Erfanifar, Raziyeh; Sayevand, Khosro; Hajarian, Masoud Solving system of nonlinear matrix equations over Hermitian positive definite matrices. (English) Zbl 07683826 Linear Multilinear Algebra 71, No. 4, 597-630 (2023). MSC: 34A08 49S05 PDF BibTeX XML Cite \textit{R. Erfanifar} et al., Linear Multilinear Algebra 71, No. 4, 597--630 (2023; Zbl 07683826) Full Text: DOI OpenURL
Kundu, Anupam; Pourahmadi, Mohsen MLE of jointly constrained mean-covariance of multivariate normal distributions. (English) Zbl 07683110 Sankhyā, Ser. B 85, No. 1, 1-32 (2023). MSC: 62H12 62F10 62F30 65H17 PDF BibTeX XML Cite \textit{A. Kundu} and \textit{M. Pourahmadi}, Sankhyā, Ser. B 85, No. 1, 1--32 (2023; Zbl 07683110) Full Text: DOI arXiv OpenURL
Shil, Sourav; Nashine, Hemant Kumar; Soleymani, Fazlollah On an inversion-free algorithm for the nonlinear matrix problem \(\mathcal{X}^\alpha+ \mathcal{A}^\ast \mathcal{X}^{-\beta}\mathcal{A}+ \mathcal{B}^\ast \mathcal{X}^{- \gamma}\mathcal{B}=\mathcal{I}\). (English) Zbl 07606319 Int. J. Comput. Math. 99, No. 12, 2555-2567 (2022). MSC: 65F30 15A24 PDF BibTeX XML Cite \textit{S. Shil} et al., Int. J. Comput. Math. 99, No. 12, 2555--2567 (2022; Zbl 07606319) Full Text: DOI OpenURL
Wang, Qinlong; Xiong, Yu’e; Huang, Wentao; Romanovski, Valery G. Isolated periodic wave trains in a generalized Burgers-Huxley equation. (English) Zbl 1499.35058 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 4, 16 p. (2022). MSC: 35B32 34C07 34D20 37J20 35Q51 PDF BibTeX XML Cite \textit{Q. Wang} et al., Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 4, 16 p. (2022; Zbl 1499.35058) Full Text: DOI OpenURL
Mousavi, Z.; Mirzapour, F. Applying solvability theorems for matrix equations. (English) Zbl 1484.15015 Oper. Matrices 15, No. 2, 685-692 (2021). MSC: 15A24 PDF BibTeX XML Cite \textit{Z. Mousavi} and \textit{F. Mirzapour}, Oper. Matrices 15, No. 2, 685--692 (2021; Zbl 1484.15015) Full Text: DOI OpenURL
Hasanov, Vejdi I. Positive definite solutions of a linearly perturbed matrix equation. (English) Zbl 1499.65145 Ann. Acad. Rom. Sci., Math. Appl. 13, No. 1-2, 5-19 (2021). MSC: 65F45 15A24 PDF BibTeX XML Cite \textit{V. I. Hasanov}, Ann. Acad. Rom. Sci., Math. Appl. 13, No. 1--2, 5--19 (2021; Zbl 1499.65145) Full Text: Link OpenURL
Lu, Xin; Fang, Zhi-Wei; Sun, Hai-Wei Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations. (English) Zbl 1475.65015 J. Appl. Math. Comput. 66, No. 1-2, 673-700 (2021). MSC: 65F08 65F10 65M06 65M22 PDF BibTeX XML Cite \textit{X. Lu} et al., J. Appl. Math. Comput. 66, No. 1--2, 673--700 (2021; Zbl 1475.65015) Full Text: DOI OpenURL
Guo, Xiao-Xia; Wu, Hong-Xiao Two structure-preserving-doubling like algorithms to solve the positive definite solution of the equation \(X-A^{\mathrm{H}}\overline{X}^{-1}A=Q\). (English) Zbl 1476.65065 Commun. Appl. Math. Comput. 3, No. 1, 123-135 (2021). MSC: 65F45 15A24 PDF BibTeX XML Cite \textit{X.-X. Guo} and \textit{H.-X. Wu}, Commun. Appl. Math. Comput. 3, No. 1, 123--135 (2021; Zbl 1476.65065) Full Text: DOI OpenURL
Zhang, Juan; Li, Shifeng On the Hermitian positive definite solution and Newton’s method for a nonlinear matrix equation. (English) Zbl 1475.15019 Linear Multilinear Algebra 69, No. 11, 2093-2114 (2021). MSC: 15A24 65F45 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{S. Li}, Linear Multilinear Algebra 69, No. 11, 2093--2114 (2021; Zbl 1475.15019) Full Text: DOI OpenURL
Jin, Zhixiang; Zhai, Chengbo Investigation of positive definite solution of nonlinear matrix equation \(X^p=Q+\sum \nolimits_{i=1}^m A_i^*X^{\delta}A_i\). (English) Zbl 1476.15028 Comput. Appl. Math. 40, No. 3, Paper No. 74, 14 p. (2021). MSC: 15A24 47H10 PDF BibTeX XML Cite \textit{Z. Jin} and \textit{C. Zhai}, Comput. Appl. Math. 40, No. 3, Paper No. 74, 14 p. (2021; Zbl 1476.15028) Full Text: DOI OpenURL
Masoudi, Mohsen; Salemi, Abbas On Hermitian positive definite solutions of a nonlinear matrix equation. (English) Zbl 1470.15013 J. Fixed Point Theory Appl. 23, No. 2, Paper No. 30, 19 p. (2021). MSC: 15A24 15B57 PDF BibTeX XML Cite \textit{M. Masoudi} and \textit{A. Salemi}, J. Fixed Point Theory Appl. 23, No. 2, Paper No. 30, 19 p. (2021; Zbl 1470.15013) Full Text: DOI OpenURL
Zhai, Chengbo; Jin, Zhixiang Solvability for two forms of nonlinear matrix equations. (English) Zbl 1471.15011 Bull. Iran. Math. Soc. 47, No. 4, 1107-1120 (2021). MSC: 15A24 47H10 65F45 PDF BibTeX XML Cite \textit{C. Zhai} and \textit{Z. Jin}, Bull. Iran. Math. Soc. 47, No. 4, 1107--1120 (2021; Zbl 1471.15011) Full Text: DOI OpenURL
Huang, Jingpin; Zhang, Shanshan; Xiong, Hao Iterative methods of the positive definite solution to a quadratic quaternion system. (Chinese. English summary) Zbl 1474.65075 Math. Appl. 34, No. 2, 357-364 (2021). MSC: 65F10 15B33 PDF BibTeX XML Cite \textit{J. Huang} et al., Math. Appl. 34, No. 2, 357--364 (2021; Zbl 1474.65075) OpenURL
Gupta, Animesh; Rai, Vandana Binary relation for tripled fixed point theorem in metric spaces. (English) Zbl 1488.54135 Bol. Soc. Parana. Mat. (3) 39, No. 2, 9-26 (2021). MSC: 54H25 15A24 54E40 PDF BibTeX XML Cite \textit{A. Gupta} and \textit{V. Rai}, Bol. Soc. Parana. Mat. (3) 39, No. 2, 9--26 (2021; Zbl 1488.54135) Full Text: Link OpenURL
Siahkoalaei, Tahereh Salimi; Khojasteh Salkuyeh, Davod A new double-step method for solving complex Helmholtz equation. (English) Zbl 1478.65102 Hacet. J. Math. Stat. 49, No. 4, 1245-1260 (2020). MSC: 65N06 65F10 65N12 65N22 PDF BibTeX XML Cite \textit{T. S. Siahkoalaei} and \textit{D. Khojasteh Salkuyeh}, Hacet. J. Math. Stat. 49, No. 4, 1245--1260 (2020; Zbl 1478.65102) Full Text: DOI OpenURL
Meng, Jie; Lee, Hosoo; Kim, Hyun-Min On the extreme solutions of a class of nonlinear matrix equation. (English) Zbl 1464.15024 J. Nonlinear Convex Anal. 21, No. 1, 77-87 (2020). MSC: 15A24 65F45 PDF BibTeX XML Cite \textit{J. Meng} et al., J. Nonlinear Convex Anal. 21, No. 1, 77--87 (2020; Zbl 1464.15024) Full Text: Link OpenURL
Appelö, Daniel; Garcia, Fortino; Runborg, Olof WaveHoltz: iterative solution of the Helmholtz equation via the wave equation. (English) Zbl 1453.65396 SIAM J. Sci. Comput. 42, No. 4, A1950-A1983 (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 65N22 65N12 35J05 65F10 PDF BibTeX XML Cite \textit{D. Appelö} et al., SIAM J. Sci. Comput. 42, No. 4, A1950--A1983 (2020; Zbl 1453.65396) Full Text: DOI arXiv OpenURL
Hasanov, Vejdi I. Perturbation bounds for the matrix equation \(X + A^\ast X^{-1}A=Q\). (English) Zbl 1451.15011 Appl. Comput. Math. 19, No. 1, 20-33 (2020). MSC: 15A24 47H14 65H05 PDF BibTeX XML Cite \textit{V. I. Hasanov}, Appl. Comput. Math. 19, No. 1, 20--33 (2020; Zbl 1451.15011) Full Text: arXiv Link OpenURL
Marchand, Pierre; Claeys, Xavier; Jolivet, Pierre; Nataf, Frédéric; Tournier, Pierre-Henri Two-level preconditioning for \(h\)-version boundary element approximation of hypersingular operator with GenEO. (English) Zbl 1451.65215 Numer. Math. 146, No. 3, 597-628 (2020). MSC: 65N38 65F10 65N22 65N55 PDF BibTeX XML Cite \textit{P. Marchand} et al., Numer. Math. 146, No. 3, 597--628 (2020; Zbl 1451.65215) Full Text: DOI OpenURL
Chen, Haibin; Wang, Yiju; Zhou, Guanglu High-order sum-of-squares structured tensors: theory and applications. (English) Zbl 1439.65069 Front. Math. China 15, No. 2, 255-284 (2020). MSC: 65H17 15A18 90C30 PDF BibTeX XML Cite \textit{H. Chen} et al., Front. Math. China 15, No. 2, 255--284 (2020; Zbl 1439.65069) Full Text: DOI OpenURL
Wu, Guoxing; Xing, Ting; Zhou, Duanmei Inequalities for the eigenvalues of the positive definite solutions of the nonlinear matrix equation. (English) Zbl 1499.15056 Filomat 33, No. 9, 2667-2671 (2019). MSC: 15A24 15A42 PDF BibTeX XML Cite \textit{G. Wu} et al., Filomat 33, No. 9, 2667--2671 (2019; Zbl 1499.15056) Full Text: DOI OpenURL
Huang, Baohua; Ma, Changfeng Some iterative algorithms for positive definite solution to nonlinear matrix equations. (English) Zbl 1490.65079 J. Appl. Anal. Comput. 9, No. 2, 526-546 (2019). MSC: 65F45 15A24 65H10 PDF BibTeX XML Cite \textit{B. Huang} and \textit{C. Ma}, J. Appl. Anal. Comput. 9, No. 2, 526--546 (2019; Zbl 1490.65079) Full Text: DOI OpenURL
Cai, Jing; Chen, Jianlong Some new bound estimates of the Hermitian positive definite solutions of the nonlinear matrix equation \({X^s} + {A^*}{X^{- t}}A = Q\). (English) Zbl 1438.15033 J. Southeast Univ., Engl. Ed. 35, No. 1, 142-146 (2019). MSC: 15A24 15A45 65F45 PDF BibTeX XML Cite \textit{J. Cai} and \textit{J. Chen}, J. Southeast Univ., Engl. Ed. 35, No. 1, 142--146 (2019; Zbl 1438.15033) Full Text: DOI OpenURL
Fang, Liang; Liu, Sanyang On positive definite solution of a class of nonlinear matrix equations. (Chinese. English summary) Zbl 1438.15035 J. Zhejiang Univ., Sci. Ed. 46, No. 1, 1-8 (2019). MSC: 15A24 65F45 PDF BibTeX XML Cite \textit{L. Fang} and \textit{S. Liu}, J. Zhejiang Univ., Sci. Ed. 46, No. 1, 1--8 (2019; Zbl 1438.15035) OpenURL
Li, Jing; Zhang, Yuhai The investigation on two kinds of nonlinear matrix equations. (English) Zbl 1425.15011 Bull. Malays. Math. Sci. Soc. (2) 42, No. 6, 3323-3341 (2019). Reviewer: Vladimir P. Kostov (Nice) MSC: 15A24 15A42 PDF BibTeX XML Cite \textit{J. Li} and \textit{Y. Zhang}, Bull. Malays. Math. Sci. Soc. (2) 42, No. 6, 3323--3341 (2019; Zbl 1425.15011) Full Text: DOI OpenURL
Du, Shouqiang; Zhang, Liping A mixed integer programming approach to the tensor complementarity problem. (English) Zbl 1425.90072 J. Glob. Optim. 73, No. 4, 789-800 (2019). MSC: 90C11 15A69 PDF BibTeX XML Cite \textit{S. Du} and \textit{L. Zhang}, J. Glob. Optim. 73, No. 4, 789--800 (2019; Zbl 1425.90072) Full Text: DOI arXiv OpenURL
Miyajima, Shinya Verified computation for the Hermitian positive definite solution of the conjugate discrete-time algebraic Riccati equation. (English) Zbl 1417.65123 J. Comput. Appl. Math. 350, 80-86 (2019). MSC: 65F30 15A24 65G20 PDF BibTeX XML Cite \textit{S. Miyajima}, J. Comput. Appl. Math. 350, 80--86 (2019; Zbl 1417.65123) Full Text: DOI OpenURL
Song, Guangjing; Yu, Shaowen Nonnegative definite and re-nonnegative definite solutions to a system of matrix equations with statistical applications. (English) Zbl 1427.15020 Appl. Math. Comput. 338, 828-841 (2018). MSC: 15A24 15A03 15A09 62H05 PDF BibTeX XML Cite \textit{G. Song} and \textit{S. Yu}, Appl. Math. Comput. 338, 828--841 (2018; Zbl 1427.15020) Full Text: DOI OpenURL
Li, J.; Zhang, Y. H. Solvability for a nonlinear matrix equation. (English) Zbl 1407.15018 Bull. Iran. Math. Soc. 44, No. 5, 1171-1184 (2018). MSC: 15A24 15B48 PDF BibTeX XML Cite \textit{J. Li} and \textit{Y. H. Zhang}, Bull. Iran. Math. Soc. 44, No. 5, 1171--1184 (2018; Zbl 1407.15018) Full Text: DOI OpenURL
Bagherpour, Negin; Mahdavi-Amiri, Nezam A competitive error in variables approach and algorithms for finding positive definite solutions of linear systems of matrix equations. (English) Zbl 1451.65047 Al-Baali, Mehiddin (ed.) et al., Numerical analysis and optimization. Selected papers based on the presentations at the 4th international conference, NAO-IV, Muscat, Oman, January 2–5, 2017. Cham: Springer. Springer Proc. Math. Stat. 235, 45-66 (2018). MSC: 65F45 15A24 15B48 15B57 PDF BibTeX XML Cite \textit{N. Bagherpour} and \textit{N. Mahdavi-Amiri}, Springer Proc. Math. Stat. 235, 45--66 (2018; Zbl 1451.65047) Full Text: DOI OpenURL
Huang, Bao-Hua; Ma, Chang-Feng Some iterative methods for the largest positive definite solution to a class of nonlinear matrix equation. (English) Zbl 1397.65048 Numer. Algorithms 79, No. 1, 153-178 (2018). MSC: 65F10 15A24 PDF BibTeX XML Cite \textit{B.-H. Huang} and \textit{C.-F. Ma}, Numer. Algorithms 79, No. 1, 153--178 (2018; Zbl 1397.65048) Full Text: DOI OpenURL
Hasanov, Vejdi Ismailov On the matrix equation \(X+A^\ast X^{-1} A-B^\ast C^{-1} B=I\). (English) Zbl 1396.15013 Linear Multilinear Algebra 66, No. 9, 1783-1798 (2018). MSC: 15A24 65H05 PDF BibTeX XML Cite \textit{V. I. Hasanov}, Linear Multilinear Algebra 66, No. 9, 1783--1798 (2018; Zbl 1396.15013) Full Text: DOI OpenURL
Li, Jing; Zhang, Yuhai A homotopy continuation method for solving a matrix equation. (English) Zbl 1392.15025 J. Korean Math. Soc. 55, No. 2, 327-342 (2018). MSC: 15A24 15B57 PDF BibTeX XML Cite \textit{J. Li} and \textit{Y. Zhang}, J. Korean Math. Soc. 55, No. 2, 327--342 (2018; Zbl 1392.15025) Full Text: Link OpenURL
Huang, Na; Ma, Chang-Feng The structure-preserving doubling algorithms for positive definite solution to a system of nonlinear matrix equations. (English) Zbl 1387.65038 Linear Multilinear Algebra 66, No. 4, 827-839 (2018). MSC: 65F30 15A24 65F10 PDF BibTeX XML Cite \textit{N. Huang} and \textit{C.-F. Ma}, Linear Multilinear Algebra 66, No. 4, 827--839 (2018; Zbl 1387.65038) Full Text: DOI OpenURL
Lin, Matthew M.; Chiang, Chun-Yueh An accelerated technique for solving one type of discrete-time algebraic Riccati equations. (English) Zbl 1390.39071 J. Comput. Appl. Math. 338, 91-110 (2018). MSC: 39B12 39B42 47J22 65H05 15A24 PDF BibTeX XML Cite \textit{M. M. Lin} and \textit{C.-Y. Chiang}, J. Comput. Appl. Math. 338, 91--110 (2018; Zbl 1390.39071) Full Text: DOI arXiv OpenURL
Khojasteh Salkuyeh, Davod; Beik, Fatemeh Panjeh Ali; Hezari, Davod A sequential two-stage method for solving generalized saddle point problems. (English) Zbl 07560526 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 79, No. 1, 131-140 (2017). MSC: 65F10 65F50 65N22 PDF BibTeX XML Cite \textit{D. Khojasteh Salkuyeh} et al., Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 79, No. 1, 131--140 (2017; Zbl 07560526) OpenURL
Masoudi, Mohsen; Moghadam, Mahmoud Mohseni; Salemi, Abbas Hermitian positive definite solutions of the matrix equation \({{X^s}+{A^*}{X^{-t}}A=Q}\). (English) Zbl 1401.65047 J. Korean Math. Soc. 54, No. 6, 1667-1682 (2017). MSC: 65F30 15A24 15B48 47H10 PDF BibTeX XML Cite \textit{M. Masoudi} et al., J. Korean Math. Soc. 54, No. 6, 1667--1682 (2017; Zbl 1401.65047) Full Text: DOI OpenURL
Zhang, Xindong; Feng, Xinlong The Hermitian positive definite solution of the nonlinear matrix equation. (English) Zbl 1401.15014 Int. J. Nonlinear Sci. Numer. Simul. 18, No. 5, 293-301 (2017). MSC: 15A24 15B48 65F30 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{X. Feng}, Int. J. Nonlinear Sci. Numer. Simul. 18, No. 5, 293--301 (2017; Zbl 1401.15014) Full Text: DOI OpenURL
Ziętak, Krystyna From the strict Chebyshev approximant of a vector to the strict spectral approximant of a matrix. (English) Zbl 1421.65010 Zemánek, Jaroslav (ed.) et al., Études opératorielles. Warsaw: Polish Academy of Sciences, Institute of Mathematics. Banach Cent. Publ. 112, 307-346 (2017). Reviewer: Michael Jung (Dresden) MSC: 65F30 65F20 65F35 15A60 15A18 15B57 47A58 41A65 41A36 49J52 PDF BibTeX XML Cite \textit{K. Ziętak}, Banach Cent. Publ. 112, 307--346 (2017; Zbl 1421.65010) Full Text: DOI Link OpenURL
Chiang, Chun-Yueh An accelerated technique for solving the positive definite solutions of a class of nonlinear matrix equations. (English) Zbl 1373.93147 J. Franklin Inst. 354, No. 15, 7088-7118 (2017). MSC: 93C10 93B40 15A24 PDF BibTeX XML Cite \textit{C.-Y. Chiang}, J. Franklin Inst. 354, No. 15, 7088--7118 (2017; Zbl 1373.93147) Full Text: DOI OpenURL
Fang, Liang; Liu, Sanyang; Yin, Xiaoyan Positive definite solutions and perturbation analysis of a class of nonlinear matrix equations. (English) Zbl 1362.15008 J. Appl. Math. Comput. 53, No. 1-2, 245-269 (2017). Reviewer: Jaydeb Sarkar (Bangalore) MSC: 15A24 65F10 65F30 PDF BibTeX XML Cite \textit{L. Fang} et al., J. Appl. Math. Comput. 53, No. 1--2, 245--269 (2017; Zbl 1362.15008) Full Text: DOI OpenURL
Li, Chunmei; Duan, Xuefeng; Peng, Zhenyun; Jiang, Zhuling Positive definite solution of a class of generalized Lyapunov equation. (Chinese. English summary) Zbl 1374.65069 Pure Appl. Math. 32, No. 5, 505-514 (2016). MSC: 65F30 15A24 65F10 PDF BibTeX XML Cite \textit{C. Li} et al., Pure Appl. Math. 32, No. 5, 505--514 (2016; Zbl 1374.65069) Full Text: DOI OpenURL
Zhang, Jiansong; Zhang, Yuezhi; Zhu, Jiang; Yang, Danping Split characteristic mixed finite element methods for advection-dominated diffusion equation. (Chinese. English summary) Zbl 1374.65176 Appl. Math., Ser. A (Chin. Ed.) 31, No. 3, 338-350 (2016). MSC: 65M60 65M25 65M15 35K20 65M12 PDF BibTeX XML Cite \textit{J. Zhang} et al., Appl. Math., Ser. A (Chin. Ed.) 31, No. 3, 338--350 (2016; Zbl 1374.65176) OpenURL
Huang, Na; Ma, Changfeng; Tang, Jia The inversion-free iterative methods for a system of nonlinear matrix equations. (English) Zbl 1362.65057 Int. J. Comput. Math. 93, No. 9, 1470-1483 (2016). Reviewer: Edgar Pereira (Natal) MSC: 65H10 15A24 PDF BibTeX XML Cite \textit{N. Huang} et al., Int. J. Comput. Math. 93, No. 9, 1470--1483 (2016; Zbl 1362.65057) Full Text: DOI OpenURL
Hezari, Davod; Salkuyeh, Davod Khojasteh; Edalatpour, Vahid A new iterative method for solving a class of complex symmetric system of linear equations. (English) Zbl 1361.65016 Numer. Algorithms 73, No. 4, 927-955 (2016). Reviewer: Gisbert Stoyan (Budapest) MSC: 65F10 PDF BibTeX XML Cite \textit{D. Hezari} et al., Numer. Algorithms 73, No. 4, 927--955 (2016; Zbl 1361.65016) Full Text: DOI OpenURL
Gumus, Mehmet; Xu, Jianhong On common diagonal Lyapunov solutions. (English) Zbl 1382.93029 Linear Algebra Appl. 507, 32-50 (2016). MSC: 93D30 15A18 15A45 15B48 34D20 93D05 PDF BibTeX XML Cite \textit{M. Gumus} and \textit{J. Xu}, Linear Algebra Appl. 507, 32--50 (2016; Zbl 1382.93029) Full Text: DOI OpenURL
Hackbusch, Wolfgang Iterative solution of large sparse systems of equations. 2nd edition. (English) Zbl 1347.65063 Applied Mathematical Sciences 95. Cham: Springer (ISBN 978-3-319-28481-1/hbk; 978-3-319-28483-5/ebook). xxiii, 509 p. (2016). Reviewer: Rolf Dieter Grigorieff (Berlin) MSC: 65F10 65-02 65F50 65N22 65N55 65N30 65Y20 35J25 PDF BibTeX XML Cite \textit{W. Hackbusch}, Iterative solution of large sparse systems of equations. 2nd edition. Cham: Springer (2016; Zbl 1347.65063) Full Text: DOI OpenURL
Mousavi, Z.; Mirzapour, F.; Moslehian, M. S. Positive definite solutions of certain nonlinear matrix equations. (English) Zbl 1342.15008 Oper. Matrices 10, No. 1, 113-126 (2016). Reviewer: Chen Sheng (Harbin) MSC: 15A24 PDF BibTeX XML Cite \textit{Z. Mousavi} et al., Oper. Matrices 10, No. 1, 113--126 (2016; Zbl 1342.15008) Full Text: DOI Link OpenURL
Bagherpour, Negin; Mahdavi-Amiri, Nezam A new error in variables model for solving positive definite linear system using orthogonal matrix decompositions. (English) Zbl 1355.65046 Numer. Algorithms 72, No. 1, 211-241 (2016). Reviewer: Radek Kucera (Ostrava) MSC: 65F05 65F20 65K05 90C20 90C51 PDF BibTeX XML Cite \textit{N. Bagherpour} and \textit{N. Mahdavi-Amiri}, Numer. Algorithms 72, No. 1, 211--241 (2016; Zbl 1355.65046) Full Text: DOI arXiv OpenURL
Meng, Jie; Kim, Hyun-Min The positive definite solution to a nonlinear matrix equation. (English) Zbl 1343.65043 Linear Multilinear Algebra 64, No. 4, 653-666 (2016). Reviewer: Jaydeb Sarkar (Bangalore) MSC: 65F30 15A24 65F10 65H10 PDF BibTeX XML Cite \textit{J. Meng} and \textit{H.-M. Kim}, Linear Multilinear Algebra 64, No. 4, 653--666 (2016; Zbl 1343.65043) Full Text: DOI OpenURL
Gao, Dongjie On Hermitian positive definite solutions of the nonlinear matrix equation \(X-A^{*}e^{X}A=I\). (English) Zbl 1330.65053 J. Appl. Math. Comput. 50, No. 1-2, 109-116 (2016). MSC: 65F10 15A24 PDF BibTeX XML Cite \textit{D. Gao}, J. Appl. Math. Comput. 50, No. 1--2, 109--116 (2016; Zbl 1330.65053) Full Text: DOI OpenURL
Huang, Na; Ma, Chang-Feng Two structure-preserving-doubling like algorithms for obtaining the positive definite solution to a class of nonlinear matrix equation. (English) Zbl 1443.65056 Comput. Math. Appl. 69, No. 6, 494-502 (2015). MSC: 65F45 15A24 PDF BibTeX XML Cite \textit{N. Huang} and \textit{C.-F. Ma}, Comput. Math. Appl. 69, No. 6, 494--502 (2015; Zbl 1443.65056) Full Text: DOI OpenURL
Li, Lei; Wang, Qing-Wen; Shen, Shu-Qian On positive definite solutions of the nonlinear matrix equations \(X \pm A^* X^q A = Q\). (English) Zbl 1410.15030 Appl. Math. Comput. 271, 556-566 (2015). MSC: 15A24 65F30 65F35 65H10 PDF BibTeX XML Cite \textit{L. Li} et al., Appl. Math. Comput. 271, 556--566 (2015; Zbl 1410.15030) Full Text: DOI OpenURL
Berzig, Maher; Samet, Bessem Positive solution to a generalized Lyapunov equation via a coupled fixed point theorem in a metric space endowed with a partial order. (English) Zbl 1462.15020 Filomat 29, No. 8, 1831-1837 (2015). MSC: 15A24 15A29 47H10 PDF BibTeX XML Cite \textit{M. Berzig} and \textit{B. Samet}, Filomat 29, No. 8, 1831--1837 (2015; Zbl 1462.15020) Full Text: DOI OpenURL
Hassanov, V.; Hakkaev, S. Newton’s method for a nonlinear matrix equation. (English) Zbl 1374.65067 C. R. Acad. Bulg. Sci. 68, No. 8, 973-982 (2015). Reviewer: Angela Slavova (Sofia) MSC: 65F30 65F10 15A24 PDF BibTeX XML Cite \textit{V. Hassanov} and \textit{S. Hakkaev}, C. R. Acad. Bulg. Sci. 68, No. 8, 973--982 (2015; Zbl 1374.65067) OpenURL
Zerroukat, M.; Allen, T. On the monotonic and conservative transport on overset/Yin-Yang grids. (English) Zbl 1349.65424 J. Comput. Phys. 302, 285-299 (2015). MSC: 65M50 PDF BibTeX XML Cite \textit{M. Zerroukat} and \textit{T. Allen}, J. Comput. Phys. 302, 285--299 (2015; Zbl 1349.65424) Full Text: DOI OpenURL
Yuan, Yongxin; Zuo, Kezheng The re-nonnegative definite and re-positive definite solutions to the matrix equation \(AXB=D\). (English) Zbl 1338.15038 Appl. Math. Comput. 256, 905-912 (2015). MSC: 15A24 PDF BibTeX XML Cite \textit{Y. Yuan} and \textit{K. Zuo}, Appl. Math. Comput. 256, 905--912 (2015; Zbl 1338.15038) Full Text: DOI OpenURL
Huang, Na; Ma, Changfeng Two inversion-free iterative algorithms for computing the maximal positive definite solution of the nonlinear matrix equation. (English) Zbl 1330.65078 Appl. Comput. Math. 14, No. 2, 158-167 (2015). Reviewer: Anton Iliev (Plovdiv) MSC: 65H10 15A24 PDF BibTeX XML Cite \textit{N. Huang} and \textit{C. Ma}, Appl. Comput. Math. 14, No. 2, 158--167 (2015; Zbl 1330.65078) Full Text: Link OpenURL
Liu, Xifu The Hermitian and nonnegative definite solutions of \(AX=B\) subject to \(CXC^{*} \geqslant D\). (English) Zbl 1338.15010 Math. Inequal. Appl. 18, No. 4, 1367-1374 (2015). Reviewer: Iveta Hnetynkova (Praha) MSC: 15A06 15A39 15B48 PDF BibTeX XML Cite \textit{X. Liu}, Math. Inequal. Appl. 18, No. 4, 1367--1374 (2015; Zbl 1338.15010) Full Text: DOI OpenURL
Al-Dubiban, Asmaa M. On nonlinear matrix equations \(X\pm\sum_{i=1}^{m}A_{i}^{*}X^{-n_{i}}A_{i}=I\). (English) Zbl 1314.65062 J. Inequal. Appl. 2015, Paper No. 147, 18 p. (2015). MSC: 65F30 65F10 15A24 PDF BibTeX XML Cite \textit{A. M. Al-Dubiban}, J. Inequal. Appl. 2015, Paper No. 147, 18 p. (2015; Zbl 1314.65062) Full Text: DOI OpenURL
Adam, Maria; Assimakis, Nicholas Nonrecursive solution for the discrete algebraic Riccati equation and \(X + \mathcal A^\ast X^{-1}\mathcal A=L\). (English) Zbl 1309.65046 Open Math. 13, 51-63 (2015). MSC: 65F30 15A24 PDF BibTeX XML Cite \textit{M. Adam} and \textit{N. Assimakis}, Open Math. 13, 51--63 (2015; Zbl 1309.65046) Full Text: DOI OpenURL
Li, Jing; Zhang, Yuhai On the existence of positive definite solutions of a nonlinear matrix equation. (English) Zbl 1357.15008 Taiwanese J. Math. 18, No. 5, 1345-1364 (2014). MSC: 15A24 65F30 PDF BibTeX XML Cite \textit{J. Li} and \textit{Y. Zhang}, Taiwanese J. Math. 18, No. 5, 1345--1364 (2014; Zbl 1357.15008) Full Text: DOI OpenURL
Liu, Aijing; Chen, Guoliang On the Hermitian positive definite solutions of nonlinear matrix equation \(X^s + \sum_{i = 1}^m A_i^\ast X^{- t_i} A_i = Q\). (English) Zbl 1335.15019 Appl. Math. Comput. 243, 950-959 (2014). MSC: 15A24 PDF BibTeX XML Cite \textit{A. Liu} and \textit{G. Chen}, Appl. Math. Comput. 243, 950--959 (2014; Zbl 1335.15019) Full Text: DOI OpenURL
Li, Zhao-Yan; Zhou, Bin; Lam, James Towards positive definite solutions of a class of nonlinear matrix equations. (English) Zbl 1334.15041 Appl. Math. Comput. 237, 546-559 (2014). MSC: 15A24 15B48 65F30 PDF BibTeX XML Cite \textit{Z.-Y. Li} et al., Appl. Math. Comput. 237, 546--559 (2014; Zbl 1334.15041) Full Text: DOI OpenURL
Yong, Longquan An improved global harmony search algorithm for linear complementarity problem. (Chinese. English summary) Zbl 1340.90251 J. Nat. Sci. Heilongjiang Univ. 31, No. 5, 589-596 (2014). MSC: 90C33 65K10 PDF BibTeX XML Cite \textit{L. Yong}, J. Nat. Sci. Heilongjiang Univ. 31, No. 5, 589--596 (2014; Zbl 1340.90251) Full Text: DOI OpenURL
Li, Chao; Chen, Guanggui; Li, Mingming Solutions and perturbation estimates for matrix equation \(X-A^*X^{-q}A=Q\). (Chinese. English summary) Zbl 1324.65082 Numer. Math., Nanjing 36, No. 2, 97-107 (2014). MSC: 65H10 15A24 65F35 PDF BibTeX XML Cite \textit{C. Li} et al., Numer. Math., Nanjing 36, No. 2, 97--107 (2014; Zbl 1324.65082) OpenURL
Cui, Xiaomei; Tan, Lihui; Zhao, Shijia Sufficient conditions for the existence of a positive definite solution of matrix equation \(X-A^*X^{-1}A+B^*X^{-2}B=I\). (Chinese. English summary) Zbl 1324.15017 Acta Math. Sin., Chin. Ser. 57, No. 5, 973-980 (2014). MSC: 15A24 65F30 65F10 PDF BibTeX XML Cite \textit{X. Cui} et al., Acta Math. Sin., Chin. Ser. 57, No. 5, 973--980 (2014; Zbl 1324.15017) OpenURL
Yang, Xingdong; Tu, Yuanyuan; Zhang, Taizhong; Ding, Zhiying; Sun, Suya The backward error analysis for perturbed discrete matrix Lyapunov equations. (Chinese. English summary) Zbl 1313.65104 Math. Appl. 27, No. 1, 185-189 (2014). MSC: 65F30 15A24 PDF BibTeX XML Cite \textit{X. Yang} et al., Math. Appl. 27, No. 1, 185--189 (2014; Zbl 1313.65104) OpenURL
Pei, Weijuan; Wu, Guoxing; Zhou, Duanmei; Liu, Yitian Some investigation on Hermitian positive-definite solutions of a nonlinear matrix equation. (English) Zbl 1323.15009 Int. J. Comput. Math. 91, No. 5, 872-880 (2014). Reviewer: Jaydeb Sarkar (Bangalore) MSC: 15A24 PDF BibTeX XML Cite \textit{W. Pei} et al., Int. J. Comput. Math. 91, No. 5, 872--880 (2014; Zbl 1323.15009) Full Text: DOI OpenURL
Duan, Xue-Feng; Wang, Qing-Wen; Li, Chun-Mei Positive definite solution of a class of nonlinear matrix equation. (English) Zbl 1302.65099 Linear Multilinear Algebra 62, No. 6, 839-852 (2014). Reviewer: Mihail Voicu (Iaşi) MSC: 65F30 15A24 93E25 PDF BibTeX XML Cite \textit{X.-F. Duan} et al., Linear Multilinear Algebra 62, No. 6, 839--852 (2014; Zbl 1302.65099) Full Text: DOI OpenURL
Yin, Xiaoyan; Wen, Ruiping; Fang, Liang On the nonlinear matrix equation \(X+\sum_{i=1}^{m} A_{i}^{*}X^{-q}A_{i}=Q\) \((0<q\leq1)\). (English) Zbl 1295.65053 Bull. Korean Math. Soc. 51, No. 3, 739-763 (2014). Reviewer: A. Arvanitoyeorgos (Patras) MSC: 65F30 15A24 65F10 PDF BibTeX XML Cite \textit{X. Yin} et al., Bull. Korean Math. Soc. 51, No. 3, 739--763 (2014; Zbl 1295.65053) Full Text: DOI Link OpenURL
Vecharynski, Eugene; Saad, Yousef; Sosonkina, Masha Graph partitioning using matrix values for preconditioning symmetric positive definite systems. (English) Zbl 1290.65025 SIAM J. Sci. Comput. 36, No. 1, A63-A87 (2014). MSC: 65F08 65F10 PDF BibTeX XML Cite \textit{E. Vecharynski} et al., SIAM J. Sci. Comput. 36, No. 1, A63--A87 (2014; Zbl 1290.65025) Full Text: DOI arXiv OpenURL
Vaezzadeh, Sarah; Vaezpour Mansour, Seyyed; Saadati, Reza; Park, Choonkil The iterative methods for solving nonlinear matrix equation \(X+A^\star X^{-1}A+B^{\star}X^{-1}B=Q\). (English) Zbl 1378.65109 Adv. Difference Equ. 2013, Paper No. 229, 10 p. (2013). MSC: 65H10 65F30 15A24 PDF BibTeX XML Cite \textit{S. Vaezzadeh} et al., Adv. Difference Equ. 2013, Paper No. 229, 10 p. (2013; Zbl 1378.65109) Full Text: DOI OpenURL
Laevskiĭ, Yu. M. Two-level explicit difference schemes. (English) Zbl 1374.65164 Bull. Novosib. Comput. Cent., Ser. Numer. Anal. 16, 43-52 (2013). MSC: 65M55 65M50 65M12 35K05 PDF BibTeX XML Cite \textit{Yu. M. Laevskiĭ}, Bull. Novosib. Comput. Cent., Ser. Numer. Anal. 16, 43--52 (2013; Zbl 1374.65164) Full Text: Link OpenURL
Zhou, Duanmei; Chen, Guoliang; Zhang, Xiangyun Some inequalities for the nonlinear matrix equation \(X^s +A^*X^{-t}A = Q\): trace, determinant and eigenvalue. (English) Zbl 1334.15048 Appl. Math. Comput. 224, 21-28 (2013). MSC: 15A24 PDF BibTeX XML Cite \textit{D. Zhou} et al., Appl. Math. Comput. 224, 21--28 (2013; Zbl 1334.15048) Full Text: DOI OpenURL
Wang, Minghui; Wei, Musheng; Hu, Shanrui The extremal solution of the matrix equation \(X^s+A^\ast X^{-q}A=I\). (English) Zbl 1329.15042 Appl. Math. Comput. 220, 193-199 (2013). MSC: 15A24 65H10 PDF BibTeX XML Cite \textit{M. Wang} et al., Appl. Math. Comput. 220, 193--199 (2013; Zbl 1329.15042) Full Text: DOI OpenURL
Vaezzadeh, S.; Vaezpour, S. M.; Saadati, R. On nonlinear matrix equations. (English) Zbl 1308.15013 Appl. Math. Lett. 26, No. 9, 919-923 (2013). MSC: 15A24 47H10 PDF BibTeX XML Cite \textit{S. Vaezzadeh} et al., Appl. Math. Lett. 26, No. 9, 919--923 (2013; Zbl 1308.15013) Full Text: DOI OpenURL
Popchev, Ivan; Angelova, Vera Residial bound of the matrix equation \( X+A^{H}X^{-1}A+B^{H}X^{-1}B=I \). (English) Zbl 1313.15033 C. R. Acad. Bulg. Sci. 66, No. 10, 1379-1384 (2013). Reviewer: Angela Slavova (Sofia) MSC: 15A24 65F30 15B48 PDF BibTeX XML Cite \textit{I. Popchev} and \textit{V. Angelova}, C. R. Acad. Bulg. Sci. 66, No. 10, 1379--1384 (2013; Zbl 1313.15033) Full Text: DOI OpenURL
Cai, Jing On the Hermitian positive definite solutions of the nonlinear matrix equation \(X^s-A^*X^{-t}A=Q\) with perturbation estimates. (English) Zbl 1313.15027 J. Math. Res. Appl. 33, No. 6, 673-682 (2013). MSC: 15A24 15B57 15B48 PDF BibTeX XML Cite \textit{J. Cai}, J. Math. Res. Appl. 33, No. 6, 673--682 (2013; Zbl 1313.15027) Full Text: DOI OpenURL
Gustavson, Fred G.; Waśniewski, Jerzy; Dongarra, Jack J.; Herrero, José R.; Langou, Julien Level-3 Cholesky factorization routines improve performance of many Cholesky algorithms. (English) Zbl 1295.65136 ACM Trans. Math. Softw. 39, No. 2, Article No. 9, 10 p. (2013). MSC: 65Y05 65F05 65Y15 68P05 PDF BibTeX XML Cite \textit{F. G. Gustavson} et al., ACM Trans. Math. Softw. 39, No. 2, Article No. 9, 10 p. (2013; Zbl 1295.65136) Full Text: DOI OpenURL
Yin, Xiaoyan; Fang, Liang Perturbation analysis for the positive definite solution of the nonlinear matrix equation \(X-\sum_{i=1}^mA_i^\ast X^{-1}A_i=Q\). (English) Zbl 1298.15024 J. Appl. Math. Comput. 43, No. 1-2, 199-211 (2013). Reviewer: John D. Dixon (Ottawa) MSC: 15A24 15A45 65H10 PDF BibTeX XML Cite \textit{X. Yin} and \textit{L. Fang}, J. Appl. Math. Comput. 43, No. 1--2, 199--211 (2013; Zbl 1298.15024) Full Text: DOI OpenURL
Berzig, Maher Comment to: “Perturbation estimates for the nonlinear matrix equation \(X-A^\ast X^qA=Q (0<q<1)\)” by G. Jia and D. Gao. (English) Zbl 1383.15013 J. Appl. Math. Comput. 41, No. 1-2, 501-503 (2013). MSC: 15A24 65F30 PDF BibTeX XML Cite \textit{M. Berzig}, J. Appl. Math. Comput. 41, No. 1--2, 501--503 (2013; Zbl 1383.15013) Full Text: DOI OpenURL
Zhao, Xiaoming; Yang, Qingzhi A new relaxation bound for a biquadratic optimization problem with unit spheres. (English) Zbl 1299.90274 Numer. Math., Nanjing 35, No. 3, 273-288 (2013). MSC: 90C26 90C59 PDF BibTeX XML Cite \textit{X. Zhao} and \textit{Q. Yang}, Numer. Math., Nanjing 35, No. 3, 273--288 (2013; Zbl 1299.90274) OpenURL
Sang, Haifeng; Liu, Panpan; Zhang, Shugong; Li, Qingchun On the nonlinear matrix equation \(X+A^*f_1(X)A+B^*f_2(X)B=Q\). (English) Zbl 1299.65080 Commun. Math. Res. 29, No. 3, 280-288 (2013). MSC: 65F30 15A24 PDF BibTeX XML Cite \textit{H. Sang} et al., Commun. Math. Res. 29, No. 3, 280--288 (2013; Zbl 1299.65080) OpenURL
Duan, Xuefeng; Li, Chunmei; Liao, Anping; Wang, Ronghao On two classes of mixed-type Lyapunov equations. (English) Zbl 1291.65136 Appl. Math. Comput. 219, No. 16, 8486-8495 (2013). MSC: 65F30 65F10 15A24 PDF BibTeX XML Cite \textit{X. Duan} et al., Appl. Math. Comput. 219, No. 16, 8486--8495 (2013; Zbl 1291.65136) Full Text: DOI OpenURL
Wang, QingWen; He, ZhuoHeng A system of matrix equations and its applications. (English) Zbl 1291.15043 Sci. China, Math. 56, No. 9, 1795-1820 (2013). Reviewer: Mihail Voicu (Iaşi) MSC: 15A24 15A09 15A03 PDF BibTeX XML Cite \textit{Q. Wang} and \textit{Z. He}, Sci. China, Math. 56, No. 9, 1795--1820 (2013; Zbl 1291.15043) Full Text: DOI OpenURL
Zhou, Duanmei; Chen, Guoliang; Wu, Guoxing; Zhang, Xiangyun On the nonlinear matrix equation \(X^s+A^*F(X)A=Q\) with \(s\geq 1\). (English) Zbl 1289.15032 J. Comput. Math. 31, No. 2, 209-220 (2013). MSC: 15A24 PDF BibTeX XML Cite \textit{D. Zhou} et al., J. Comput. Math. 31, No. 2, 209--220 (2013; Zbl 1289.15032) Full Text: DOI OpenURL
Zhao, Linlin Some inequalities for the nonlinear matrix equations. (English) Zbl 1273.15006 Math. Inequal. Appl. 16, No. 3, 903-910 (2013). MSC: 15A15 15A18 15A24 PDF BibTeX XML Cite \textit{L. Zhao}, Math. Inequal. Appl. 16, No. 3, 903--910 (2013; Zbl 1273.15006) Full Text: DOI OpenURL
Duan, Xuefeng; Wang, Qingwen; Liao, Anping On the matrix equation \(X-\sum^m_{i=1}N^\ast_iX^{-1}N_i=I\) arising in an interpolation problem. (English) Zbl 1288.15018 Linear Multilinear Algebra 61, No. 9, 1192-1205 (2013). Reviewer: João R. Cardoso (Coimbra) MSC: 15A24 65H10 65F30 PDF BibTeX XML Cite \textit{X. Duan} et al., Linear Multilinear Algebra 61, No. 9, 1192--1205 (2013; Zbl 1288.15018) Full Text: DOI OpenURL
Chuong, Thai Doan Newton-like methods for efficient solutions in vector optimization. (English) Zbl 1295.90068 Comput. Optim. Appl. 54, No. 3, 495-516 (2013). MSC: 90C29 90C48 90C53 PDF BibTeX XML Cite \textit{T. D. Chuong}, Comput. Optim. Appl. 54, No. 3, 495--516 (2013; Zbl 1295.90068) Full Text: DOI OpenURL
Wang, Minghui; Wei, Musheng On matrix equation \(X^s+A^*X^{-q}A=I^*\). (English) Zbl 1289.65111 Numer. Math., Nanjing 34, No. 3, 277-288 (2012). MSC: 65F30 15A24 65F10 PDF BibTeX XML Cite \textit{M. Wang} and \textit{M. Wei}, Numer. Math., Nanjing 34, No. 3, 277--288 (2012; Zbl 1289.65111) OpenURL
Duan, Xuefeng; Chang, Haixia; Duan, Fujian Positive definite solutions of the matrix equation \(X-\sum\limits^m_{i=1}A^*_iX^{-1}A_i=Q\). (Chinese. English summary) Zbl 1274.65121 Numer. Math., Nanjing 34, No. 2, 141-152 (2012). MSC: 65F30 15A24 65F10 PDF BibTeX XML Cite \textit{X. Duan} et al., Numer. Math., Nanjing 34, No. 2, 141--152 (2012; Zbl 1274.65121) OpenURL
Yin, Junfeng; Dou, Quanyu A generalized preconditioned Hermitian and skew-Hermitian splitting method for non-Hermitian positive-definite linear systems. (English) Zbl 1274.65105 J. Comput. Math. 30, No. 4, 404-417 (2012). MSC: 65F10 65F08 35J25 65N22 PDF BibTeX XML Cite \textit{J. Yin} and \textit{Q. Dou}, J. Comput. Math. 30, No. 4, 404--417 (2012; Zbl 1274.65105) Full Text: DOI OpenURL
Berzig, Maher; Duan, Xuefeng; Samet, Bessem Positive definite solution of the matrix equation \(X = Q - A{^*}X^{-1}A + B{^*}X^{- 1}B\) via Bhaskar-Lakshmikantham fixed point theorem. (English) Zbl 1264.15015 Math. Sci., Springer 6, Paper No. 27, 6 p. (2012). MSC: 15A24 65H05 PDF BibTeX XML Cite \textit{M. Berzig} et al., Math. Sci., Springer 6, Paper No. 27, 6 p. (2012; Zbl 1264.15015) Full Text: DOI OpenURL
Duan, Xue-Feng; Wang, Qing-Wen Perturbation analysis for the matrix equation \(X - \sum^m_{i=1} A^\ast_i XA_i + \sum^n_{j=1} B^\ast_j XB_j = I\). (English) Zbl 1268.15009 J. Appl. Math. 2012, Article ID 784620, 13 p. (2012). MSC: 15A24 PDF BibTeX XML Cite \textit{X.-F. Duan} and \textit{Q.-W. Wang}, J. Appl. Math. 2012, Article ID 784620, 13 p. (2012; Zbl 1268.15009) Full Text: DOI OpenURL
Yin, Xiaoyan; Liu, Sanyang; Li, Tiexiang On positive definite solutions of the matrix equation \(X + A^* X^{-q} A = Q(0 < q \leq 1)\). (English) Zbl 1383.15015 Taiwanese J. Math. 16, No. 4, 1391-1407 (2012). Reviewer: Qing-Wen Wang (Shanghai) MSC: 15A24 65F10 65H05 PDF BibTeX XML Cite \textit{X. Yin} et al., Taiwanese J. Math. 16, No. 4, 1391--1407 (2012; Zbl 1383.15015) Full Text: DOI Link OpenURL
Zhang, Jingwen; Liu, Deyou; Wu, Wenjuan Delayed neural networks for quadratic optimization applications. (Chinese. English summary) Zbl 1265.90226 J. Zhengzhou Univ., Nat. Sci. Ed. 44, No. 1, 6-10 (2012). MSC: 90C20 92B20 PDF BibTeX XML Cite \textit{J. Zhang} et al., J. Zhengzhou Univ., Nat. Sci. Ed. 44, No. 1, 6--10 (2012; Zbl 1265.90226) OpenURL
Duan, Xuefeng; Wang, Qingwen; Chang, Haixia Positive definite solutions for a class of generalized Stein equations. (Chinese. English summary) Zbl 1265.65280 J. Shanghai Univ., Nat. Sci. 18, No. 1, 26-29 (2012). MSC: 65R30 15A24 65F10 PDF BibTeX XML Cite \textit{X. Duan} et al., J. Shanghai Univ., Nat. Sci. 18, No. 1, 26--29 (2012; Zbl 1265.65280) Full Text: DOI OpenURL
Berzig, Maher Solving a class of matrix equations via the Bhaskar-Lakshmikantham coupled fixed point theorem. (English) Zbl 1252.15016 Appl. Math. Lett. 25, No. 11, 1638-1643 (2012). MSC: 15A24 PDF BibTeX XML Cite \textit{M. Berzig}, Appl. Math. Lett. 25, No. 11, 1638--1643 (2012; Zbl 1252.15016) Full Text: DOI arXiv OpenURL
Fasshauer, Gregory E. Green’s functions: taking another look at kernel approximation, radial basis functions, and splines. (English) Zbl 1250.65107 Neamtu, Marian (ed.) et al., Approximation theory XIII: San Antonio 2010. Selected papers based on the presentations at the conference, San Antonio, TX, USA, March 7–10, 2010. New York, NY: Springer (ISBN 978-1-4614-0771-3/hbk; 978-1-4614-0772-0/ebook). Springer Proceedings in Mathematics 13, 37-63 (2012). MSC: 65L15 34L10 34B27 46E22 PDF BibTeX XML Cite \textit{G. E. Fasshauer}, Springer Proc. Math. 13, 37--63 (2012; Zbl 1250.65107) Full Text: DOI OpenURL