×

Reduced basis method for linear elasticity problems with many parameters. (English) Zbl 1194.74445

Summary: The reduced basis (RB) methods are proposed here for the solution of parametrized equations in linear elasticity problems. The fundamental idea underlying RB methods is to decouple the generation and projection stages (offline/online computational procedures) of the approximation process in order to solve parametrized equations in a rapid, inexpensive and reliable way.
The method allows important computational savings with respect to the classical Galerkin-finite element method, ill suited to a repetitive environment like the parametrized contexts of optimization, many queries and sensitivity analysis. We consider different parametrization for the systems: either physical quantities - to model the materials and loads - and geometrical parameters - to model different geometrical configurations. Then we describe three different applications of the method in problems with isotropic and orthotropic materials working in plane stress and plane strain approximation and subject to harmonic loads.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74B05 Classical linear elasticity

Software:

rbMIT
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Anagnostopoulos, K. A.; Charalambopoulos, A.; Massalas, C. V., On the investigation of elasticity equation for orthotropic materials and the solution of the associated scattering problem, Int. J. Solids Struct., 42, 6376-6408 (2005) · Zbl 1119.74447
[2] Ciarlet, P. G., Mathematical Elasticity, vols. I-II-III (1988), North-Holland: North-Holland Amsterdam
[3] Christensen, R. M., Mechanics of Composite Materials (1991), Krieger: Krieger Malabar, Florida
[4] Cristescu, N. D.; Craciun, E. M.; Soos, E., Mechanics of Elastic Composites (2004), Ed. Chapman & Hall/CRC: Ed. Chapman & Hall/CRC Boca Raton, Florida · Zbl 1044.74001
[5] Dautray, R.; Lions, J. L., Mathematical Analysis and Numerical Methods for Science and Technology, vol. I (2000), Springer: Springer Berlino
[6] Gould, P. L., Introduction to Linear Elasticity (1983), Springer-Verlag: Springer-Verlag New York, Berlin, Heidelberg, Tokyo · Zbl 0535.73021
[7] Grimvall, G., Thermophysical Properties of Materials (1999), North-Holland: North-Holland Amsterdam
[8] Hashin, Z., Analysis of composites materials, J. Appl. Mech., 50, 481-505 (1983) · Zbl 0542.73092
[9] Hashin, Z.; Shtrikman, S., A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, 11, 127-140 (1963) · Zbl 0108.36902
[10] Hyunh, D. B.P.; Patera, A. T., Reduced-basis approximation and a posteriori error estimation for stress intensity factors, Int. J. Numer. Meth. Engrg., 72, 10, 1219-1259 (2007) · Zbl 1194.74413
[11] Huynh, D. B.P.; Rozza, G.; Sen, S.; Patera, A. T., A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants, C.R. Acad. Sci. Paris, Anal. Numer., 345, 8, 473-478 (2007) · Zbl 1127.65086
[12] D.B.P. Hyunh, Reduced-Basis Approximation and Application to Fracture and Inverse Analysis, PhD Thesis, Singapore-MIT Alliance, National University of Singapore, 2007.; D.B.P. Hyunh, Reduced-Basis Approximation and Application to Fracture and Inverse Analysis, PhD Thesis, Singapore-MIT Alliance, National University of Singapore, 2007.
[13] Leipholz, H., Theory of Elasticity (1974), Noordhoff International Publishing: Noordhoff International Publishing Leyden · Zbl 0304.73001
[14] Leis, R., Initial Boundary Value Problems in Mathematical Physics (1996), John Wiley: John Wiley Neyork, B.G. Teubner, Stuttgart · Zbl 0414.73082
[15] Love, A. E.H., A Treatise on the Mathematical Theory of Elasticity (1944), Dover Publications: Dover Publications New York · Zbl 0063.03651
[16] Maday, Y.; Patera, A. T.; Turinici, G., A priori convergence theory for reduced-basis approximation of single-parameter symmetric coercive elliptic partial differential equations, J. Sci. Comput., 17, 1-4, 437-446 (2002) · Zbl 1014.65115
[17] Nagy, D. A., Modal representation of geometrically nonlinear behavior by the finite element method, Comput. Struct., 10, 683-688 (1978) · Zbl 0406.73071
[18] N.C. Nguyen, Reduced Basis Approximations and A Posteriori Error Bounds for Nonaffine and Nonlinear Partial Differential Equations: Application to Inverse Analysis, PhD Thesis, Singapore-MIT Alliance, 2005.; N.C. Nguyen, Reduced Basis Approximations and A Posteriori Error Bounds for Nonaffine and Nonlinear Partial Differential Equations: Application to Inverse Analysis, PhD Thesis, Singapore-MIT Alliance, 2005.
[19] Nguyen, N. C.; Veroy, K.; Patera, A. T., Certified Real-Time Solution of Parametrized Partial Differential Equations, (Yip, S., Handbook of Materials Modeling (2005), Springer: Springer New York), 1523-1558
[20] Noor, A. K.; Peters, J. M., Reduced basis technique for nonlinear analysis of structures, AIAA J., 18, 4, 455-462 (1980), (Article No. 79-0747R)
[21] Noor, A. K.; Peters, J. M., Tracing post-limit point paths with reduced basis technique, Comput. Methods Appl. Mech. Engrg., 28, 217-240 (1981) · Zbl 0466.73090
[22] Noor, A. K.; Peters, J. M., Bifurcation and post-buckling analysis of laminated composite plates via reduced basis technique, Comput. Methods Appl. Mech. Engrg., 29, 271-295 (1981) · Zbl 0474.73100
[23] Noor, A. K., On making large nonlinear problems small, Comput. Methods Appl. Mech. Engrg., 34, 955-985 (1981) · Zbl 0478.65031
[24] Patera, A. T.; Rønquist, E., Reduced basis approximation and a posteriori error estimation for a Boltzmann model, Comput. Methods Appl. Mech. Engrg., 196, 29-30, 2925-2942 (2007) · Zbl 1178.76236
[25] A.T. Patera, G. Rozza. Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized PDEs, MIT-Pappalardo Graduate Monographs in Mechanical Engineering Series, in progress. (c) MIT 2007-2008. <http://augustine.mit.edu/methodology/methodology_book.htm>.; A.T. Patera, G. Rozza. Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized PDEs, MIT-Pappalardo Graduate Monographs in Mechanical Engineering Series, in progress. (c) MIT 2007-2008. <http://augustine.mit.edu/methodology/methodology_book.htm>.
[26] Prud’homme, C.; Rovas, D. V.; Veroy, K.; Machiels, L.; Maday, Y.; Patera, A. T.; Turinici, G., Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods, J. Fluids Engrg., 124, 1, 70-80 (2002)
[27] Quarteroni, A.; Valli, A., Numerical Approximation of Partial Differential Equations (1994), Springer-Verlag: Springer-Verlag Berlin · Zbl 0852.76051
[28] Quarteroni, A.; Sacco, R.; Saleri, F., Numerical Mathematics (2006), Springer: Springer New York · Zbl 0913.65002
[29] Rozza, G., Reduced basis methods for elliptic equations in sub-domains with a posteriori error bounds and adaptivity, Appl. Numer. Math., 55, 4, 403-424 (2005) · Zbl 1112.65122
[30] Rozza, G.; Huynh, D. B.P.; Patera, A. T., Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Engrg., 15, 3 (2008) · Zbl 1304.65251
[31] Rozza, G.; Veroy, K., On the stability of reduced basis method for Stokes equations in parametrized domains, Comput. Methods Appl. Mech. Engrg., 196, 7, 1244-1260 (2007) · Zbl 1173.76352
[32] Sadd, M. H., Elasticity: Theory, Applications and Numerics (2005), Elsevier: Elsevier Boston
[33] Sokolnikoff, I. S., Mathematical Theory of Elasticity (1983), Krieger: Krieger Malabar, Florida · Zbl 0499.73006
[34] K. Veroy, Reduced-Basis Methods Applied to Problems in Elasticity: Analysis and Applications, PhD Thesis, MIT, 2003.; K. Veroy, Reduced-Basis Methods Applied to Problems in Elasticity: Analysis and Applications, PhD Thesis, MIT, 2003.
[35] K. Veroy, C. Prud’homme, D. Rovas, A.T. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. AIAA American Institute of Aeronautics and Astronatics, Paper 2003-3847, 2003.; K. Veroy, C. Prud’homme, D. Rovas, A.T. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. AIAA American Institute of Aeronautics and Astronatics, Paper 2003-3847, 2003.
[36] Washizu, K., Variational Methods in Elasticity and Plasticity (1982), Ed. Oxford: Pergamon Press · Zbl 0164.26001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.