx PDF BibTeX XML Cite \textit{M. Iñarrea} et al., Commun. Nonlinear Sci. Numer. Simul. 68, 94--105 (2019; Zbl 07263921) Full Text: DOI Link OpenURL
Dondl, Patrick; Frenzel, Thomas; Mielke, Alexander A gradient system with a wiggly energy and relaxed EDP-convergence. (English) Zbl 1444.35101 ESAIM, Control Optim. Calc. Var. 25, Paper No. 68, 45 p. (2019). MSC: 35K55 35B27 35A15 49S05 49J40 49J45 PDF BibTeX XML Cite \textit{P. Dondl} et al., ESAIM, Control Optim. Calc. Var. 25, Paper No. 68, 45 p. (2019; Zbl 1444.35101) Full Text: DOI arXiv OpenURL
Kholshevnikov, K. V. Geometry of the Huygens-Roche figure. (English. Russian original) Zbl 1465.70050 Vestn. St. Petersbg. Univ., Math. 52, No. 1, 122-126 (2019); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 6(64), No. 1, 170-176 (2019). MSC: 70F15 70K42 85A15 PDF BibTeX XML Cite \textit{K. V. Kholshevnikov}, Vestn. St. Petersbg. Univ., Math. 52, No. 1, 122--126 (2019; Zbl 1465.70050); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 6(64), No. 1, 170--176 (2019) Full Text: DOI OpenURL
Adachi, Tadayoshi; Kiyose, Amane On the Mourre estimates for Floquet Hamiltonians. (English) Zbl 1428.81128 Lett. Math. Phys. 109, No. 11, 2513-2529 (2019). MSC: 81U05 81Q10 35Q41 PDF BibTeX XML Cite \textit{T. Adachi} and \textit{A. Kiyose}, Lett. Math. Phys. 109, No. 11, 2513--2529 (2019; Zbl 1428.81128) Full Text: DOI arXiv Link OpenURL
Li, Haitao; Ding, Hu; Chen, Liqun Chaos threshold of a multistable piezoelectric energy harvester subjected to wake-galloping. (English) Zbl 1432.70041 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 12, Article ID 1950162, 13 p. (2019). MSC: 70K55 74F15 37D45 37G15 PDF BibTeX XML Cite \textit{H. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 12, Article ID 1950162, 13 p. (2019; Zbl 1432.70041) Full Text: DOI OpenURL
Ortega, Rafael; Rojas, David A proof of Bertrand’s theorem using the theory of isochronous potentials. (English) Zbl 1481.34046 J. Dyn. Differ. Equations 31, No. 4, 2017-2028 (2019). Reviewer: Kwok-wai Chung (Hong Kong) MSC: 34C11 34C25 70K40 PDF BibTeX XML Cite \textit{R. Ortega} and \textit{D. Rojas}, J. Dyn. Differ. Equations 31, No. 4, 2017--2028 (2019; Zbl 1481.34046) Full Text: DOI arXiv Link OpenURL
Kesmia, Mounira; Boughaba, Soraya; Jacquir, Sabir Control of periodic dynamics of nonlinear and chaotic discrete dynamical systems. (English) Zbl 1425.92051 Comput. Appl. Math. 38, No. 4, Paper No. 187, 21 p. (2019). MSC: 92C30 34H10 34C28 34C25 PDF BibTeX XML Cite \textit{M. Kesmia} et al., Comput. Appl. Math. 38, No. 4, Paper No. 187, 21 p. (2019; Zbl 1425.92051) Full Text: DOI OpenURL
Ji, Chao Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term. (English) Zbl 1427.35053 Discrete Contin. Dyn. Syst., Ser. B 24, No. 11, 6071-6089 (2019). MSC: 35J60 35R11 47J30 PDF BibTeX XML Cite \textit{C. Ji}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 11, 6071--6089 (2019; Zbl 1427.35053) Full Text: DOI arXiv OpenURL
Yu, Mingzhu; Chen, Haibo Non-trivial solutions of fractional Schrödinger-Poisson systems with sum of periodic and vanishing potentials. (English) Zbl 1423.35422 Electron. J. Differ. Equ. 2019, Paper No. 102, 16 p. (2019). MSC: 35R11 35B38 PDF BibTeX XML Cite \textit{M. Yu} and \textit{H. Chen}, Electron. J. Differ. Equ. 2019, Paper No. 102, 16 p. (2019; Zbl 1423.35422) Full Text: Link OpenURL
Petrúcio Cavalcante, Marcius; Alves, Claudianor O.; Medeiros, Everaldo A semilinear Schrödinger equation with zero on the boundary of the spectrum and exponential growth in \(\mathbb{R}^2\). (English) Zbl 1429.35088 Commun. Contemp. Math. 21, No. 6, Article ID 1850037, 21 p. (2019). Reviewer: Dian K. Palagachev (Bari) MSC: 35J60 35J20 35Q55 PDF BibTeX XML Cite \textit{M. Petrúcio Cavalcante} et al., Commun. Contemp. Math. 21, No. 6, Article ID 1850037, 21 p. (2019; Zbl 1429.35088) Full Text: DOI OpenURL
Lin, Xiaoyan; Tang, Xianhua Solutions of nonlinear periodic Dirac equations with periodic potentials. (English) Zbl 1425.35049 Discrete Contin. Dyn. Syst., Ser. S 12, No. 7, 2051-2061 (2019). MSC: 35J61 35Q55 PDF BibTeX XML Cite \textit{X. Lin} and \textit{X. Tang}, Discrete Contin. Dyn. Syst., Ser. S 12, No. 7, 2051--2061 (2019; Zbl 1425.35049) Full Text: DOI OpenURL
Franzoi, L.; Maspero, A. Reducibility for a fast-driven linear Klein-Gordon Equation. (English) Zbl 1416.35152 Ann. Mat. Pura Appl. (4) 198, No. 4, 1407-1439 (2019). MSC: 35L20 35L10 37K55 35B15 PDF BibTeX XML Cite \textit{L. Franzoi} and \textit{A. Maspero}, Ann. Mat. Pura Appl. (4) 198, No. 4, 1407--1439 (2019; Zbl 1416.35152) Full Text: DOI arXiv OpenURL
Collet, Francesca; Formentin, Marco Effects of local fields in a dissipative Curie-Weiss model: Bautin bifurcation and large self-sustained oscillations. (English) Zbl 1420.82012 J. Stat. Phys. 176, No. 2, 478-491 (2019). MSC: 82C31 82C44 60H15 37G15 34C23 PDF BibTeX XML Cite \textit{F. Collet} and \textit{M. Formentin}, J. Stat. Phys. 176, No. 2, 478--491 (2019; Zbl 1420.82012) Full Text: DOI arXiv OpenURL
Fedotov, A. A. On minimal entire solutions of the one-dimensional difference Schrödinger equation with the potential \(v(z) = e^{-2\pi iz}\). (English. Russian original) Zbl 1480.39015 J. Math. Sci., New York 238, No. 5, 750-761 (2019); translation from Zap. Nauchn. Semin. POMI 461, 279-297 (2017). Reviewer: Molyboga Volodymyr (Kyiv) MSC: 39A45 39A12 39A22 34L40 PDF BibTeX XML Cite \textit{A. A. Fedotov}, J. Math. Sci., New York 238, No. 5, 750--761 (2019; Zbl 1480.39015); translation from Zap. Nauchn. Semin. POMI 461, 279--297 (2017) Full Text: DOI OpenURL
Kawamoto, Masaki Mourre theory for time-periodic magnetic fields. (English) Zbl 1433.35323 J. Funct. Anal. 277, No. 1, 1-30 (2019). MSC: 35Q41 35P25 47A40 81U05 PDF BibTeX XML Cite \textit{M. Kawamoto}, J. Funct. Anal. 277, No. 1, 1--30 (2019; Zbl 1433.35323) Full Text: DOI arXiv OpenURL
Cao, Rui; Zhao, Qiulan; Gao, Lin Bilinear approach to soliton and periodic wave solutions of two nonlinear evolution equations of mathematical physics. (English) Zbl 1459.35326 Adv. Difference Equ. 2019, Paper No. 156, 10 p. (2019). MSC: 35Q51 37K10 37K40 35C07 35C08 PDF BibTeX XML Cite \textit{R. Cao} et al., Adv. Difference Equ. 2019, Paper No. 156, 10 p. (2019; Zbl 1459.35326) Full Text: DOI OpenURL
Bieganowski, Bartosz Systems of coupled Schrödinger equations with sign-changing nonlinearities via classical Nehari manifold approach. (English) Zbl 1416.35235 Complex Var. Elliptic Equ. 64, No. 7, 1237-1256 (2019). MSC: 35Q55 35Q60 35J20 58E05 35J47 PDF BibTeX XML Cite \textit{B. Bieganowski}, Complex Var. Elliptic Equ. 64, No. 7, 1237--1256 (2019; Zbl 1416.35235) Full Text: DOI arXiv OpenURL
Kesmia, M.; Boughaba, S.; Jacquir, S. Nonlinear dynamics of two-dimensional cardiac action potential duration mapping model with memory. (English) Zbl 1415.37108 J. Math. Biol. 78, No. 5, 1529-1552 (2019). MSC: 37N25 92C50 92B25 93C10 93C55 PDF BibTeX XML Cite \textit{M. Kesmia} et al., J. Math. Biol. 78, No. 5, 1529--1552 (2019; Zbl 1415.37108) Full Text: DOI OpenURL
Katsanikas, Matthaios; Wiggins, Stephen Phase space analysis of the nonexistence of dynamical matching in a stretched caldera potential energy surface. (English) Zbl 1412.34159 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 4, Article ID 1950057, 9 p. (2019). MSC: 34C60 34C05 34C45 37J45 PDF BibTeX XML Cite \textit{M. Katsanikas} and \textit{S. Wiggins}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 4, Article ID 1950057, 9 p. (2019; Zbl 1412.34159) Full Text: DOI arXiv OpenURL
Parnovski, Leonid; Shterenberg, Roman Perturbation theory for almost-periodic potentials. I: One-dimensional case. (English) Zbl 1415.34131 Commun. Math. Phys. 366, No. 3, 1229-1257 (2019). Reviewer: Jiři Lipovský (Hradec Kralove) MSC: 34L40 34E05 34E10 34L05 PDF BibTeX XML Cite \textit{L. Parnovski} and \textit{R. Shterenberg}, Commun. Math. Phys. 366, No. 3, 1229--1257 (2019; Zbl 1415.34131) Full Text: DOI arXiv OpenURL
Barrera-Figueroa, Víctor; Rabinovich, Vladimir S.; Rosas, Miguel Maldonado Numerical estimates of the essential spectra of quantum graphs with delta-interactions at vertices. (English) Zbl 1412.81142 Appl. Anal. 98, No. 1-2, 458-482 (2019). MSC: 81Q35 34B45 34L16 81Q10 81U30 46F10 81T80 PDF BibTeX XML Cite \textit{V. Barrera-Figueroa} et al., Appl. Anal. 98, No. 1--2, 458--482 (2019; Zbl 1412.81142) Full Text: DOI OpenURL
Yilmaz, Atilla; Zeitouni, Ofer Nonconvex homogenization for one-dimensional controlled random walks in random potential. (English) Zbl 1415.60121 Ann. Appl. Probab. 29, No. 1, 36-88 (2019). MSC: 60K37 93E20 35B27 35F20 PDF BibTeX XML Cite \textit{A. Yilmaz} and \textit{O. Zeitouni}, Ann. Appl. Probab. 29, No. 1, 36--88 (2019; Zbl 1415.60121) Full Text: DOI arXiv Euclid OpenURL
Zheng, Guang-Hui Mathematical analysis of plasmonic resonance for 2-D photonic crystal. (English) Zbl 1410.35241 J. Differ. Equations 266, No. 8, 5095-5117 (2019). MSC: 35Q82 82D80 35B44 35J05 82D20 PDF BibTeX XML Cite \textit{G.-H. Zheng}, J. Differ. Equations 266, No. 8, 5095--5117 (2019; Zbl 1410.35241) Full Text: DOI arXiv OpenURL
Ackermann, Nils; Weth, Tobias Unstable normalized standing waves for the space periodic NLS. (English) Zbl 1405.35191 Anal. PDE 12, No. 5, 1177-1213 (2019). MSC: 35Q55 35J91 35J20 PDF BibTeX XML Cite \textit{N. Ackermann} and \textit{T. Weth}, Anal. PDE 12, No. 5, 1177--1213 (2019; Zbl 1405.35191) Full Text: DOI arXiv OpenURL
Chen, Yong; Yan, Zhenya; Li, Xin One- and two-dimensional gap solitons and dynamics in the \(\mathcal{PT}\)-symmetric lattice potential and spatially-periodic momentum modulation. (English) Zbl 07262144 Commun. Nonlinear Sci. Numer. Simul. 55, 287-297 (2018). MSC: 78-XX 37-XX PDF BibTeX XML Cite \textit{Y. Chen} et al., Commun. Nonlinear Sci. Numer. Simul. 55, 287--297 (2018; Zbl 07262144) Full Text: DOI OpenURL
Dinh, Tien-Cuong Pluripotential theory and complex dynamics in higher dimension. (English) Zbl 1447.32051 Sirakov, Boyan (ed.) et al., Proceedings of the international congress of mathematicians 2018, ICM 2018, Rio de Janeiro, Brazil, August 1–9, 2018. Volume III. Invited lectures. Hackensack, NJ: World Scientific; Rio de Janeiro: Sociedade Brasileira de Matemática (SBM). 1561-1581 (2018). MSC: 32Uxx 37F10 37F75 PDF BibTeX XML Cite \textit{T.-C. Dinh}, in: Proceedings of the international congress of mathematicians 2018, ICM 2018, Rio de Janeiro, Brazil, August 1--9, 2018. Volume III. Invited lectures. Hackensack, NJ: World Scientific; Rio de Janeiro: Sociedade Brasileira de Matemática (SBM). 1561--1581 (2018; Zbl 1447.32051) Full Text: DOI OpenURL
Rachid, Assel Absolute continuity of the magnetic Schrödinger operator with periodic potential. (English) Zbl 1428.35242 Korean J. Math. 26, No. 4, 601-614 (2018). Reviewer: Michael Perelmuter (Kyïv) MSC: 35P05 35J10 81Q10 PDF BibTeX XML Cite \textit{A. Rachid}, Korean J. Math. 26, No. 4, 601--614 (2018; Zbl 1428.35242) Full Text: DOI OpenURL
Moradian, A.; Alvand, M. Overdamped non-contact rectifiers. (English) Zbl 1423.82053 Int. J. Mod. Phys. B 32, No. 20, Article ID 1850219, 13 p. (2018). MSC: 82D80 94A12 PDF BibTeX XML Cite \textit{A. Moradian} and \textit{M. Alvand}, Int. J. Mod. Phys. B 32, No. 20, Article ID 1850219, 13 p. (2018; Zbl 1423.82053) Full Text: DOI OpenURL
Danilov, Leonid Ivanovich On the spectrum of a two-dimensional Schrödinger operator with a homogeneous magnetic field and a periodic electric potential. (Russian. English summary) Zbl 1423.35262 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 51, 3-41 (2018). MSC: 35P05 35J10 35Q40 81Q10 PDF BibTeX XML Cite \textit{L. I. Danilov}, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 51, 3--41 (2018; Zbl 1423.35262) Full Text: DOI MNR OpenURL
Bartkowiak, René; Woernle, Christoph Synthesis of oscillators for exact desired periodic solutions having a finite number of harmonics. (English) Zbl 1422.34137 Nonlinear Dyn. 94, No. 4, 2335-2346 (2018). MSC: 34C25 PDF BibTeX XML Cite \textit{R. Bartkowiak} and \textit{C. Woernle}, Nonlinear Dyn. 94, No. 4, 2335--2346 (2018; Zbl 1422.34137) Full Text: DOI OpenURL
Wang, Zaihong; Ma, Tiantian A continuation lemma and the existence of periodic solutions of perturbed planar Hamiltonian systems with sub-quadratic potentials. (English) Zbl 1419.34134 Topol. Methods Nonlinear Anal. 52, No. 2, 693-706 (2018). Reviewer: Alessandro Fonda (Trieste) MSC: 34C25 47N20 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{T. Ma}, Topol. Methods Nonlinear Anal. 52, No. 2, 693--706 (2018; Zbl 1419.34134) Full Text: DOI Euclid OpenURL
Paşca, Daniel; Tătaru, Bogdan Mircea Periodic orbits of the three dimensional logarithm galactic potential. (English) Zbl 1412.34141 Bull. Belg. Math. Soc. - Simon Stevin 25, No. 4, 611-627 (2018). Reviewer: Adriana Buică (Cluj-Napoca) MSC: 34C25 34C29 37J45 PDF BibTeX XML Cite \textit{D. Paşca} and \textit{B. M. Tătaru}, Bull. Belg. Math. Soc. - Simon Stevin 25, No. 4, 611--627 (2018; Zbl 1412.34141) Full Text: Euclid OpenURL
Erfanian, Majid The approximate solution of nonlinear mixed Volterra-Fredholm-Hammerstein integral equations with RH wavelet bases in a complex plane. (English) Zbl 1406.45001 Math. Methods Appl. Sci. 41, No. 18, 8942-8952 (2018). MSC: 45D05 65R20 65T60 65E05 37C25 PDF BibTeX XML Cite \textit{M. Erfanian}, Math. Methods Appl. Sci. 41, No. 18, 8942--8952 (2018; Zbl 1406.45001) Full Text: DOI OpenURL
Corbera, Motserrat; Llibre, Jaume; Valls, Claudia Periodic orbits of perturbed non-axially symmetric potentials in \(1:1:1\) and \(1:1:2\) resonances. (English) Zbl 1403.37070 Discrete Contin. Dyn. Syst., Ser. B 23, No. 6, 2299-2337 (2018). MSC: 37J45 34C25 37C10 34C29 37N05 PDF BibTeX XML Cite \textit{M. Corbera} et al., Discrete Contin. Dyn. Syst., Ser. B 23, No. 6, 2299--2337 (2018; Zbl 1403.37070) Full Text: DOI OpenURL
Montecchiari, Piero; Rabinowitz, Paul H. Solutions of mountain pass type for double well potential systems. (English) Zbl 1405.37072 Calc. Var. Partial Differ. Equ. 57, No. 5, Paper No. 114, 31 p. (2018). MSC: 37J45 34A34 34C37 49J35 58E05 PDF BibTeX XML Cite \textit{P. Montecchiari} and \textit{P. H. Rabinowitz}, Calc. Var. Partial Differ. Equ. 57, No. 5, Paper No. 114, 31 p. (2018; Zbl 1405.37072) Full Text: DOI OpenURL
Carpenter, Barry K.; Ezra, Gregory S.; Farantos, Stavros C.; Kramer, Zeb C.; Wiggins, Stephen Dynamics on the double Morse potential: a paradigm for roaming reactions with no saddle points. (English) Zbl 1398.37055 Regul. Chaotic Dyn. 23, No. 1, 60-79 (2018). MSC: 37J45 37J30 70H12 37N20 PDF BibTeX XML Cite \textit{B. K. Carpenter} et al., Regul. Chaotic Dyn. 23, No. 1, 60--79 (2018; Zbl 1398.37055) Full Text: DOI arXiv OpenURL