Herbort, Gregor On the Bergman distance on model domains in \(\mathbb C^n\). (English) Zbl 1343.32026 Ann. Pol. Math. 116, No. 1, 1-36 (2016). Reviewer: Marek Jarnicki (Kraków) MSC: 32U05 32F45 32T25 PDF BibTeX XML Cite \textit{G. Herbort}, Ann. Pol. Math. 116, No. 1, 1--36 (2016; Zbl 1343.32026) Full Text: DOI OpenURL
Herbort, Gregor Estimation of the Carathéodory distance on pseudoconvex domains of finite type whose boundary has Levi form of corank at most one. (English) Zbl 1297.32012 Ann. Pol. Math. 109, No. 3, 209-260 (2013). Reviewer: Paweł Zapałowski (Kraków) MSC: 32F45 32T25 PDF BibTeX XML Cite \textit{G. Herbort}, Ann. Pol. Math. 109, No. 3, 209--260 (2013; Zbl 1297.32012) Full Text: DOI OpenURL
Zhou, Xiangyu; Zhu, Langfeng Ohsawa-Takegoshi \(L^2\) extension theorem: revisited. (English) Zbl 1250.32008 Ji, Lizhen (ed.) et al., Fifth international congress of Chinese mathematicians. Proceedings of the ICCM ’10, Beijing, China, December 17–22, 2010. Part 1. Providence, RI: American Mathematical Society (AMS); Somerville, MA: International Press (ISBN 978-0-8218-7586-5/pbk; 978-0-8218-7555-1/set). AMS/IP Studies in Advanced Mathematics 51, pt.1, 475-490 (2012). Reviewer: Gregor Herbort (Wuppertal) MSC: 32D15 32Q15 32W50 PDF BibTeX XML Cite \textit{X. Zhou} and \textit{L. Zhu}, AMS/IP Stud. Adv. Math. 51, 475--490 (2012; Zbl 1250.32008) OpenURL
Branker, Maritza M.; Stawiska, Małgorzata Weighted pluripotential theory on compact Kähler manifolds. (English) Zbl 1166.32020 Ann. Pol. Math. 95, No. 2, 163-177 (2009). Reviewer: Marek Jarnicki (Kraków) MSC: 32U35 32U05 32L05 PDF BibTeX XML Cite \textit{M. M. Branker} and \textit{M. Stawiska}, Ann. Pol. Math. 95, No. 2, 163--177 (2009; Zbl 1166.32020) Full Text: DOI arXiv OpenURL
Neeb, Karl-Hermann Holomorphy and convexity in Lie theory. (English) Zbl 0936.22001 de Gruyter Expositions in Mathematics. 28. Berlin: de Gruyter. xxi, 778 p. (1999). Reviewer: A.K.Guts (Omsk) MSC: 22-02 22E15 22E45 17-02 17B05 17B10 32E10 32U05 43A35 43A65 81R05 81R30 PDF BibTeX XML Cite \textit{K.-H. Neeb}, Holomorphy and convexity in Lie theory. Berlin: de Gruyter (1999; Zbl 0936.22001) OpenURL
Demailly, Jean-Pierre Singular Hermitian metrics on positive line bundles. (English) Zbl 0784.32024 Complex algebraic varieties, Proc. Conf., Bayreuth/Ger. 1990, Lect. Notes Math. 1507, 87-104 (1992). Reviewer: E.J.Straube (College Station) MSC: 32L05 PDF BibTeX XML Cite \textit{J.-P. Demailly}, Lect. Notes Math. 1507, 87--104 (1992; Zbl 0784.32024) OpenURL
Demailly, Jean-Pierre Estimations \(L^ 2 \)pour l’opérateur (partial d) d’un fibre vectoriel holomorphe semi-positif au-dessus d’une variété Kaehlerienne complete. (French) Zbl 0507.32021 Ann. Sci. Éc. Norm. Supér. (4) 15, 457-511 (1982). MSC: 32L20 32L05 53C55 32L10 32U05 PDF BibTeX XML Cite \textit{J.-P. Demailly}, Ann. Sci. Éc. Norm. Supér. (4) 15, 457--511 (1982; Zbl 0507.32021) Full Text: DOI Numdam EuDML OpenURL