×

Chaos oscillator differential search combined with Pontryagin’s minimum principle for simultaneous power management and component sizing of PHEVs. (English) Zbl 1364.74072

Summary: Over the past decade, plug-in hybrid electric vehicles (PHEVs) have found a good reputation in the automotive industry due to the fact that they neatly satisfy the existing tight environmental regulations and fuel economy requirements. Recently, there has been more interest in the design optimization of the PHEV powertrains to improve their operational characteristics to the maximum possible extent. The PHEV powertrains are complicated systems and include different controllers and components which should operate corporately to guarantee the acceptable performance of the vehicle. The reported investigations indicate that improving the performance of PHEVs is a very arduous task because both control strategies and component sizes should be optimized in tandem; however, in most of the previous studies, the focus has been on improving one of the above-mentioned aspects, which does not result in the most efficient design. The main goal of the current study is to take advantage of a bi-level optimization framework which combines the optimizations of both powertrain component sizes and power management controller for a specific PHEV, namely 2012 Toyota plug-in Prius. The bi-level optimizer comprises a chaos-enhanced differential evolutionary algorithm, which is in charge of the component sizing, and a classical optimal control approach based on the Pontryagin’s minimum principle, which optimizes the vehicle power management strategy. A high-fidelity model of the vehicle is developed in the Autonomie software. This high-fidelity model is used to identify the parameters of a reduced model representing the vehicle dynamics by means of the homotopy analysis method, and the resulting model is then employed for the optimization procedure. The results of the numerical experiments indicate that by considering both component sizing and control strategy optimization, a very powerful tool is developed which can significantly improve the total fuel cost (\(F_C\)), acceleration time (\(T_{acc}\)), and battery state of charge (SOC) trajectory of the vehicle.

MSC:

74P10 Optimization of other properties in solid mechanics
37N15 Dynamical systems in solid mechanics
65K05 Numerical mathematical programming methods

Software:

JADE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Caponetto R, Fortuna L, Fazzino S, Xibilia MG (2003) Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans Evol Comput 7(3):289-304 · doi:10.1109/TEVC.2003.810069
[2] Carla S, Marc S, Tiago F (2009) Evaluation of energy consumption, emissions and cost of plug-in hybrid vehicles. Energy Convers Manag 50(7):1635-1643 · doi:10.1016/j.enconman.2009.03.036
[3] Chau KT, Wong YS (2002) Overview of power management in hybrid electric vehicles. Energy Convers Manag 43(15):1953-1968 · doi:10.1016/S0196-8904(01)00148-0
[4] Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4-31 · doi:10.1109/TEVC.2010.2059031
[5] Das S, Abraham A, Chakraborty UK, Konar A (2009) Differential evolution using a neighborhood based mutation operator. IEEE Trans Evol Comput 13(3):526-553 · doi:10.1109/TEVC.2008.2009457
[6] Desai C, Berthold F, Williamson SS (2010) Optimal drive-train component sizing for a plug-in hybrid electric transit bus using multi-objective genetic algorithm. IEEE 2010 Conference on Electric Power and Energy, Halifax, pp 1-5
[7] Emami M, Mozaffari A, Azad NL, Rezaie B (2014) An empirical investigation into the effects of chaos on different types of evolutionary crossover operators for efficient global search in complicated landscapes. Int J Comput Math. doi:10.1080/00207160.2014.985664 · doi:10.1080/00207160.2014.985664
[8] Fathi A, Mozaffari A (2014) Modeling a shape memory alloy actuator using an evolvable recursive black-box and hybrid heuristic algorithms inspired based on the annual migration of salmons in nature. Appl Soft Comput 14:229-251 · doi:10.1016/j.asoc.2013.03.019
[9] Gandomi AH, Yang XS (2012) Evolutionary boundary constraint handling scheme. Neural Comput Appl 21(6):1449-1462 · doi:10.1007/s00521-012-1069-0
[10] Guo C, Chan CC (2015) Analysis method and utilization mechanism of the overall value of EV charging. Energy Convers Manag 89:420-426 · doi:10.1016/j.enconman.2014.10.016
[11] Guttenberg P, Chubbock S, Gilbert T (2011) A new philosophy for hybrid vehicle efficiency optimization. SAE International 1-6, 2011
[12] Hegazy O, Van Mirelo J (2010) Particle swarm optimization for optimal powertrains component sizing and design of fuel cell hybrid electric vehicle, 12th International Conference on Optimization of Electrical and Electronic Equipment, Basov, pp 601-609
[13] Hegazy O, Van Mirelo J (2012) Optimal power management and powertrain components sizing of fuel cell/battery hybrid electric vehicles based on particle swarm optimization. Int J Vehicle Des 58(2/3/4):200-222 · doi:10.1504/IJVD.2012.047384
[14] Hu X, Murgovski N, Johannesson LM, Egardt B (2012) A comparative study of equivalent circuit models for Li-ion batteries. J Power Sources 198:359-367 · doi:10.1016/j.jpowsour.2011.10.013
[15] Hu X, Murgovski N, Johannesson LM, Egardt B (2014) Comparison of three electrochemical energy buffers applied to a hybrid bus powertrain with simultaneous optimal sizing and energy management. IEEE Trans Intell Transp Syst 15(3):1193-1205 · doi:10.1109/TITS.2013.2294675
[16] Hu X, Murgovski N, Johannesson LM, Egardt B (2015a) Optimal dimensioning and power management of a fuel cell/battery hybrid bus via convex programming. IEEE/ASME Trans Mechatron 20(1):457-468 · doi:10.1109/TMECH.2014.2336264
[17] Hu X, Johannesson L, Murgovski N, Egardt B (2015b) Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus. Appl Energy 137:913-924 · doi:10.1016/j.apenergy.2014.05.013
[18] Ing A, Masoudi R, Mcphee J (2014) Comparison of optimization techniques for lithium-ion battery model parameter estimation. SAE Technical Paper. doi:10.4271/2014-01-1851
[19] Kim N, Cha S, Peng H (2011) Optimal control of hybrid electric vehicles based on Pontryagin’s minimum principle. IEEE Trans Control Syst Tech 19(5):1279-1287 · doi:10.1109/TCST.2010.2061232
[20] Malikopoulos AA (2013) Impact of component sizing in plug-in hybrid electric vehicles for energy resources and greenhouse emissions reduction. J Energ Resour Technol 135(4):041201 · doi:10.1115/1.4023334
[21] Mozaffari A, Gorji-Bandpy M, Gorji TB (2012) Optimal design of constraint engineering systems: application of mutable smart bee algorithm. Int J Bio Inspired Comput 4(3):167-180 · doi:10.1504/IJBIC.2012.047241
[22] Mozaffari A, Chehresaz M, Azad NL (2013) Component sizing of a plug-in hybrid electric vehicle powertrain, part A: coupling bio-inspired techniques to Meshless variable-fidelity surrogate models. Int J Bio-Inspired Comput 5(6):350-383 · doi:10.1504/IJBIC.2013.058914
[23] Mozaffari A, Behzadipour S, Kohani M (2014) Identifying the tool-tissue force in robotic laparoscopic surgery using neuro-evolutionary fuzzy systems and a synchronous self-learning hyper level supervisor. Appl Soft Comput 14:12-30 · doi:10.1016/j.asoc.2013.09.023
[24] Mozaffari A, Emami M, Azad NL, Fathi A (2015a) On the efficacy of chaos-enhanced heuristic walks with nature-based controllers for robust and accurate intelligent search, part A: an experimental analysis. J Exp Theor Artif Intell 27(4):389-422 · doi:10.1080/0952813X.2014.954632
[25] Mozaffari A, Vajedi M, Chehresaz M, Azad NL (2015b) Multi-objective component sizing of a power-split plug-in hybrid electric vehicle powertrain using Pareto based natural optimization machines. Eng Optim. doi:10.1080/0305215x.2015.1012075 · doi:10.1080/0305215x.2015.1012075
[26] NVFEL. http://www.epa.gov/nvfel/testing/dynamometer.htm
[27] Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition based differential evolution. IEEE Trans Evol Comput 12(1):64-79 · doi:10.1109/TEVC.2007.894200
[28] Rajamani R (2011) Vehicle dynamics and control. Springer, Berlin · Zbl 1268.70002
[29] Razavian RS, Taghavipour A, Azad NL, McPhee J (2013) A battery hardware-in-the-loop setup for concurrent design and evaluation of real-time optimal HEV power management controllers. Int J Electr Hybrid Veh 5(3):177-194 · doi:10.1504/IJEHV.2013.057604
[30] Ribau JP, Sousa JMC, Silva CM (2013) Multi-objective optimization of fuel cell hybrid vehicle powertrain design-cost and energy. SAE Technical Paper. doi:10.4271/2013-24-0082
[31] Rousseau A, Pagerit S, Gao W (2008) Plug-in hybrid electric vehicle control strategy parameter optimization. J Asian Electr Veh 6(2):1125-1133 · doi:10.4130/jaev.6.1125
[32] Santos LD, Mariani VC (2006) Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Trans Power Syst 21(2):989-996 · doi:10.1109/TPWRS.2006.873410
[33] Shahi SK, Wang GG, An L, Bibeau E, Pirmoradi Z (2012) Using the Pareto set pursuing multiobjective optimization approach for hybridization of a plug-in hybrid electric vehicle. ASME J Mech Des 134:094503 · doi:10.1115/1.4007149
[34] Sinoquet D, Rousseau G, Milhau Y (2011) Design optimization and optimal control for hybrid vehicles. Optim Eng 12:199-213 · Zbl 1272.70149 · doi:10.1007/s11081-009-9100-8
[35] Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341-359 · Zbl 0888.90135 · doi:10.1023/A:1008202821328
[36] Taghavipour A, Azad NL, McPhee J (2012) An optimal power management strategy for power split plug-in hybrid electric vehicles. Int J Veh Des 60(3-4):286-304 · doi:10.1504/IJVD.2012.050085
[37] Toyota Prius User-Guide. http://john1701a.com/prius/documents/Prius_User-Guide.pdf
[38] Toyota 0-60 Times. http://www.zeroto60times.com/Toyota-0-60-mph-Times.html
[39] Vajedi M, Chehresaz M, Azad NL (2014) Intelligent power management of plug-in hybrid electric vehicles, part I: real-time route-based power management. Int J Electr Hybrid Veh 6(1):46-67 · doi:10.1504/IJEHV.2014.062807
[40] Van MJ, Maggetto G, Lataire PH (2006) Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles. Energy Convers Manag 47(17):2748-2760 · doi:10.1016/j.enconman.2006.02.004
[41] Vinot E, Trigui R, Cheng Y, Bouscayrol A, Espanet C (2012) Optimal management and comparison of SP-HEV vehicles using the dynamic programming method. IEEE 2012 Vehicle Power and Propulsion Conference (VPPC), Lille, pp 1-6
[42] Vyasarayani CP, Uchida T, McPhee J (2012) Nonlinear parameter identification in multibody systems using homotopy continuation. J Comput Nonlin Dyn 7(1):011012 · doi:10.1115/1.4004885
[43] Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press, Bristol
[44] Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945-958 · doi:10.1109/TEVC.2009.2014613
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.